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Abstract. We provide a different approach to and prove a (partial) generalisation of a
recent theorem on the structure of low energy solutions of the compatible two well problem in
two dimensions [Lor05], [CoSc06]. More specifically we will show that a “quantitative” two well
Liouville theorem holds for the set of matrices K = SO (2) ∪ SO (2) H where H =

(
σ 0
0 σ−1

)
under

a constraint on the Lp norm of the second derivative. Our theorem is the following.
Let p ≥ 1, q > 1. Let u ∈ W 2,p (B1 (0)) ∩ W 1,q (B1 (0)). There exists positive constants

C1 << 1,C2 >> 1 depending only on σ, p, q such that if u satisfies the following inequalities
∫

B 1
2
(0)

dq (Du (z) ,K) dL2z ≤ C1ε,

∫

B1(0)

∣∣D2u (z)
∣∣p dL2z ≤ C1ε

1−p

then there exist A ∈ K such that

(1)
∫

B 1
2
(0)

|Du (z)−A|q dL2z ≤ C2ε
1
2q .

We provide a proof of this result by use of a theorem related to the isoperimetric inequality, the
approach is conceptually simpler than those previously used in [Lor05], [CoSc06], however it does
not given the optimal cε

1
q bound for (1) that has been proved (for the p = 1 case) in [CoSc06].

In 1850 Liouville [Lio50] proved the following classic theorem: given domain
Ω ⊂ R3 and function u ∈ C4 (Ω : R3) with the property Du (x) = λ (x) O (x)
where λ (x) ∈ R and O (x) is an orthogonal n × n matrix, then u is a Möbius
transformation.

There are many works generalising this theorem, an incomplete list is Gehring
[Ge62], Reshetnyak [Re67], Bojarski and Iwaniec [BoIw82]. A corollary to Liouville’s
Theorem is that a function whose gradient is in SO (n) is an affine mapping. Re-
cently Friesecke, James and Müller [FrJaMu02] have proved an optimal quantitative
version of this corollary.

Theorem 1. (Friesecke, James, Müller) Let U be a bounded Lipschitz domain
in Rn, n ≥ 2. Let q > 1. There exists a constant C (U, q) with the following
property. For each v ∈ W 1,q (U,Rn) there exists an associated rotation R ∈ SO (n)
such that

(2) ‖Dv −R‖Lq(U) ≤ C (U, q) ‖dist (Dv, SO (n)) ‖Lq(U).
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This theorem has already had important applications [FrJaMu02], [FrJaMu06]
and there have been a number of generalisations of it [ChaMu03], [FaZh05], [DeSe06].
However the corresponding statement for SO (n) replaced by a set of matrices
L ⊂ Mm×n which contains rank-1 connections (i.e. there exists A, B ∈ L such
that rank (A−B) = 1) is trivially false.

However recently a version of Theorem 1 has been proved in two dimensions
for the set of matrices K = SO (2) A ∪ SO (2) B where the matrix AB−1 is rank-1
connected to some matrix in SO (2). The first result was by the author [Lor05] for
invertible bilipschitz mappings with control in inequality (1) of order ε

1
800 . This was

greatly generalised by Conti, Schweizer [CoSc06], Theorem 2.1, Corollary 2.5. Our
current theorem is:

Theorem 2. Let H =
(

σ 0
0 σ−1

)
for σ > 0. Let p ≥ 1, q ≥ 1. Let K =

SO (2) ∪ SO (2) H. Let u ∈ W 2,p (B1 (0) : R2) ∩W 1,q (B1 (0) : R2).
There exists positive constants C1 << 1,C2 >> 1 depending only on σ, p, q

such that if u satisfies the following inequalities∫

B1(0)

dq (Du (z) , K) dL2z ≤ C1ε(3)
∫

B1(0)

∣∣D2u (z)
∣∣p dL2z ≤ C1ε

1−p,(4)

then there exists J ∈ {Id, H} such that
∫

B1(0)
dq (Du (z) , SO (2) J) dL2z ≤ C2ε

1
2q

and consequently (by application of Theorem 1) for the case q > 1, for some R ∈
SO (2) we have

(5)
∫

B 1
2
(0)

|Du (z)−RJ |q dL2z ≤ C2ε
1
2q .

In [CoSc06] the hypotheses were that u satisfies (3) and (4) for the case p =
1, (i.e. the L1 version of this theorem) however their theorem states the optimal
inequality, namely that (5) holds for ε

1
q , they also established the theorem for the

more general sets of matrices SO (2) A∪SO (2) B and stated it for Lipschitz domains.
By change of variables our theorem covers the cases where det (A) = det (B) = 1
and by covering theorems there is no loss of generality in taking the domain to be
the unit ball.

Our approach differs from that of [Lor05], [CoSc06] in two ways. Firstly we
will use the hypotheses to reduce the situation to one in which we can apply a
theorem related to the isoperimetric inequality, this will allow us to gain control of
our function in a central sub-ball. Though this method does not produce optimal
results, it is conceptually simpler in that it is the fastest way to see why this initially
surprising result should be true.

Secondly and more importantly we provide a different approach than [CoSc06]
to proving the result for non-invertible mappings, specifically our argument does
not require the use of the embedding W 1,1 (B1 (0)) ↪→ L2 (B1 (0)). This embedding
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together with degree arguments were used in a essential way in [CoSc06] to prove
the first result for non invertible mappings, the main reason these methods can not
be extended to higher dimensions is to do with the failure of this embedding for
dimension n ≥ 3. Using our methods we will prove a generalisation of Theorem
2 for n ≥ 3 in a forth coming paper [JeLorpr2]. Our basic idea is to use the
fact that on a large subset A ⊂ B 1

2
(0) the function w := ubA forms a quasi-regular

mapping and we obtain partial invertibility properties of u inside w (A). In addition
the way we deal with non-invertible mappings is more detailed and complete than
the proof presented in [CoSc06].1 The paper is a rewrite of previous work of the
author [Lorpr1], this preprint having become outdated has not been re-submitted
for publication.

One of the main tools we will use to prove Theorem 2 is a theorem charactering
the case of equality in the isoperimetric inequality. More specifically, it is well
known that amongst all bodies B of volume 1 in Rn, the ball minimises Hn−1 (∂B),
i.e. the ball gives the case of equality of the isoperimetric inequality. A quantitative
statement of this kind is given by the following theorem of Hall, Hayman, Weitsman
[HaHaWe91].

Theorem 3. (Hall et al.) Let E be a set of finite perimeter in R2, R :=(
L2(E)

π

) 1
2 and let the Fraenkel asymmetry λ (E) be defined by

(6) λ (E) := inf
a∈R2

L2 (E\BR (a))

πR2
.

Then

(7) (Per (E))2 ≥ 4π

(
1 +

(λ (E))2

4

)
L2 (E) .

The starting idea of the proof of the Theorem 2 is the same starting idea as
that of Theorem 1 of [Lor05] and that of Theorem 2.1 of [CoSc06]. This idea is
to surround a central sub-ball with a lower dimensional set on which u is close to
affine. In [Lor05] the set was the boundary of a diamond, in [CoSc06] the corners
of a triangle. In both papers the lower dimensional set is found using that fact that
hypotheses (3), (4) (for p = 1) forces the perimeter of the set

(8) W = {x ∈ B1 (0) : d (Du (x) , SO (2)) < d (Du (x) , SO (2) H)}
to be less that C1, for example since H1 (∂W ) ≤ C1 it is easy to find (by Fubini’s
Theorem) many intervals [a, b] ⊂ B1 (0) for which [a, b] ∩ ∂W = ∅ so (possibly
after a change of variables) [a, b] ⊂ W and then the full force of hypothesis (3)
goes to show that for “most” intervals the gradient of Du stays close to SO (2) and
hence there is no stretching of u ([a, b]) in the sense that we have the inequality
|u (a)− u (b)| ≤ H1 (u ([a, b])) ≤ |a− b| + cε

1
q . To begin to establish affine type

1In our opinion there are correctable, but non trivial gaps in the argument of [CoSc06].
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properties we would like to show an inequality of the form

(9) |u (a)− u (b)| ≥ |a− b| − cε
1
q .

In [Lor05] it was established that there exists two “special directions” η1, η2 ∈ S1

(defined by |H−1ηi| = 1 for i = 1, 2) for which (9) holds true for intervals parallel
to η1 and η2 and for which

∫
[a,b]

d (Du (z) , K) dH1z ≤ cε
1
q . Hence it was possible to

show u is close to affine on the boundary of a diamond.
In [CoSc06], (9) was established using the fact that the inverse map u−1 satisfies

an inequality of the form (3) and “in some sense” an inequality of the form (4) in
the image u (B1 (0)), so assuming that intervals [a, b] and [u (a) , u (b)] satisfy the
appropriate inequalities both in the reference configuration and the image, the non-
stretching argument can be carried out on [u (a) , u (b)] and on [a, b] to establish

(10) |a− b| ≈ |u (a)− u (b)| ± cε
1
q .

With this approach it is only necessary to control three points {a, b, c} that form
the corners of an equilateral triangle because (10) shows that the distances of the
set {u (a) , u (b) , u (c)} are (almost) preserved, and hence {u (a) , u (b) , u (c)} comes
close to forming the corners of an equilateral triangle. With one further geometric
idea (the “two triangles” argument of [CoSc06], p847, p848) this can be used to show
that in ball Br0 (0) contained in the triangle, L2 (Br0 (0) \W ) ≤ ε

1
q , the theorem then

follows by an application of Theorem 1, the main gain in control comes from this
strategy, i.e. to reduce the situation to a point where we have the hypotheses to
apply Theorem 1 .

In the proof of Theorem 2 we exploit the bound H1 (∂W ) ≤ C1 a bit differently.
This time instead of lines we consider the boundary of balls, we can chose r0 ∈

(
1
4
, 3

4

)
so that ∂Br0 (0) ⊂ W and

∫
∂Br0(0)

dp (Du (z) , K) dH1z ≤ ε, and hence we have

(possibly after change of variables) H1 (u (∂Br0 (0))) ≤ 2πr0 + cε
1
q . Assuming u

is an open mapping (which it almost is since inequality (3) implies there is a set
Z with L2 (B1 (0) \Z) ≤ cε

1
q for which ubZ is a quai-regular mapping) we have

H1 (∂u (Br0 (0))) ≤ H1 (u (∂Br0 (0))) ≤ 2πr0 + cε
1
q . And since by some degree

arguments it is not hard to show L2 (u (Br0 (0))) ≈ ∫
Br0(0)

det (Du (z)) dL2z ≥ πr2−
cε

1
q we have that the set u (Br0 (0)) comes very close to optimising the constants

in the isoperimetric inequality so applying Theorem 3 we have that the Fraenkel
asymmetry of u (Br0 (0)) satisfies

(11) λ (u (Br0 (0))) ≤ cε
1
2q .

