Zbl 304.04003

Davies, R.O.; Erdős, Paul

Splitting almost-disjoint collections of sets into subcollections admitting almosttransversals. (In English)

Infinite finite Sets, Collog. Honour Paul Erdős, Keszthely 1973, Colloq. Math. Soc. Janos Bolyai 10, 307-322 (1975).

[For the entire collection see Zbl 293.00009.]

Assuming AC, it is proved, given cardinals $n_i \geq 1$ for $i \in I \neq \emptyset$, an integer $m \geq 0$, and ordinals μ, ν , that for the truth of the proposition "every collection" of \aleph_{μ} sets of cardinal \aleph_{ν} , any two having $\leq m$ common elements, splits into subcollections $G_i (i \in I)$ each admitting an n_i -transversal: a set S_i with $1 \le i$ $\operatorname{card}(A \cap S_i) < n_i + 1$ for all $A \in G_i$ ", it is sufficient that either (i) $\mu < \nu$, or (ii) $\mu = \nu + r$ (r finite) and $\sum (n_i + 1) \ge mr + m + 2$, or (iii) $\sum (n_i + 1) \ge \aleph_0$. Some incomplete results are presented supporting the conjecture that the condition is also necessary (assuming GCH), as it is in the case when I is a singleton, due to P. Erdős and A. Hajnal [Acta Math. Acad. Sci. Hung. 12, 87-123 (1961; Zbl 201.32801)]. The authors do not know whether every collection of sets of \aleph_1 different cardinalities, any two having at most one common element, splits into \aleph_0 subcollections each admitting a 1- transversal.

Classification:

04A20 Combinatorial set theory

04A25 Axiom of choice and equivalent propositions

04A30 Continuum hypothesis and generalizations

04A10 Ordinal and cardinal numbers; generalizations