Zbl 158.26603

Erdős, Pál; Hajnal, András; Rado, R.

Partition relations for cardinal numbers (In English)

Acta Math. Acad. Sci. Hung. 16, 93-196 (1965). [0001-5954]

Small Greek letters denote ordinal numbers, small Roman letters denote cardinal numbers (i.e. initial ordinal), always $p, r, s < \omega_0$, |X| is the cardinality of X, $[X]^r$ denotes the set of all r element subsets of X. The partition relations I, II, III are defined as follows. The relation I: $a \to (b_{\nu})_{\nu < \lambda}^r$ holds true if and only if for every partition $[X]^r = \bigcup_{\nu < \lambda} J_{\nu}$, |X| = a, there is a $\nu_0 < \lambda$ and a subset $Y \subseteq X$ such that |Y| = b and $[Y]^r \subseteq J_{\nu_0}$. The relation II: $a \to (b_{\nu})_{\nu < \lambda}^{<\aleph_0}$ means that for every partition $[X]^{<\aleph_0} = \bigcup_{\nu < \lambda} J_{\nu}$, where $[X]^{<\aleph_0} = \bigcup_{r < \omega_0} [X]^r$, there exists a $\nu_0 < \lambda$ and a subset $Y \subseteq X$, $|Y| = b_{\nu_0}$ and $[Y]^{<\aleph_0} \subseteq J_{\nu_0}$. The relation III:

$$\begin{pmatrix} a_0 \\ \vdots \\ a_s \end{pmatrix} \to \begin{pmatrix} b_{0\nu} \\ \vdots \\ b_{s\nu} \end{pmatrix}_{\nu < \lambda}^{r_0, \dots, r_s}$$

is equivalent to the following condition. Let $|X_p|=a_p$ for $p\leq s,\ X_p$ are disjoint, $[X_0,...,X_s]^{r_0,...r_s}=\{X:X\subseteq X_0\cup\cdots\cup X_s,\ |X\cap X_p|=r_p$ for $p\leq s\}=\bigcup_{\nu<\lambda}J_\nu$. Then there exist sets $Y_r\subseteq X_r$, for $r\leq s$ and a $\nu_0<\lambda$ such that $|Y_r|=b_{r\nu_0}$ for $r\leq s$ and

$$[Y_0, ..., Y_s]^{r_0, ..., r_s} \subseteq J_{\nu_0}.$$

"In this paper our first major aim is to discuss as completely as possible the relation I. Our most general results in this direction are stated in Theorems I and II, If we disregard cases when among the given cardinals there occur inaccessible numbers greater than \aleph_0 , and if we assume the General Continuum Hypothesis, then our results are complete for $r=2,\ldots$. It seems that there are only two essentially different methods for obtaining positive partition formulae: those given in Lemma 1 and those given in Lemma 3 ... In Lemma 5 we state powerful new methods for constructing examples of particular partitions which yield negative I-relation. ... Our second major aim is an investigation of the polarized partition relation III."

The exact formulation of the Lemma 1 is complicated; its contents may be shortly formulated as follows: in every sufficiently great tree, in which from every edge goes out a small number of branches, there is a large branche.

The simplest canonization lemma (the Lemma 3 proved using the Generalized Continuum Hypothesis) may be stated as follows: Let |S| = a > a' (a' is the smallest cardinal with which a is cofinal); $r \geq 1$, $a = \sup\{a_{\xi} < a'\}$, $a_{\xi_1} < a_{\xi_2}$ for $\xi_1 < \xi_2 < a'$, $[S]^r = \bigcup_{\nu < \lambda} J_{\nu}$, $\lambda < a$. Then there are disjoint sets S_{σ} , $\sigma < a'$, $|S_{\sigma}| = a_{\sigma}$, $S_{\sigma} \subseteq S$ and for $X, Y \in [\bigcup_{\sigma < a'} S_{\sigma}]^r$, the relations $|X \cap S_{\sigma}| = |Y \cap S_{\sigma}|$ for $\sigma < a'$ are equivalent to the condition: there is a $\nu_0 < \lambda$ such that $X, Y \in J_{\nu_0}$.

Define $\alpha \dot{-}1 = \alpha$ for α limit $\alpha \dot{-}1 = \beta$ if and only if $\alpha = \beta + 1$, $cr(\alpha) = cf(cf(\alpha \dot{-}1))$. Let us denote:

- (R) $\aleph_{\beta+(r-2)} \to (b_{\xi})^r_{\xi} < \lambda$,
- (IA) $b_0 = \aleph_\beta$,
- (IB) $b_{\xi} < \aleph_{\beta}$ for $\xi < \lambda$,
- (CA) $\prod_{1 < \xi < \lambda} b_{\xi} \leq \aleph_{cr(\beta)}$,
- (CB) $\prod_{\xi<\lambda} b_{\xi} < \aleph_{\beta}$,
- (D) $r \geq 3$, $\beta > \operatorname{cf}(\beta) > \operatorname{cf}(\beta) 1 > \operatorname{cr}\beta$, $b_{\xi} < \aleph_0$ for $1 \leq \xi < \lambda$.