The loss of a factor 2 in control comes from using Theorem 3, as Theorem 3 is
optimal this is a feature of the approach. However having (11) it is not hard to show
L2 (Br0 (0) \W ) ≤ cε

1
2q , (5) then follows by application of Theorem 1. Conceptually

this approach is simpler in that it avoids many of the quite delicate issues of finding
substitutes for invertibility of u and controlling lines simultaneously in the reference
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configuration and in the image, however only suboptimal bounds can be established
with the “isoperimetric method”. For optimal bounds the “non stretching in lines”
method of [CoSc06] is best.

We would like to acknowledge that in the overall strategy (i.e. getting to the
point of being able to apply Theorem 1 as soon as possible) and in the technical
details (the use of degree theory, co-area argument along rays) we use many ideas
of [CoSc06].

Definition 1. Given a connected open set Ω ⊂ Rn. A function f ∈ W 1,2(Ω :
Rn) with the property that det (Du (z)) ≥ 0 for a.e. x ∈ Ω is said to be of finite
dilation if and only if ‖Df (x) ‖n ≤ K (x) |det (Df (x))| a.e. where 1 ≤ K (x) < ∞.
The function f is said to have integrable dilation if and only if

∫
Ω

K (x) dLnx < ∞.

We will need the following theorem [IwSv93].

Theorem 4. (Iwaniec, Šverák) Let Ω ⊂ R2 be a connected open set. Given
function f : Ω → R2, f ∈ W 1,2 (Ω) which has integrable dilation then f is open and
discrete.

It is also well known that functions of finite dilation are continuous [VoGo76].

Lemma 1. Let

(12) d0 := min {d (SO (2) , SO (2) H) , d (SO (2) , {P : det (P ) ≤ 0})}
and let X ⊂ R2 be an open bounded connected set. Suppose f : X → R2 is C1

with the property that sup
{
d (Df (z) , SO (2)) : z ∈ X

} ≤ 9d0

10
then for any open

subset Y ⊂ X we have

(13) ∂f (Y ) ⊂ f (∂Y ) .

Proof. Since ‖Df‖L∞(X) < ∞ we know for some constant c, ‖Df (z) ‖2 ≤
cdet (Df (z)) for all z ∈ X and hence f is a function of integrable dilation. Thus
by Theorem 4 we know it is an open map and it is well known (see Exercise 9.12
[Vu88]) that (13) follows for any open Y ⊂ X. ¤

Definition 2. For C1 function w : Ω → Rn and subset B ⊂ Ω we can define
the Brouwder degree d (y, w, B) via Definition 1.9 [FoGa95], note that for y such
that

w−1 (y) ⊂ {x ∈ Ω : det (Dw (x)) 6= 0} ,

we have

(14) d (y, w, B) =
∑

x∈w−1(y)∩B

sgn (Det (Dw (x)))

where sgn (t) = 1 for t > 0 and sgn (t) = −1 for t < 0. We define

(15) N (y, w,B) := Card
({

x ∈ w−1 (y) ∩B
})

.

We will repeatedly use the following change of variable formula Theorem 5.27
from [FoGa95], we will state it in less generality than in [FoGa95].



444 Andrew Lorent

Theorem 5. Let D ⊂ Rn be an open, bounded set and let w : D → Rn be a
C1 function. Let φ ∈ L∞ (Rn), then for every open subset G ⊂ D

(16)
∫

G

φ (w (x)) det (Dw (x)) dLnx =

∫

Rn

φ (y) d (w, G, y) dLny.

1. Proof of Theorem 2

1.1. Reduction. Given u ∈ W 2,p (B1 (0)) ∩ W 1,q (B1 (0)) we can convolve
u with a standard convolution kernel φ to form uρ := φρ ∗ u. Since we know

uρ
W 1,q(B1(0))→ u and uρ

W 2,p(B1(0))→ u as ρ → 0 (see for example Section 4.2 [EvGa92]).
So for small enough ρ0 we have a smooth function ψ := uρ0 which satisfies

(17)
∫

B1(0)

dq (Dψ (z) , K) dL2z ≤ 2C1ε

(18)
∫

B1(0)

∣∣D2ψ (z)
∣∣p dL2z ≤ 2C1ε

1−p,

and

(19) ‖u− ψ‖W 1,q(B1(0)) ≤ ε.

Let ε = ε
1
q . By Holder’s inequality (17) implies

(20)
∫

B1(0)

d (Dψ (z) , K) dL2z ≤ 2πC
1
q

1 ε.

We will argue our main lemmas for function ψ.

2. Main lemmas

In the coming lemma we establish the basic consequences of W (see (8)) having
small perimeter. By the relative isoperimetric inequality we have

min
{
L2 (W ) , L2 (B1 (0) \W )

} ≤ cC 2
1 ,

depending on which is the minimum we make a changes of variables to obtain a
function v with the property

∫
d (Dv, SO (2)) ≤ cC 2

1 and has all the important
properties of ψ. Throughout our proof c will denote any constant depending only
on matrix H, note that c may be used repeatedly inside a proof denoting different
constants on each occasion.

Lemma 2. Let p ≥ 1. Let p∗ be the Hölder conjugate of p, i.e. 1
p

+ 1
p∗ = 1.

Suppose ψ ∈ C1 (B1 (0)) satisfies (17), (18) and (20). Define

(21) L (ψ) :=

∫

B1(0)

d (Dψ (z) , SO (2))− d (Dψ (z) , SO (2) H) dL2z.
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Let lH be an affine function with the property that lH (0) = 0 and DlH = H. Let
us define v : B 1

2
(0) → R2 by

(22) v (z) :=

{
ψ (lH (σz)) σ−1, if L (ψ) ≥ 0,

ψ (z) , if L (ψ) < 0.

We will show there exists positive constant c2 = c2 (σ) > 1 such that v has the
following properties.

• For the set of matrices K̃ := SO (2)∪SO (2) J (where J is a diagonal matrix
with eigenvalues σ, σ−1) we have

(23)
∫

B 1
2
(0)

d
(
Dv (z) , K̃

)
dL2z ≤ c2C1ε.

and

(24)
∫

B 1
2
(0)

dq
(
Dv (z) , K̃

)
dL2z ≤ 3C1ε.

•
(25)

∫

B 1
2
(0)

d
q

p∗
(
Dv (z) , K̃

) ∣∣D2v (z)
∣∣ dL2z ≤ c2C1.

•
(26)

∫

B 1
2
(0)

d (Dv (z) , SO (2)) dL2z ≤ c2C
2
1 .

• Let β := 1

2(1+ q
p∗ )

, for any b ∈ B 1
4
(0) there exists a set Kb ⊂

(
0, 1

2

)
with

L1
((

0, 1
2

) \Kb

) ≤ 8c2

√
C1 and the properties

(27)
∫

B 1
2
(0)∩∂Br(b)

d (Dv (z) , SO (2)) dH1z ≤ cε for each r ∈ Kb.

And

(28) sup
{

d (Dv (z) , SO (2)) : z ∈ ∂Br (b) ∩B 1
2
(0)

}
≤ C β

1 .

Proof. Step 1. We will show we can find a1 ∈
[

9d0

10
, d0

]
such that

(29) H1
({

x ∈ B 1
2
(0) : d (Dψ (x) , SO (2)) = a1

})
< cC1.

Let
Ga1 =

{
x ∈ B 1

2
(0) : d (Dψ (x) , SO (2)) < a1

}

and let
Ba1 =

{
x ∈ B 1

2
(0) : d (Dψ (x) , SO (2) H) < a1

}
.
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We will also show

(30) min
{

L2
(
B 1

2
(0) \Ga1

)
, L2

(
B 1

2
(0) \Ba1

)}
≤ cC 2

1 .

Proof of Step 1. Let p∗ be the Hölder conjugate of p. By Young’s inequality∫

B 1
2
(0)

εd
q

p∗ (Dψ (x) , K)
∣∣D2ψ (x)

∣∣ dL2x

≤
∫

B 1
2
(0)

dq (Dψ (x) , K) + εp
∣∣D2ψ (x)

∣∣p dL2x

(17),(18)

≤ 4C1ε,

which gives

(31)
∫

B 1
2
(0)

d
q

p∗ (Dψ (x) , K)
∣∣D2ψ (x)

∣∣ dL2x ≤ 4C1.

Let S (x) = d (Dψ (x) , SO (2)). By the Co-area formula
∫ d0

9d0
10

H1 (S−1 (h)) dL1h
(31)

≤
cC1. So we can find a1 ∈

(
9d0

10
, d0

)
such that H1 (S−1 (a1)) ≤ cC1. By the relative

isoperimetric inequality [AmFuPa00] Remark 3.49, 3.43 we have

min

{
L2

(
Ga1 ∩B 1

2
(0)

) 1
2
, L2

(
B 1

2
(0) \Ga1

) 1
2

}
≤ cC1.

If L (ψ) < 0 then we must have L2
(
B 1

2
(0) \Ga1

)
≤ cC 2

1 and if L (ψ) ≥ 0 we must

have L2
(
B 1

2
(0) ∩Ga1

)
≤ cC 2

1 from this and (17) it is easy to see L2
(
B 1

2
(0) \Ba1

)
≤

cC 2
1 . This completes the proof of Step 1.

Step 2. Defining v by (22) we will show v satisfies (23), (24), (25), (26).
Proof of Step 2. In the case where L (ψ) < 0, (23) follows by Hölder’s inequality∫

B 1
2
(0)

d (Dv (z) , K) dL2z ≤ 2C1ε.

Inequality (26) follows because if x 6∈ Ga1 then d (Dv (z) , SO (2)) ≤ cd (Dv (z) , K)+
c so

(32)
∫

B 1
2
(0)

d (Dv (z) , SO (2)) dL2z
(23)

≤ cC 2
1 .

