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The problems discussed in this paper are ut into three groups: problems on
additive number theory, problems on prime numbers, ans miscellaneous prob-
lems. Some of these have been solved, or partially solved, but no solutions are
given here. Instead, the author directs our attention to intriguing questions
remaining to be answered. He alse continues his custom of offering monetary
rewards for solutions to some of the problems. For an example from the first
group, let 1 < a; < --- < ar < n be asequence of integers for which all the
sums a; + a; are distinct. The author and P. Turdn have shown [J. Lond.
Math. Soc. 16, 212-215 (1941; Zbl 061.07301)] that maxk = (1 + o(1))n'/?
and he conjectures that maxk = n'/? + O(1). If the hypothesis weakened so
that the number of distinct a1 + a; is (14 o(1))(k/2) it is no longer true that
max k = (1 + o(1))n'/? and an example exists with k > 2n'/2/31/2. Hoever, it
is conjectured that max k =< cn'/? for some ¢ < 21/2. Now let p; < ps < ...
be the sequence of consecutive primes. R.Rankin [J. Lond. Math. Soc. 13,
242-247 (1938; Zbl 019.39403)] has shown that fot infinitely many n, and for
some ¢ > 0, pp+1 — pn > cL,, where

L,, = (logn)(loglog n)(logloglog log n)/(log log log n)*.

The author wishes to see a proof that p,11—p, > cL,, holds for every c. He has
shown [Publ. Math. 1, 33-37 (1949; Zbl 033.16302)] that there is a constant ¢;
such that, for infinitely many n, min(p,+1—pn, pn—Pn—1) > ¢1 Ly, and H.Maier
[Adv. Math. 39, 257-269 (1981; Zbl 457.10023)] has proved that for every k
there is a constant ¢; such that, for infinitely many n, min;—y 2k (Pptr+1 —
Pnt1 > cxLy). Nevertheless, it is conjectured that lim, . Dpi1(x)/Di(x) =0
where Dy, () = max,, <, min;—1, . k—1(Pn+i+t1—Pn+i)- Lhe list of miscellaneous
problems begins with the problem of determining whether or not almost all
integers have two divisors d; and ds satisfying d; < do < 2d;. The selection
here is quite varied.
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