Zbl 329.10036

Erdős, Paul; Hall, R.R.

Articles of (and about)

Distinct values of Euler's φ -function. (In English)

Mathematika, London 23, 1-3 (1976).

Let V(x) denote the number of distinct values not exceeding x taken by Euler's φ -function, so that $\pi(x) \leq V(x) \leq x$. In a previous paper by the authors [Acta arithmetica 22, 201-206 (1973; Zbl 252.10007)], they show that for each fixed $B > 2\sqrt{(2/\log 2)}$, the estimate $V(x) \ll \pi(x) \exp\{B\sqrt{(\log \log x)}\}$ holds. In this paper they show that there exist positive absolute constants A, C, such that

$$V(x) \geq C - \pi(x) \exp\{A(\log\log\log x)^2\}.$$

The methods used involve the number of representations of n in the form n = $m_i(p-1)$ where p is a prime and the sequence of distinct numbers of the form $(p_1-1)(p_2-1)\dots(p_k-1)$ subject to various conditions. The authors conclude by asking the question: is it true that, for every c > 1, $\lim V(cx)/V(x) = c$?

E.M.Horadam

Classification:

11N37 Asymptotic results on arithmetic functions

11A25 Arithmetic functions, etc.