Finally (25) is immediate from (31).
In the case where L (ψ) ≥ 0 for K̃ = SO (2)∪SO (2) H−1, (23) follows from (17)

by change of variables. We can also show
∫

B 1
2
(0)

d (Dv (z) , SO (2) H) dL2z ≤ cC 2
1 by

an identical argument to (32), inequality (26) then follows by a change of variables.
Inequality (25) follows from (31) again by change of variables.
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Step 3. We will show v satisfies (27), (28).
Proof of Step 3. Let

K1
b =

{
h ∈

(
0,

1

2

)
:

∫

∂Bh(0)

d
q

p∗
(
Dv (z) , K̃

) ∣∣D2v (z)
∣∣ dH1z ≤

√
C1

22β+1

}
.

So by (25) L1
((

0, 1
2

) \K1
b

) ≤ 8c2

√
C1.

K2
b =

{
h ∈

(
0,

1

2

)
:

∫

∂Bh(0)

d (Dv (z) , SO (2)) dH1z ≤ C1

}
.

By (26) L1
((

0, 1
2

) \K2
b

) ≤ c2C1. We claim that for any h ∈ K1
b ∩K2

b we have

(33) sup {d (Dv (z) , SO (2)) : z ∈ ∂Bh (0)} < C β
1 .

Suppose (33) is false, then we must be able to find a1, a2 ∈ ∂Bh (0) with the following
properties

• d (Dv (a1) , SO (2)) =
C β

1

2
, d (Dv (a2) , SO (2)) = C β

1 .
• We can find a connected component of ∂Bh (0) \ {a1, a2} which we will denote
by T with the property that

(34) d (Dv (x) , SO (2)) ∈
[

C β
1

2
,C β

1

]
for all x ∈ T.

Thus
∫

T

d
q

p∗
(
Dv (z) , K̃

) ∣∣D2v (z)
∣∣ dH1z ≥

(
C β

1

2

) q
p∗ ∫

T

∣∣D2v (z)
∣∣ dH1z ≥

√
C1

22β

and this contradicts the fact that h ∈ K1
b . Let

K3
b =

{
h ∈

(
0,

1

2

)
:

∫

∂Bh(0)

d
(
Dv (z) , K̃

)
dH1z ≤ c2

√
C1ε

}
.

By (23) we know L1
((

0, 1
2

) \K3
b

) ≤ √
C1. For any h ∈ K1

b ∩K2
b ∩K3

b we have that if

z ∈ ∂Bh (0) then d
(
Dv (z) , K̃

)
= d (Dv (z) , SO (2)) so defining Kb := K1

b∩K2
b∩K3

b

the set Kb satisfies (27) and (28) and this completes the proof. ¤
2.1. Introduction to Lemma 3. In the introduction we mapped a ball into

the image, for reasons to do with lack of invertibility it will turn out to be more
convenient to “pull back” a ball Bh (y) from the image, this is essentially because
in this way we can guarantee that L2 (v−1 (Bh (y))) is “almost” greater or equal to
πh2. If we can show v−1 (∂Bh (y)) is well defined and forms a Jordan curve and
H1 (v−1 (∂Bh (y))) ≤ 2πh + cε

1
q then we can apply Theorem 3. However to carry

this out we need to establish some limited form of invertibility of v, specifically we
need v−1 (∂Bh (y)) to form a Jordan curve.

2.1.1. Motivation for Step 4. To establish the invertibility properties de-
scribed in (2.1) we need to consider a function w defined on a subset A ⊂ B 1

2
(0)
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for which det (Dv) > c. In addition we need to show that the degree of w is 1 on
the boundaries of many balls in the image of w. This can be done by establishing
L2 (w (A)) ≈ π

4
, which we will show via truncation arguments and the use of the

lower bound (46).

2.1.2. Motivation for Step 5. Having shown that w−1 (∂Bh (y)) is a Jordan
curve, let Iy denote its interior. We now need to show L2 (Iy) ≥ πh2 − cε

1
q , this

could be established if we know every point in Iy∩A is mapped into the ball Bh (y).
Step 5 shows this via the following argument, since some of the points of Iy ∩ A
must be mapped inside Bh (y), if w (Iy ∩ A) spreads outside Bh (y) we must have
w (Iy ∩ A) ∩ ∂Bh (y) 6= ∅ however this implies there exists z ∈ ∂Bh (y) such that
Card (w−1 (z)) ≥ 2 because w (∂Iy) = ∂Bh (y) and this contradicts the fact w has
degree 1 on ∂Bh (y).

2.1.3. Motivation for Step 6. Having established that Iy has the property
L2 (Iy) ≥ πh2 − cε

1
q and H1 (∂Iy) ≤ 2πh + cε

1
q we can apply Theorem 3 to show

there exists ωb such that L2 (Iy4Bph
(ωb)) ≤ cε

1
2q (where ph =

√
L2(Iy)

π
). In some

sense this implies ∂Iy is “close” to a circle. We would like to use this to show
L2 (Iy\W ) is small. To do this we will use the fact J has “shrink directions”, by
this we mean there exists θ1, θ2 ∈ S1 such that |Jθi| = 1 for i = 1, 2 and denoting by
S the set of ψ “between” θ1 and θ2 we have |Jψ| < 1 for all ψ ∈ S . The argument
will be that if L2 (W c ∩Iy) is large then we must be able to find many lines (parallel
to the shrink directions) starting from the ωy and going to the boundary ∂Iy which
has large intersection with W c hence the image of the path will be less than h so
(assuming ωy is mapped close to y and ph ≤ h + cε

1
2q ) this will be a contradiction.

This argument will only work if for “most” ψ ∈ S , the line starting from ωy, parallel
to ψ and ending in ∂Iy (denoted lψ) has the property that

∫
lψ

d
(
Dv, K̃

)
is small.

Formally we need
∫

ψ∈S

∫
lψ

d
(
Dv, K̃

)
< cε

1
q . To find this we need to use the Co-

area formula with a function Ψy defined by |x− ωy| eiΨy(x) = x − ωy (identifying
R2 with C in the obvious way) and since |DΨy (z)| ≈ 1

|z−ωy | we need to have
∫

d (Dv (z) , K) |z − ωy|−1 dL2z ≤ cε
1
q . Let c0 denote the “centre” of v

(
B 1

2
(0)

)
,

assuming the set of points
{

ωy : y ∈ B 1
8
(c0)

}
has positive measure, by a Fubini

trick learnt from [CoSc06] we can find a ωy for which this holds. The point of Step 6
is to establish the existence of such a large set of

{
ωy : y ∈ B 1

8
(c0)

}
. Specifically

we show there is a large set Υ0 ⊂ B 1
8
(0) such that for every x ∈ Υ0, the point

y := v (x) has the properties we want (i.e. invertibility of w on ∂Bh (y)). Since (as
we will later show) x ≈ ωv(x) the set Υ0 provide us with the large set points we
require.
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2.1.4. Motivation for Step 7. As mentioned in 2.1.3, in order for our
arguments with the “shrink directions” to work we need that ph ≤ h + cε

1
2q and

|w (ωy)− y| ≤ ε
1
2q since otherwise the image of lines from ωy to ∂Iy can indeed

have non-trivial intersection with W c and they could still reach ∂Bh (y). To establish
these two things we will pull back lines of the form [y, tθ] where tθ ∈ ∂Bh (y). If we
find three such points tθ1 , tθ2 and tθ3 where the angle between any two of them is
close to 2π

3
and we can show H1 (u−1 ([y, tθi

])) ≤ h + cε
1
2q for i = 1, 2, 3 then since

this implies ωh ∈
⋂3

i=1 B
h+cε

1
2q

(w−1 (tθi
)) it follows |ωh − w−1 (b)| ≤ cε

1
2q , from this

it is easy to show ph ≤ h + cε
1
2q . The purpose of Step 7 is to show we can find such

lines.

Lemma 3. Given a function v ∈ C4
(
B 1

2
(0)

)
satisfying properties (23), (25),

(26), (27) and (28) of Lemma 2. We will show there exists a set Λ0 ⊂ B 1
8
(0) with

L2
(
B 1

8
(0) \Λ0

)
≤ cC

1
4q

1 such that for any b ∈ Λ0 we can find a set Db ⊂
(

1
8
, 5

16

)

with L1
((

1
8
, 5

16

) \Db

) ≤ cC
1

32q and for any h ∈ Db there exists a connected open set
Ib with the following properties

v (∂Ib) = ∂Bh (v (b)) ,(35)
∂Ib ⊂ N

cC
1
16

1

(∂Bh (b)) .(36)

And

(37) L2 (Ib\Bh (b)) ≤ c
√

ε.

Proof. Step 1. We show that for any b ∈ B 1
4
(0) there exists a set Yb ⊂

(
0, 1

2

)

with L1
((

0, 1
2

) \Yb

) ≤ c
√

C1 affine function lR with derivative R ∈ SO (2) such that

(38) ‖v − lR‖L∞(∂Br(b)) ≤ c
√

C1 for each r ∈ Yb.

Proof of Step 1. By applying Proposition A1 of [FrJaMu02] (and taking λ =
10σ−1) we have a c-Lipschitz function ṽ and

(39) L2
({

x ∈ B 1
2
(0) : ṽ (x) 6= v (x)

}) (23)

≤ cε.

And in the same way

(40) ‖Dv −Dṽ‖
L1

(
B 1

2
(0)

) ≤ cε.

Thus

(41)
∫

B 1
2
(0)

d2 (Dṽ (z) , SO (2)) dL2z
(26),(40)

≤ cC 2
1 .
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Thus applying Theorem 1 there exists R ∈ SO (2) such that
∫

B 1
2
(0)

|Dṽ (z)−R| dL2z
(41)

≤ cC1.

And by (40) we have
∫

B 1
2
(0)
|Dv (z)−R| dL2z ≤ cC1. By Poincaré’s inequality there

exists and affine map lR with DlR = R such that

(42)
∫

B 1
2
(0)

|v (z)− lR (z)| dL2z ≤ cC1.

So by the co-area formula there exists a set Yb ⊂
(
0, 1

2

)
with L1

((
0, 1

2

) \Yb

) ≤ c
√

C1

such that for each r ∈ Yb we have

(43)
∫

∂Br(b)

|v (z)− lR (z)|+ |Dv (z)−R| dH1z ≤ c
√

C1.

By the fundamental theorem of calculus any r ∈ Yb satisfies (38) so this completes
the proof of Step 1.