The first main theorem may be stated as follows. Let $\lambda \geq 2$, $2 \leq r < b_{\xi} \leq \aleph_{\beta}$ for $\xi < \lambda$. Assuming the Generalized Continuum Hypothesis we have:

- (i) If (IA) holds, (D) does not holds, then (R) implies (CA).
- (ii) If (IA) holds and $b_1 \geq \aleph_0$, then (R) implies (CA).
- (iii) If (IA) holds and \aleph'_{β} is not inaccessible, then (CA) implies (R).
- (iv) If (IA) holds and $b_{\xi} < \aleph_{\beta}'$ for $0 < \xi < \lambda$ then (CA) implies (R).
- (v) If (IB) holds, then (CB) is equivalent to (R).

Let us denote:

- (IIA) $b_0 > \aleph_{\alpha \dot{-}(r-2)}$.
- (IIB) $b_{\xi} \leq \aleph_{\gamma}, \ \xi < \lambda, \ \alpha = \gamma + s, \ \gamma \text{ limit and } s < r 2.$
- (IIC1) $b_0 = \aleph_{\alpha-(r-2)},$
- (IIC2) $b_{\xi} < \aleph_{\alpha \dot{-}(r-2)}$ for $\xi < \lambda$.
- (R0) $\aleph_{\alpha} \to (b_{\xi})_{\xi < \lambda}^{r}$.

The second main theorem: Let $\lambda \geq 2$, $2 \leq r < b_{\xi} \leq \aleph_{\alpha}$ for $\xi < \lambda$.

Assuming the Generalized Continuum Hypothesis we have:

- (i) If (IIA) holds, then (R0) is false.
- (ii) If (IIB) and (IIC1) hold, (R0) implies that $\aleph_{\alpha-(r-2)}$ is inaccessible.
- (iii) If (IIB) and (IIC2) hold, then (R0) is equivalent to the condition $\prod_{\xi < \lambda} b_{\xi} < \aleph_{\alpha \dot{-}(r-2)}$.

The proofs are based on Lemmas 1, 2, 3 and 5. The Lemma 2 and 5 are the stepping-up and stepping-down Lemmas respectively, i.e. they are of the form "if $a \to (b_{\xi})_{\xi < \lambda}^r$, then $a^+ \to (b_{\xi} + 1)_{\xi < \lambda}^{r+1}$ " and "if $a \not\to (b_{\xi})_{\xi < \lambda}^r$, then $2^a \not\to (b_{\xi} + 1)_{\xi < \lambda}^{r+1}$ ", respectively (of course, under some assumptions).

A great part of the paper is devoted to the study of relations IV and V. The relation IV: $a \to [b_{\xi}]_{\xi < c}^r$ (relation V: $a \to [b]_{c,d}^r$) is equivalent to the condition: whenever |S| = a, $[S]^r = \bigcup_{\xi < c} J_{\xi}$, where the J_{ξ} are disjoint, then there are a set $X \subseteq S$ and a number $\xi_0 < c$ (a set $D \subseteq c$) such that $|X| = b_{\xi_0}$ and $[X]^r \cap J_{\xi_0} = \emptyset$ (|X| = b, $|D| \le a$ and $[X]^r \subseteq \bigcup_{\xi \in D} J_{\xi}$). Some results (assuming the Generalized Continuum Hypothesis):

- (i) $\aleph_{\alpha+1} \not\to [\aleph_{\alpha+1}]^2_{\aleph_{\alpha+1}}$ for any α .
- (ii) Let $r \geq 2$ and $\alpha > \operatorname{cf}(\alpha)$. Then $\aleph_{\alpha} \not\to [\aleph_{\alpha}]_{2^{r-1}}^r$.
- (iii) If \aleph'_{α} is \aleph_0 or a measurable cardinal, then $\aleph_{\alpha} \to [\aleph_{\alpha}]_c^r$ for $c > 2^{r-1}$ and $\aleph_{\alpha} \to [\aleph_{\alpha}]_{c2^{r-1}}^r$ for $c < \aleph_{\alpha}$.
- (iv) $\aleph_2 \to [\aleph_0, \aleph_1, \aleph_1]^3$.

On the other hand, there are many open problems, e.g. $\aleph_2 \to [\aleph_1]_4^3$?, $\aleph_3 \to [\aleph_1]_{\aleph_2,\aleph_0}^2$?

In the second part, the authors investigate the polarized partition relation

 $\binom{a}{b} \rightarrow \binom{a_0, a_1}{b_0, b_1}$, i. e. a special case of the relation III. A complete discussion

is given, however, the results are not complete. Many other relations and problems are studied, but it is impossible to give a full list of them here.

Articles of (and about) Paul Erdős in Zentralblatt MATH

The paper is rather difficult to read and gives the impression of a condensed version of a monography.

 $L. Bukovsk\acute{y}$

Classification:

 $05\mathrm{D}10$ Ramsey theory

03E05 Combinatorial set theory (logic)

04A20 Combinatorial set theory

03-02 Research monographs (mathematical logic)

05E10 Tableaux, etc.

04A10 Ordinal and cardinal numbers; generalizations