Zbl 474.04002

Articles of (and about)

Elekes, G.; Erdős, Paul; Hajnal, András

On some partition properties of families of sets. (In English)

Stud. Sci. Math. Hung. 13, 151-155 (1978). [0081-6906]

The paper states (without detailed proofs) results and problems concerning the existence of certain types of homogeneous sets for partitions $P(\kappa) = \bigcup \{D_{\alpha}; \alpha < 0\}$ μ of the power set $P(\kappa)$ of the infinite cardinal κ into μ classes. We say $H \subseteq P(\kappa)$ is homogeneous for the partition if there is some $\alpha < \mu$ with $H \subseteq D_{\alpha}$. The first questions discussed concern homogeneous Δ - systems. The family \dashv is called a λ , Δ -system if $|a| = \lambda$ and $A \cap B$ is the same for all distinct A, B from \dashv . Results stated include: For any partition of $P(\kappa)$ into κ classes and any cardinal $\delta < \kappa$, there is a homogeneous λ, Δ -system. If κ is regular this holds for $\lambda = \kappa$ as well. Further questions relate to homogeneous (λ, μ) -systems. The family \mathcal{J} is said to bee a (λ, μ) -system if there is a family \exists with $|a| = \lambda$ such that \mathcal{J} is the collection of all non- empty unions of $\langle \mu$ -size subfamilies of \dashv these unions being different for different subfamilies. Typical results: For any $\lambda < \kappa$ and any finite n, every partition of $P(\kappa)$ into κ classes has a homogeneous λ , n-system. If κ is regular, this holds for $\lambda = \kappa$ as well. If $2^{<\kappa} = \kappa$ any such partition has a homogeneous \aleph_0 , \aleph_0 -system, but $2^{\kappa} = \kappa^+$ then there is such a partition with no \aleph_1, \aleph_0 -system.

N.H. Williams

Classification:

04A20 Combinatorial set theory

Keywords:

partitions of the power set of an infinite cardinal; homogeneous sets