Step 2. Let c0 = lR (0). We will show there exists l0 ∈ Y0 ∩K0 ∩
(

1
2
− c

√
C1,

1
2

)
such that the Brouwder degree of v and ṽ satisfy

(44) d (v,Bl0 (0) , z) = 1 for any z ∈ Bl0−c
√

C1
(c0)

and

(45) d (ṽ, Bl0 (0) , z) = 1 for any z ∈ Bl0−c
√

C1
(c0) .

Hence

(46) L2
(
ṽ (Bl0 (0)) ∩B 1

2
(c0)

)
≥ π

4
− c

√
C1.

Proof of Step 2. Let

(47) F0 :=

{
h ∈

(
0,

1

2

)
: H1

({
x ∈ B 1

2
(0) : ṽ (x) 6= v (x)

}
∩ ∂Bh (0)

)
≤ c

√
ε

}
.

From (39) we know L1
((

0, 1
2

) \F0

) ≤ c
√

ε. Pick l0 ∈ Y0 ∩ F0 ∩
(

1
2
− c

√
C1,

1
2

)
. By

(38) we know

(48) v (∂Bl0 (0)) ⊂ Nc
√

C1
(∂Bl0 (c0)) .

In addition since ṽ is Lipschitz using (48) and the fact that l0 ∈ F0 we must have

(49) ṽ (∂Bl0 (0)) ⊂ Nc
√

C1
(∂Bl0 (c0)) .

Now let us define the homopoty H (x, t) = (1− t) v (x)+tlR (x). And define ht (x) :=
H (x, t). Note that Bl0−c

√
C1

(c0) ∩ ht (∂Bl0 (0)) = ∅ for any t ∈ [0, 1] and hence by
Theorem 2.3 [FoGa95] we have

d (v,Bl0 (0) , p) = d (lR, Bl0 (0) , p) = 1 for any p ∈ Bl0−c
√

C1
(c0)

and thus establishes (44). Using (49), (45) follows via an identical argument. By
Theorem 2.1 [FoGa95] (45) implies Bl0−c

√
C1

(c0) ⊂ ṽ (Bl0 (0)) hence (46) follows.
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Step 3. Let Q : R → R+ be defined by Q (t) = t − 4ε if t ≥ 4ε and
Q (t) = 0 if t < 4ε. Let Qε := Q ∗ φε where φε is the standard rescaled con-
volution kernel on R (i.e. Sptφε ⊂ [−ε, ε]). Let J (M) := d

(
M, K̃

)
. Finally

we define Lε (z) = Qε (J (Dv (z))). Note Lε ∈ C3
(
B 1

2
(0)

)
. It could be that{

z ∈ B 1
2
(0) : |DLε (z)| = 0

}
is uncountable. However by the Area formula

(50)
∫

Bε(0)∩DLε(Bl0
(0))

Card
({

z ∈ Bl0 (0) : DLε (z) = P
})

dL2P < ∞.

So we must be able to find P0 ∈ Bε (0) such that

(51) Card ({z ∈ Bl0 (0) : DLε (z) = P0}) < ∞.

Defined L (z) := Lε (z)− P0 · z, so
Card

({
z ∈ Bl0 (0) : |DL (z)| = 0

})

= Card
({

z ∈ Bl0 (0) : DLε (z) = P0

})
< ∞.

(52)

Let β = 1

2(1+ q
p∗ )

. We will assume C1 is small enough so that 8C β
1 < d0 (recall

Definition (12)). We will show we can find H ⊂
(
2C β

1 , 4C β
1

)
with L1 (H) ≥ 19

10
C β

1

such that for any a ∈ H

(53) H1
(
L −1 (a)

) ≤ c
√

C1.

Proof of Step 3. We know |DL (z)| ≤ |DLε (z)| + ε ≤ |D2v (z)| + ε. By the
Co-area formula

∫ 4C β
1

2C β
1

H1
(
L −1 (a)

)
dL1a ≤

∫
{

z∈B 1
2
(0):2C β

1 ≤L (z)≤4C β
1

}
∣∣D2v (z)

∣∣ dL2z + cε

(25)

≤ cC
1−βq

p∗
1 .

(54)

As 1−
(

q
p∗ + 1

)
β = 1

2
, the set

(55) H :=
{

a ∈
[
2C β

1 , 4C β
1

]
: H1

(
L −1 (a)

) ≤ c
√

C1

}

has the property that L1 (H) ≥ 19
10

C β
1 . This completes the proof of Step 3.

Step 4. Let a1 ∈ H ∩
[
3C β

1 , 4C β
1

]
. Let

(56) Ψa1 =
{

x ∈ B 1
2
(0) : d

(
Dv (x) , K̃

)
< a1

}
.

Let l0 ∈
(

1
2
− c

√
C1,

1
2

)∩Y0∩K0 be the number satisfying (44) and (45) from Step 2.
We will show there exists open subset A ⊂ Bl0 (0) ∩Ψa1 with the properties
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•
(57) L2 (Bl0 (0) \A) ≤ cε and ∂Bl0 (0) ⊂ A.

• There exists a2 ∈
[
2C β

1 , 3C β
1

]
such that defining

(58) Wa2 :=
{

x ∈ B 1
2
(0) : L (z) = a2

}

we have

(59) ∂A ⊂ ∂Bl0 (0) ∪Wa2 .

• Also

(60) Bl0 (0) \A =

m0⋃

k=1

Dk where {D1, D2, . . . Dm0} are connected open sets.

In addition defining w : A → R2 by w (x) := v (x) for x ∈ A we will show w
satisfies

•
(61) L2

(
w (A) ∩B 1

2
(c0)

)
≥ π

4
− c

√
C1.

•
(62) ∂w (A) ⊂ w (∂A) .

Finally for any y ∈ B 1
4
(c0) there exists a set Ly ⊂

(
0, 1

2
+ |y − c0|

)
with the property

that

(63) L1

((
0,

1

2
+ |y − c0|

)
\Ly

)
≤ cC

1
16

1

and denoting l1 := l0 − c
√

C1, Uy :=
(⋃

h∈Ly
∂Bh (y)

)
∩Bl1 (c0) we have

(64) Uy ⊂ w (A) and d (w, A, z) = 1 for all z ∈ Uy.

Proof of Step 4. Let

(65) a2 ∈
[
2C β

1 ,
5

2
C β

1

]
∩H

and define

(66) B = {x ∈ Bl0 (0) : L (x) > a2} .

Since l0 ∈ K0 from (28) (assuming ε is small enough) we know

(67) ∂Bl0 (0) ∩B = ∅ hence d
(
∂Bl0 (0) ,B

)
> 0.

Now since B is open we can find countably many open connected sets D1, D2, . . .
such that B =

⋃∞
k=1 Dk. However by continuity of Dv we know that

(68) L (z) = Qε (J (Dv (z)))− P0 ·Dv (z) = a2 for any z ∈ ∂B.
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Since from (52) we know |DL (z)| 6= 0 except for finitely many points, for any k
the boundary ∂Dk forms a piecewise smooth set of finite H1 measure. In addition
for any k1 6= k2 if z0 ∈ ∂Dk1 ∩ ∂Dk2 as DLδ(z0)

|DLδ(z0)| has to be the inward pointing unit
normal to both ∂Dk1 and ∂Dk2 at z0 and this is only possible if |DL (z0)| = 0.
Thus Card (∂Dk1 ∩ ∂Dk2) < ∞ for any k1 6= k2. Thus

(69)
∞∑

k=1

H1 (∂Dk) = H1

( ∞⋃

k=1

Dk

)
≤ c

√
C1.

As diam (Dk) ≤ H1 (∂Dk) we know diam (Dk) → 0 as k →∞. Now recall v is C4, so
L is Lipschitz on any compact subset of B 1

2
(0) and as (68) holds for z ∈ ∂Dk, there

exists m0 ∈ N such that for any k > m0, if z ∈ Dk so L (z) ≤ cdiam (Dk) + a2 ≤
11
4
C β

1 . Hence defining A := Bl0 (0) \ (
⋃m0

k=1 Dk) we have that A ⊂ Ψa1 , A satisfies
(60) and it is clear from continuity of Dv that (59) is satisfied. Now note

(70) L2

(
m0⋃

k=1

Dk

)
(65),(66)

≤ L2
({

x ∈ B 1
2
(0) : d

(
Dv (x) , K̃

)
> C β

1

}) (23)

≤ cε.

As Bl0 (0) \B ⊂ A, (67) together with (70) implies (57). Let

(71) N :=
{

x ∈ B 1
2
(0) : ṽ (x) = v (x)

}

so by (39)

(72) L2 (A\N) ≤ cε.

Now

ṽ (Bl0 (0) \ (N ∩ A)) ≤
∫

Bl0
(0)\(N∩A)

det (Dṽ (z)) dL2z

(57),(72)

≤ cε.

(73)

And as

(74) ṽ (Bl0 (0)) ∩B 1
2
(c0) ⊂ (ṽ (Bl0 (0) \ (N ∩ A)) ∪ ṽ (N ∩ A)) ∩B 1

2
(c0) ,

we know

L2
(
v (N ∩ A) ∩B 1

2
(c0)

)
= L2

(
ṽ (N ∩ A) ∩B 1

2
(c0)

)

(73),(74),(46)

≥ π

4
− c

√
C1.

(75)

Hence (61) follows. Let U1,U2, . . . Um1 denote the connected components of A, by
(60) we know there are only finitely many such components. Finally by Lemma 1 we
know that for any i ∈ {1, 2, . . . m1} we have ∂w (Ui) ⊂ w (∂Ui) and this establishes
(62).

We will assume a2 was chosen to be one of the a.e. numbers such that Wa2 (as
the level set of a Lipschitz function [Fed69] 3,3.2.15) forms a rectifiable set.
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By (38) we know w (∂Bl0 (0)) ⊂ Nc
√

C1
(lR (∂Bl0 (0))) = Nc

√
C1

(∂Bl0 (c0)). So
for l1 := l0 − c

√
C1

(76) ∂w (A) ∩Bl1 (c0)
(62)⊂ w (∂A) ∩Bl1 (c0)

(59)⊂ w (Wa2) .

So as a2 ∈ H

(77) H1 (w (Wa2)) ≤ cH1 (Wa2)
(55)

≤ c
√

C1.

Let

(78) Ty :=

{
h ∈

(
0,

1

2
+ |y − c0|

)
: ∂Bh (y) ∩ w (Wa2) 6= ∅

}
.

Let X0 : R2 → R be defined by X0 (z) = |z − y| so Ty ⊂ X0 (w (Wa2)) and as X0 is
1-Lipschitz so L1 (X0 (w (Wa2))) ≤ c

√
C1. Hence

(79) L1 (Ty) ≤ c
√

C1.

Let

Y0 =

{
h ∈

(
0,

1

2
+ |y − c0| − 2C

1
4

1

)
\Ty : ∂Bh (y) ∩ w (A) ∩Bl1 (c0) = ∅

}
.

See Figure 1,

2c1

1/2

Wa1

1/4

c0

y

Figure 1.

L2

(( ⋃

h∈Y0

∂Bh (y)

)
∩Bl1 (c0)

)
≥ C

1
4

1

(L1 (Y0))
2

2
.
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And as
(⋃

h∈Y0
∂Bh (y)

) ∩Bl1 (c0) ⊂ B 1
2
(c0) \w (A) and from (61) we have

(80) L1 (Y0) ≤ cC
1
8

1 .

Let Y1 :=
(
0, 1

2
+ |y − c0|

) \ (Ty ∪ Y0). Let

(81) E0 :=

( ⋃

h∈Y1

∂Bh (y)

)
∩Bl1 (c0) .

For h ∈ Y1, as h 6∈ Y0 there exists z0 ∈ ∂Bh (y) ∩ w (A) ∩ Bl1 (c0), now suppose
∂Bh (y) ∩ Bl1 (c0) 6⊂ w (A) then we must have ∂Bh (y) ∩ Bl1 (c0) ∩ ∂w (A) 6= ∅ and
from (76) this implies Bh (y)∩Bl1 (c0)∩w (Wa2) 6= ∅ which by (78) is a contradiction.
Thus E0 ⊂ w (A) \w (∂A).

Now for any h ∈ Y1 as ∂Bh (y) ∩ Bl1 (c0) is a connected set it must belong to a
connected component of R2\w (∂A) and hence by Theorem 2.3 [FoGa95] there exists
a function N : Y1 → N such that d (z, w,A) = N (h) for any z ∈ ∂Bh (y) ∩Bl1 (c0).
Let Y2 = {h ∈ Y1 : N (h) ≥ 2} and define E1 =

⋃
h∈Y2

∂Bh (y) ∩Bl0 (c0). So
∫

E0

d (w, A, y) dL2y ≥ L2 (E1) + L2 (E0) .(82)

So using Theorem 5 (taking φ = χw(A)) recalling that A ⊂ Ψa1

(83)
∫

E0

d (w, A, y) dL2y ≤
∫

w(A)

d (w,A, y) dL2y
(23)

≤ L2 (A) + cε.

Thus we have

(84)
π

4
+ cε ≥ L2 (A) + cε

(83),(82)

≥ L2 (E1) + L2 (E0) .

Now

(85) L2 (E0)
(81)

≥ π

4
− c

√
C1 − cL1 (Ty ∩ Y0)

(80),(79)

≥ π

4
− cC

1
8

1 .

Thus L2 (E1)
(84),(85)

≤ cC
1
8

1 since

L2 (E1) ≥ 2π

∫

Y2

r dL1r ≥ 2π

∫ L1(Y2)

0

r dL1rπ
(
L1 (Y2)

)2

and as c
√

L2 (E1) ≥ L1 (Y2) this implies L2 (Y2) ≤ cC
1
16

1 . Let Ly = Y1\Y2, so Ly

satisfies all the properties of Step 4.

Step 5. Let y0 ∈ B 1
8
(c0), let Ly0 be as defined in Step 4. For any h ∈ Ly0∩

(
0, 1

8

)

we will show w−1 (∂Bh (y0)) is a Jordan curve. Let Iy0 denote the interior of the
curve we will prove

(86) w (∂Iy0) = ∂Bh (y0) , w (Iy0 ∩ A) ⊂ Bh (y0) .
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And

(87) w
((

Bl0 (0) \Iy0

) ∩ A
) ⊂ Bh (y0)

c
.

Proof of Step 5. Since A ⊂ Ψa1 we know for every x ∈ R2

(88) d (w, A, x) =
∑

z∈w−1(x)

sgn (det (Dw (z))) = Card
(
w−1 (x)

)

so from (64) we know

(89) Card
(
w−1 (x)

)
= 1 for any x ∈ ∂Bh (y0) .

So w−1 (∂Bh (y0)) is a closed curve with no intersections, i.e. w−1 (∂Bh (y0)) forms
a Jordan curve. Thus R2\w−1 (∂Bh (y0)) has two connected components, let Iy0

denote the interior component. Recall (60) on the structure of the set A. Since
∂Iy0 is a compact set contained in open set A so

d (∂Iy0 , {D1, D2, . . . Dm0}) > d (∂Iy0 , ∂A) > 0.(90)

We will show that

(91) w

(
Iy0\

(
m0⋃

k=1

Dk

))
⊂ Bh (y0)

and

(92) w

(
(
Bl0 (0) \Iy0

) \
(

m0⋃

k=1

Dk

))
⊂ Bh (y0)

c
.

As A ∩ Iy0 ⊂ Iy0\ (
⋃m0

k=1 Dk) thus (91) implies the second part of (86). And
similarly (92) implies (87). First we will establish (91). Let x0 ∈ ∂Iy0 since we
know det (Dw (x0)) > c it is easy to see that for small enough α, w (Bα (x0) ∩Iy0) ⊂
Bh (y0). For any z1 ∈ Iy0\

(⋃m0

k=1 Dk

)
, as Iy0 is connected we must be able to find

a path in Iy0 starting from z0 ∈ Bα (x0) ∩ Iy0 and ending in z1. Formally, there
exists a function P : [0, γ] → Iy0 with P (0) = z0, P (γ) = z1 and P ([0, γ]) ⊂ Iy0 .

Let J = P−1
(
P ([0, γ]) ∩ (⋃m0

k=1 Dk

))
let I1, I2, . . . Im1 denote the connected

components of [0, γ] \J labelled so that sup Ii ≤ inf Ii+j. Let ai, bi be the endpoints
of Ii, i.e. [ai, bi] = Ii. Now P (a1) = P (0) = z0 but P (b1) ∈

⋃m0

k=1 ∂Dk. As
P ((a1, b1)) is connected we claim we must have

(93) w (P ((a1, b1))) ⊂ Bh (y0)

since otherwise there exists y ∈ w (P ((a1, b1)))∩∂Bh (y0) and so there must be x1 ∈
P ((a1, b1)) ⊂ Iy0 ∩ A and x2 ∈ w−1 (∂Bh (y0)) = ∂Iy0 with w (x1) = w (x2) = y
and thus

(94) d (w,A, y) =
∑

x∈w−1(y)

sgn (det (Dw (x))) ≥ 2,

which contradicts (89) thus (93) is established. Now

(95) ∃ k1 ∈ {1, 2, . . . m0} such that P (b1) ∈ ∂Dk1 and also P (a2) ∈ ∂Dk1
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so we have

(96) w (P (b1)) , w (P (a2)) ∈ w (∂Dk1) .

From (93) we have w (P (b1)) ∈ Bh (y0) and we claim must have

(97) w (∂Dk1) ⊂ Bh (y0)

since otherwise there must exist y ∈ w (∂Dk1) ∩ ∂Bh (y0) and in the same way
we establish (94) (using the fact Dk1 ⊂ Iy0) this implies d (w, A, y) ≥ 2. So as
P (a2) ∈ ∂Dk1 we know w (P (a2)) ∈ Bh (y0). In the same way as before we have
P ((a2, b2)) ⊂ Bh (y0) and again P (b2) ∈ Dk2 for some k2 ∈ {1, 2, . . . , m0}, we
can then repeat the argument to show w (∂Dk2) ⊂ Bh (y0). So continuing in this
way we have v (P ((am0 , bm0))) ⊂ Bh (y0) and as this means v (z1) = v (P (γ)) =
v (P (bm0)) ∈ Bh (y0) we have established (91). The proof of (92) is identical. This
completes the proof of Step 5.

Step 6. We will show we can find a set Υ0 ⊂ B 1
8
(0) ∩ A such that

(98) L2
(
B 1

8
(0) \Υ0

)
≤ c

√
C1

and Υ0 has the property that for any b ∈ Υ0 there exists a set Db ⊂ Lv(b) ∩
(

1
8
, 5

16

)
such that

(99) L1

((
1

8
,

5

16

)
\Db

)
≤ cC

1
32q

1

and any h ∈ Db has the property that

w−1 (∂Bh (v (b))) ⊂ N
cC

1
32

1

(∂Bh (b)) ,(100)
∫

∂Bh(v(b))

d
(
Dw−1 (z) , SO (2)

)
dH1z ≤ cε.(101)

In addition Υ0 has the properties

v (x) ∈ B√
C1

(lR (x)) ⊂ B 1
8
(c0) for any x ∈ Υ0,(102)

d (w,A, v (x)) = 1 for each x ∈ Υ0.(103)

Proof of Step 6. Recall c0 = lR (0), let Uc0 be defined as in Step 4. Let E0 :=

w−1 (Uc0). Now for any x ∈ Uc0 , Dw−1 (x) = [Dw (w−1 (x))]
−1 and as w−1 (x) ∈ A

we have
d

(
Dw

(
w−1 (x)

)
, K̃

)
≤ 4C β

1 where β =
1

2
(
1 + q

p∗

) .

This implies d
(
[Dw (w−1 (x))]

−1
, SO (2) ∪ SO (2) J−1

)
≤ 32C β

1 . Hence

(104) L2 (E0) =

∫

Uc0

det
(
Dw−1 (z)

)
dL2z

(63)

≥
(

1− cC
1

16q

1

)
π

4
.
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Note that since for any x ∈ E0 we have v (x) ∈ Uc0 and hence by (64) we know

(105) d (w, A, v (x)) = 1 for x ∈ E0.

Let

(106) E1 :=
{

x ∈ A : |lR (x)− v (x)| ≤
√

C1

}

we know from (42) that

(107) L2 (A\E1) ≤ c
√

C1.

Now for any b ∈ E0 ∩E1 ∩B 1
8
(0) let Ab =

⋃
h∈( 1

4
, 5
16)∩Lv(b)

∂Bh (v (b)). So note since
b ∈ E1

Ab ⊂ B 5
16

(v (b))
(106)⊂ B 5

16
+
√

C1
(lR (b)) ⊂ B 15

32
(c0) .

Note

(108) L2 (v (E0 ∩ E1 ∩N))
(104),(107)

≥ L2 (ṽ (A ∩N))− cC
1

16q

1

(75)

≥ π

4
− cC

1
16q

1 .

Now by Step 5 for any h ∈ (
1
4
, 5

16

)∩Lv(b) we know w−1 (∂Bh (v (b))) is a Jordan curve
and w−1 (∂Bh (v (b))) ⊂ Ψa1 , by continuity of Dv and since a1 < d0

8
(see Definition

(12)) we know either

(109)
{
Dv (z) : z ∈ w−1 (∂Bh (v (b)))

} ⊂ N2a1 (SO (2))

or

(110)
{
Dv (z) : z ∈ w−1 (∂Bh (v (b)))

} ⊂ N2a1 (SO (2) J) .

Let

S1
b =

{
h ∈

(
1

4
,

5

16

)
∩ Lv(b) : (109) holds true

}
,

S2
b =

{
h ∈

(
1

4
,

5

16

)
∩ Lv(b) : (110) holds true

}
.

Thus

(111) S1
b ∪ S2

b =

(
1

4
,

5

16

)
∩ Lv(b).

Now ∫

Ab

d
(
Dw−1 (z) , SO (2)

)
dL2z

=

∫

w−1(Ab)

d
(
[Dw (y)]−1 , SO (2)

) (
det

(
[Dw (y)]−1))−1

dL2y.
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And since w−1 (Ab) ⊂ A so for any y ∈ w−1 (Ab) we have d
(
Dw (y) , K̃

)
≤ 4C β

1

which implies d
(
[Dw (y)]−1 , SO (2) ∪ SO (2) J−1

) ≤ 16C β
1 and hence

(112)
∫

Ab

d
(
Dw−1 (z) , SO (2)

)
dL2z ≤ c

∫

B 1
2
(0)

d (Dw (y) , SO (2)) dL2y
(26)

≤ cC 2
1 .

Now let W 2
b =

⋃
h∈S2

b
∂Bh (v (b)),

∫
W 2

b
d (Dw−1 (z) , SO (2)) dL2z ≥ d0

2
L2 (W 2

b ) so
from (112) we have

(113) L1
(
S2

b

) ≤ cL2
(
W 2

b

) ≤ cC 2
1 .

Let W 1
b :=

⋃
h∈S1

b
∂Bh (v (b)) so arguing as before there exists a positive constant

c3 = c3 (σ) ∫

W 1
b

d
(
Dw−1 (z) , SO (2)

)
dL2z

≤ c

∫

w−1(W 1
b )

d (Dw (y) , SO (2)) dL2y
(23),(109)

≤ c3ε.

(114)

Let

(115) Pb =

{
h ∈ S1

b :

∫

∂Bh(v(b))

d
(
Dw−1 (z) , SO (2)

)
dH1z ≤ C −1

1 c3ε

}

so from (114) we have L1 (S1
b \Pb) ≤ C1 and from this and (111), (113) and (63) we

have

(116) L1

((
1

8
,

5

16

)
\Pb

)
≤ cC

1
16

1 .

Let

(117) Db =
{

h ∈ Pb : H1 (∂Bh (v (b)) \v (E0 ∪ E1)) ≤ C
1
32

1

}
.

So

cC
1

16q

1

(108)

≥ L2

(
A

(
v (b) ,

1

4
,

5

16

)
\v (E0 ∪ E1)

)
(117)

≥ C
1
32

1 L1 (Pb\Db)

and thus we have

(118) L1 (Db) ≥ 3

16
− cC

1
32q

1 .

Let h ∈ Db. Let z0 ∈ ∂Bh (v (b)) ∩ w (E0 ∩ E1) ⊂ Uc0 thus d (w,A, z0) = 1 and
hence Card (w−1 (z0)) = 1. Thus as w−1 (z0) ∈ E1 we have

(119)
∣∣z0 − lR

(
w−1 (z0)

)∣∣ =
∣∣w (

w−1 (z0)
)− lR

(
w−1 (z0)

)∣∣ (106)

≤
√

C1.

Thus as b ∈ E1 and z0 ∈ ∂Bh (v (b)) we have
(120)

w−1 (z0)
(119)∈ B√

C1

(
l−1
R (z0)

) ⊂ N√
C1

(
∂Bh

(
l−1
R (v (b))

)) (106)⊂ N2
√

C1
(∂Bh (b)) .
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And for any z1 ∈ ∂Bh (v (b)) \v (E0 ∩ E1) from (117) we can find a point z2 ∈
∂Bh (v (b)) ∩ v (E0 ∩ E1) such that if W denote the short connected component of
∂Bh (v (b)) \ {z1, z2} then H1 (W ) ≤ C

1
32

1 . So
∣∣w−1 (z1)− w−1 (z2)

∣∣ ≤ H1 (W ) +

∫

∂Bh(v(b))

d
(
Dw−1 (z) , SO (2)

)
dH1z

(115)

≤ cC
1
32

1 .

Hence

(121) w−1 (∂Bh (v (b))) ⊂ N
cC

1
32

1

(∂Bh (b)) .

Letting Υ0 = E1 ∩ E2 ∩ B 1
8
−c
√

C1
(0), by (105), (106), (115), (118) and (120) Υ0

satisfies (99), (100), (101), (102) and (103) and this completes the proof of Step 6.

Step 7. We will show there exists a set Ξ0 ⊂ B 1
8
(c0) ∩ w (A) such that

(122) L2 (Ξ0) ≥ π

64
− cC

1
4q

1

and for any a ∈ Ξ0 there exists Θa ⊂ S1 with the following properties
•

(123) H1
(
S1\Θa

) ≤ cC
1
8

1 .

• For each θ ∈ Θa let t (θ) ∈ R+ be the smallest number such that a+ θt (θ) ∈
v (∂Bl0 (0)), we will show [a, a + θt (θ)) ⊂ w (A) and

(124) d (w,A, y) = 1 for any y ∈ [a, a + θt (θ)) .

• For any θ ∈ Θa

(125)
∫

[a,a+θt(θ))

d
(
Dw−1 (z) , SO (2)

)
dL1z ≤ cε.

Proof Step 7. Recall inclusion (59) ∂A ⊂ ∂Bl0 (0) ∪Wa2 (where Wa2 is defined
by (58) and recall a2 ∈ H ⊂

[
2C β

1 , 3C β
1

]
) and as l0 ∈ K0 from (28) we have

∂Bl0 (0) ∩Wa2 = ∅. Let Γ = w (Wa2), since Γ is the Lipschitz image of a rectifiable
set it is rectifiable and from (77) we have H1 (Γ) ≤ c

√
C1. Define measure µ by

µ (B) = H1 (B ∩ Γ). So µ (R2) ≤ c
√

C1. By Fubini’s Theorem

(126)
∫

B2(c0)

∫

B2(c0)

1

|z − y| dµz dL2y =

∫

B2(c0)

∫

B2(c0)

1

|z − y| dL2y dµz ≤ c
√

C1.

Let

(127) Ξ1 :=

{
y ∈ B 1

8
(c0) :

∫

B2(c0)

1

|z − y| dµz ≤ C
1
4

1

}
.
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So from (126)

(128) L2
(
B 1

8
(0) \Ξ1

)
≤ cC

1
4

1 .

Let Ea (z) : Γ → S1 be defined by Ea (z) := (z−a)
|z−a| , so |DEa (z)| = 1

|z−a| . Now using
the Co-area formula for rectifiable sets, Theorem 3.2.22 [Fed69] we have that for
any a ∈ R2

(129)
∫

Γ

χB2(c0) (z)

|z − a| dH1z ≥
∫

S1

Card
(
E−1

a (θ) ∩ Γ ∩B2 (c0)
)
dH1θ.

So if a ∈ Ξ1 we have
∫

S1

Card
(
E−1

a (θ) ∩ Γ ∩B2 (c0)
)
dH1θ

(129),(127)

≤ C
1
4

1 .

Thus each a ∈ Ξ1 we can find a set Σ1
a ⊂ S1 such that

(130) H1
(
S1\Σ1

a

) ≤ C
1
8

1

and for every θ ∈ Σ1
a we have Card (E−1

a (θ) ∩ Γ ∩B2 (c0)) = 0. Since l0 ∈ Y0 we
know

(131) v (∂Bl0 (0))
(38)⊂ Nc

√
C1

(∂Bl0 (c0)) .

Given b ∈ B 1
8
(c0), for each θ ∈ S1 we define tb (θ) ∈ R+ to be the smallest number

such that [b + θtb (θ)] ∩ v (∂Bl0 (0)) 6= ∅. Thus for a ∈ Ξ1 ∩ w (A), θ ∈ Σ1
a as

w (∂A)
(59)⊂ Γ ∪ v (∂Bl0 (0)) we have [a, a + θta (θ)) ∩ ∂w (A)

(62)⊂ [a, a + θta (θ)) ∩
w (∂A) = ∅ and this implies

(132)
⋃

θ∈Σ1
a

[a, a + θta (θ)) ⊂ w (A) \w (∂A) for any a ∈ Ξ1 ∩ w (A) .

Hence as d (w, A, y) is constant on the connected components of R2\w (∂A) and
[a, θta (θ)) must belong to one such connected component there exists, N (θ) ≥ 1
such that d (w,A, y) = N (θ) for any y ∈ [a, a + θta (θ)). Let

(133) Ha :=
{
θ ∈ Σ1

a : N (θ) ≥ 2
}

.

Arguing as we did in Step 4
∫

⋃
θ∈Σ1

a
[a,a+θta(θ))

d (w,A, y) dL2y ≥ L2


 ⋃

θ∈Σ1
a

[0, θta (θ))


 + L2

( ⋃

θ∈Ha

[0, θta (θ))

)
.

As by Theorem 5 (again taking φ = χw(A))
∫

⋃
θ∈Σ1

a
[a,a+θta(θ))

d (w, A, y) dL2y ≤ L2 (A) + cε
(23)

≤ π

4
+ cε
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and as from (131) we know ta (θ) ≥ 1
16

for every θ ∈ S1 thus

(134)
H1 (Ha)

16
+ L2


 ⋃

θ∈Σ1
a

[0, θta (θ))


 ≤ π

4
+ cε.

However

(135) L2


 ⋃

θ∈Σ1
a

[0, θta (θ))


 (131),(130)

≥ L2
(
B 1

2
−c
√

C1
(c0)

)
− cC

1
8

1 ≥ π

4
− cC

1
8

1

so from (135), (134) we have

(136) H1 (Ha) ≤ cC
1
8

1 .

Let

(137) Σ2
a := Σ1

a\Ha and S1
a :=

⋃

θ∈Σ2
a

[a, a + θta (θ)) .

Let W :=
⋃

a∈Ξ1∩w(A) S
1
a. From (132) we know W ⊂ w (A) from the definition of Σ2

a

(see (137), (133)) we know for any y ∈ W, we have Card (w−1 (y)) = d (w, A, y) = 1
and hence the inverse of w is well defined on W.

It will simplify the notation to define Q : {M ∈ M2×2 : det (M) > 0} → M2×2

by Q (M) = M−1, let K := SO (2) ∪ SO (2) J−1 so as

w−1 (W) ⊂ A
(56)⊂

{
x ∈ B 1

2
(0) : d

(
Dv (x) , K̃

)
≤ 5C β

}

and as Dw−1 (y) = [Dw (w−1 (y))]
−1

∫

W

∣∣D2w−1 (y)
∣∣
∣∣∣d q

p∗
(
Dw−1 (y) ,K

)∣∣∣ dL2y

≤ c

∫

w−1(W)

|DQ(Dw(z))||D2w(z)|d q
p∗ ([Dw(z)]−1,K)(det([Dw(z)]−1)) dL2z

(25)

≤ cC1.

(138)

Similarly

(139)
∫

W

d
(
Dw−1 (y) ,K

)
dL2y

(23)

≤ cε.

Finally
∫
W

d (Dw−1 (y) , SO (2)) dL2y
(26)

≤ cC 2
1 . Now by Theorem 5 and (103), since

Υ0 ⊂ Ψa1 so L2 (w (Υ0))
(98)

≥ π
64
− cC

1
2q

1 . And as by (102) w (Υ0) ⊂ B 1
8
(0) it is clear

from (128) that L2 (w (Υ0) ∩ Ξ1) ≥ π
64
− cC

1
4q

1 . Now by the same Fubini argument
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we used to established (127), (128) we can find a set Ξ0 ⊂ Ξ1 ∩ w (Υ0) with

(140) L2 (Ξ0) ≥ L2 (Ξ1 ∩ w (Υ0))− c
√

C1 ≥ π

64
− cC

1
4q

1

and for any a ∈ Ξ0 we have∫

S1
a

∣∣D2w−1 (y)
∣∣ d

q
p∗

(
Dw−1 (y) ,K

) |y − a|−1 dL2y ≤ c
√

C1,(141)
∫

S1
a

d
(
Dw−1 (y) ,K

) |y − a|−1 dL2y ≤ cε(142)

and

(143)
∫

S1
a

d
(
Dw−1 (y) , SO (2)

) |y − a|−1 dL2y ≤ cC
3
2

1 .

By the Co-area formula for by a ∈ Ξ0 we can find Θa ⊂ Σ2
a with

(144) H1
(
Σ2

a\Θa

) ≤ C
1
4

1

and any θ ∈ Θa has the property

(145)
∫

[a,a+θta(θ))

∣∣D2w−1 (y)
∣∣ d

q
p∗

(
Dw−1 (y) ,K

)
dH1y ≤ cC

1
4

1 ,

(146)
∫

[a,a+θta(θ))

d
(
Dw−1 (y) ,K

)
dH1y ≤ cε

and

(147)
∫

[a,a+θta(θ))

d
(
Dw−1 (y) , SO (2)

)
dH1y ≤ cC

5
4

1 .

And as we have seen before in (33) of Lemma 2, inequalities (145) and (147) imply

d
(
Dw−1 (z) , SO (2)

)
< d

(
Dw−1 (z) , SO (2) J

)
for any z ∈ [a, a + θta (θ))

and thus (146) gives

(148)
∫

[a,a+θta(θ))

d
(
Dw−1 (y) , SO (2)

)
dH1z ≤ cε.

From (130), (136), (144) Θa satisfies (123). By (133), (137) it satisfies (124), from
(148) it satisfies (125) and finally from (140) it satisfies (122). This completes the
proof of Step 7.

Step 8. Recall the definition of set Υ0, from Step 6. We will show that for any
b ∈ Υ0 and any h ∈ Db

(149) H1
(
w−1 (∂Bh (v (b)))

) ≤ 2πh + cε

and denoting the interior of w−1 (∂Bh (v (b))) by Ib (i.e. Ib := Iv(b) of Step 5) we
have

(150) L2 (Ib ∩ A) ≥ πh2 − cε.
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Proof of Step 8. As b ∈ Υ0, v (b) ∈ B 1
8
(c0) and so

(151) Bh (v (b)) ⊂ B 15
32

(c0) ⊂ Bl1 (c0) .

From Step 4 (64) we know that for h ∈ Dh we have ∂Bh (v (b)) ⊂ w (A) and
d (w,A, z) = 1 for z ∈ ∂Bh (v (b)) thus it makes sense to consider the inverse of
w on ∂Bh (v (b)), we also know w−1 (∂Bh (v (b))) is a Jordan curve and recall N is
the set of points at which v and ṽ agree (see (71)) and from (39) we know that
L2 (Bl0 (0) \N) ≤ cε. We will show

(152) L2 (Bh (v (b)) \v (Ib ∩ A ∩N)) ≤ cε.

Let O = Bl0 (0) \Ib. By (87)

(153) ṽ (N ∩ A ∩O) ∩Bh (v (b)) = ∅.
So as from (151), (46)

(154) Bh (v (b)) ⊂ ṽ (N ∩ A ∩O) ∪ ṽ
(
N ∩ A ∩ Ib

) ∪ ṽ (Bl0 (0) \ (N ∩ A))

and as

L2 (ṽ (Bl0 (0) \ (N ∩ A))) ≤ cL2 (Bl0 (0) \ (N ∩ A))
(57),(39)

≤ cε

together with (153), (154) this implies (152). By Theorem 5 (taking φ = χv(Ib∩A∩N))
∫

Ib∩A∩N

det (Dv (x)) dL2x =

∫

v(Ib∩A∩N)

N (v, Ib ∩ A ∩N, z) dL2z

(152)

≥ πh2 − cε.

(155)

And as ∫

Ib∩A∩N

det (Dv (x)) dL2x ≤
∫

Ib∩A∩N

1 + cd
(
Dv (x) , K̃

)
dL2x

(23)

≤ L2 (Ib ∩ A ∩N) + cε.

Together with (155) this gives

L2 (Ib ∩ A ∩N) ≥ πh2 − cε

which establishes (150). By Step 6, (101) H1 (w−1 (∂Bh (v (b)))) ≤ 2πh + cε which
establishes (149) and completes the proof of Step 8.

Step 9. Let b ∈ Υ0, h ∈ Db for ph :=
√

L2(Ib)
π

there exists ωb ∈ B 1
2
(0) such that

(156) L2 (Ib\Bph
(ωb)) ≤ c

√
ε.

Proof of Step 9. Recall from Step 5 ∂Ib = w−1 (∂Bh (v (b))) and

(157) H1 (∂Ib) = H1
(
w−1 (∂Bh (v (b)))

) (149)

≤ 2πh + cε
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and since by (150) we know L2 (Ib) ≥ πh2−cε by Theorem 3 the Fraenkel asymmetry
λ (Ib) satisfies

(2πh + cε)2
(7),(157)

≥ 4π

(
1 +

(λ (Ib))
2

4

)
(
πh2 − cε

)

thus 4π2h2+cε ≥ 4π2h2+π2h2 (λ (Ib))
2 thus λ (Ib) ≤ c

√
ε. Thus there exists ωb ∈ R2

such that (156) is satisfied.

Step 10. Let b ∈ Υ0 be such that v (b) ∈ Ξ0, for any h ∈ Db we will show

(158) L2 (Ib\Bh (b)) ≤ c
√

ε.

Proof of Step 10. Let ωb ∈ R2 satisfy (156) for ph =
√

L2(Ib)
π

. First note (156)
implies L2 (Ib ∩Bph

(ωb)) ≥ πp2
h − c

√
ε and thus

(159) L2 (Bph
(ωb) \Ib) ≤ c

√
ε.

Since ∂Ib = w−1 (∂Bh (v (b)))
(100)⊂ N

cC
1
32

1

(∂Bh (b)) it is easy to see

(160) ωb ∈ B
cC

1
32

1

(b) and |ph − h| ≤ cC
1
32

1 .

For each θ ∈ S1 let E (θ) > 0 be the largest number such that

(((ph + E (θ)) θ, (ph − E (θ)) θ) + ωb) ∩ ∂Ib = ∅.
Let

X1 :=
{
θ ∈ S1 : ((ph + E (θ)) θ, (ph − E (θ)) θ + ωb) ⊂ Ib

}

and let

X2 :=
{
θ ∈ S1 : ((ph + E (θ)) θ, (ph − E (θ)) θ + ωb) ∩ Ib = ∅} .

For any θ ∈ X1 we know

((ph + E (θ)) θ, phθ) + ωb ⊂ (Ib\Bph
(ωb)) .

So there exists constant c4 = c4 (σ) > 0 such that
∫

X1

E (θ) dH1θ ≤
∫

X1

H1 ((Ib\Bph
(ωb)) ∩ {ωb + θR+}) dH1θ

≤ cL2 (Ib\Bph
(ωb))

(156)

≤ c4

√
ε.

(161)

In the same way if θ ∈ X2 then we know

(phθ, (ph − E (θ)) θ) + ωb ⊂ (Bph
(ωb) \Ib) ∩ {ωb + θR+}

and arguing in exactly the same way as (161) we get

(162)
∫

X2

E (θ) dH1θ
(159)

≤ c4

√
ε.
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Let U =
{
θ ∈ S1 : E (θ) < 2c4C

−1
1

√
ε
}
so from (161), (162) we have

(163) H1
(
S1\U) ≤ C1.

For any θ ∈ U we can find
Q (θ) ∈ {ωb + θR+} ∩N2E(θ) (∂Bph

(ωb)) ∩ ∂Ib.

Let D0 :=
⋃

θ∈U Q (θ), note
(164) D0 ⊂ Nc

√
ε (∂Bph

(ωb))

and as D0 ⊂ ∂Ib, D0 is rectifiable.
Define P : R2 → phS

1 by P (z) = ph
z−ωb

|z−ωb| , so |DP (z)| = ph

|z−ωb| . Now P (D0) =

phU and from (163) we have

(165) H1 (P (D0)) ≥ 2πph − C1.

As D0 is a rectifiable set we know

(166) H1 (P (D0)) ≤
∫

D0

|DP (z) tz| dH1z ≤ (
1 + c

√
ε
)
H1 (D0) ,

which implies

(167) H1 (D0)
(165),(166)

≥ 2πph − cC1.

Define Mb := ∂Bh (v (b)) \ (
hΘv(b) + v (b)

)
(see Figure 2), as v (b) ∈ Ξ0 (recall this

is one of the hypotheses of Step 10) we know

(168) H1 (Mb)
(123)

≤ cC
1
8

1 .

And as h ∈ Db we have that

(169) H1
(
w−1 (Mb)

)
=

∫

Mb

∣∣Dw−1 (z) tz
∣∣ dH1z

(168)

≤ cC
1
8

1 .

Note
(170) H1

(
P

(
D0\w−1 (Mb)

)) ≥ H1 (P (D0))−H1
(
P

(
w−1 (Mb)

))

and from (100), (160) we have w−1 (Mb) ⊂ N
cC

1
32

1

(∂Bph
(ωb)) and so

(171) H1
(
P

(
w−1 (Mb)

))
=

∫

w−1(Mb)

|DP (z) tz| dH1z
(169)

≤ cC
1
8

1 .

Let D1 = D0\w−1 (Mb), so from (167), (169) we know H1 (D1) ≥ 2πph−cC
1
8

1 . From
(165), (170), (171) there must exists constant c5 = c5 (σ) > 0 such that we can pick
points p1, p2, p3 ∈ D1 for which the angle between any two of them is (roughly) 2π

3
,

formally

(172)
∣∣∣∣

pi1

|pi1|
· pi2

|pi2|
+

1

2

∣∣∣∣ < cC
1
8

1 for i1, i2 ∈ {1, 2, 3} .

And by definition of D1 we know v(pi)−v(b)
|v(pi)−v(b)| ∈ Θv(b) for i = 1, 2, 3. Again see Figure 2.
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b v(b)

M bw−1
M b(     )w−1

p

p

p1

2

3

v(p )

v(p )

v(p )

1

2

3

Figure 2.

Let θi := v(pi)−v(b)
|v(pi)−v(b)| and let t (θi) ≥ 0 be the smallest number such that v (b) +

θit (θi) ∈ v (∂Bl0 (0)), from (124) the path w−1 : [v (b) , v (b) + θit (θi)) → A is
well defined, since pi ∈ ∂Ib so v (pi) ∈ ∂Bh (v (b)) ⊂ B 15

32
(c0) ⊂ v (Bl0 (0)) hence

[v (b) , v (pi)] ⊂ [v (b) , v (b) + θit (θi)) thus the path w−1 ([v (b) , v (pi)]) is also well
defined and so as v (pi) ∈ ∂Bh (v (b)) we have

(173) |b− pi| ≤ H1
(
w−1 ([v (b) , v (pi)])

) (125)

≤ h + cε.

Note

(174) ph =

√
L2 (Ib)

π

(150)

≥ h− cε.

Define the half-plane
(175) H (x, v) :=

{
z ∈ R2 : (z − x) · v ≥ 0

}
.

Let Wi := pi−ωb

|pi−ωb| for i = 1, 2, 3. So using the fact p1, p2, p3

(164)∈ Nc
√

ε (∂Bph
(ωb)) for

the last inclusion (see Figure 3)

b
(173)∈ Bh+cε (pi)

(174)⊂ H (pi + (ph + cε)Wi,−Wi)

⊂ H
(
ωb + c

√
εWi,−Wi

)
.

Thus

(176) b ∈
3⋂

i=1

H
(
ωb + c

√
εWi,−Wi

) (172)⊂ Bc
√

ε (ωb) .
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p2

3p

p1

ph

ωb b

W

W

W

1

2

3

Figure 3.

Again since pi

(164)∈ Nc
√

ε (∂Bph
(ωb)) and as |pi − ωb|

(176)

≤ |pi − b|+ c
√

ε
(173)

≤ h + c
√

ε
thus ph−c

√
ε ≤ h+c

√
ε this together with (174) gives |ph − h| ≤ c

√
ε, this completes

the proof of Step 10.

Proof of Lemma 3 completed. Note by Theorem 5

L2 (w (Υ0))
(103)
=

∫

w(Υ0)

d (w,A, y) dL2y
(98)

≥
(

1− cC
1
2q

1

)
π

64
.

So by (122) we know L2 (w (Υ0) ∩ Ξ0) ≥
(

1− cC
1
4q

1

)
π
64
, let Λ0 := w−1 (w (Υ0) ∩ Ξ0),

note
L2 (Λ0) ≥

∫

w(Υ0)∩Ξ0

det
(
Dw−1 (y)

)
dL2y ≥

(
1− cC

1
4q

1

)
π

64
.

For any b ∈ Λ0 by Step 9 (158) Ib satisfies (37). In addition by (86), (99), (100)

there exists Db ⊂
(

1
8
, 5

16

)
with L1

((
1
8
, 5

16

) \Db

) ≤ cC
1

32q

1 such that inequalities (35)
and (36) of the statement of the lemma are satisfied. This completes the proof of
Lemma 3. ¤

Having established in Lemma 3 there is a large set of points Λ0 with the property
that for any b ∈ Λ0, for many radii h ∈ (

1
8
, 5

16

)
we have a connected set Ib with

L2 (Ib4Bh (b)) ≤ ε
1
2q and with the property that v maps ∂Ib onto ∂Bh (v (b)). We

will use the “shrink directions” argument described in (2.1.3) to prove that in a
central sub-ball the gradient stays close to SO (2).
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Lemma 4. Given a function v ∈ C4
(
B 1

2
(0)

)
satisfying properties (23), (25),

(26), (27) and (28) of Lemma 2, define

(177) B :=
{

x ∈ B 1
2
(0) : d (Dv (x) , SO (2) J) < d (Dv (x) , SO (2))

}

we will show there exists constant C3 = C3 (σ) > 0 such that

(178) L2 (BC3 (0) ∩B) ≤ c
√

ε.

Proof of Lemma 4. From Lemma 3 there exists a set Λ0 ⊂ B 1
8
(0) with

L2
(
B 1

8
(0) \Λ0

)
≤ cC

1
4q

1 such that for b ∈ Λ0 we have set Db ⊂
(

1
8
, 5

16

)
with

L1
((

1
8
, 5

16

) \Db

) ≤ cC
1

32q

1 and for any h ∈ Db there is a connected open set Ib

satisfying (35), (36), (37). Note
∫

Λ0

∫

B 1
2
(0)

d
(
Dv (z) , K̃

)
|z − x|−1 dL2zdL2x ≤ c

∫

B 1
2
(0)

d
(
Dv (z) , K̃

)
dL2z

(23)

≤ cε.

So we can find a set Λ1 ⊂ Λ0 with L2 (Λ1) ≥ L2(Λ0)
2

such that every x ∈ Λ1 has the
property

(179)
∫

B 1
2
(0)

d
(
Dv (z) , K̃

)
|z − x|−1 dL2z ≤ cε.

Let b ∈ Λ1 and h ∈ Db ∩
(

5
16

, 6
16

)
.

As in Step 10 of Lemma 3 for θ ∈ [0, 2π) define E (θ) > 0 to be the largest
number so that (((h− E (θ)) θ, (h + E (θ)) θ) + b) ∩ ∂Ib = ∅. Note that from (36)
we know E (θ) < cC

1
16

1 . In exactly the same way as we established (161), (162) of
Lemma 3 we can show

(180)
∫

S1

E (θ) dH1θ ≤ c
√

ε.

Since J is a diagonal matrix with eigenvalues σ, σ−1 we must be able to find
θ1, θ2 ∈ S1 with the following properties

• |Jθi| = 1 for i = 1, 2.
• Letting H0 denote the “short” connected component of S1 between θ1, θ2 we
have |Jη| < 1 for any η ∈ H0.

If we divide H0 into three equal sized sub-arcs, let H1 denote the central sub-arc,
then there exists constant c6 = c6 (σ) > 0 such that |Hη| < 1− c6 for any η ∈ H1.
Let Vα (0) :=

(
Bα (0) \(Bα

2
(0)

) ∩ {Rη : η ∈ H1} and let Vα (x) := Vα (0) + x.

Step 1. We will show that

(181) L2 (Vh (b) ∩B) ≤ c
√

ε.

Proof of Step 1. For each θ ∈ H1 we can find

aθ ∈ (((h− 2E (θ)) θ, (h + 2E (θ)) θ) + b) ∩ ∂Ib
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and by (35) we know v (aθ) ∈ ∂Bh (v (b)) so letting eθ :=
∫

[b,aθ]
d

(
Dv (z) , K̃

)
dH1z

we have

h = |v (aθ)− v (b)|
≤ (1− c6 + eθ) L1 ([b, aθ] ∩B) + (1 + eθ) L1 ([b, aθ] \B)

≤ |b− aθ| − c6L
1 ([b, aθ] ∩B) + ceθ.

Thus L1
([

b, 4
16

θ
] ∩B

) ≤ 2E (θ) + ceθ. And note that by the co-area formula

(182)
∫ 2π

0

eθdH1θ =

∫

B 1
2
(0)

d
(
Dv (z) , K̃

)
|z − b|−1 dL2z ≤ cε.

So again by the Co-area formula (see Figure 4)

h

b v(b)

v

aθ v(a  )θ

h

Figure 4.

(183) L2
(
V 1

4
(b) ∩B

)
≤ c

∫

H1

L1

([
b,

4

16
θ

]
∩B\B 1

8
(b)

)
dH1θ

(180),(182)

≤ c
√

ε.

Proof of Lemma completed. Assuming C1 is small enough we must be able to
find b ∈ Λ1 ∩ V 1

4
(0) \B 3

16
(0). So pick h ∈ Db ∩

(
4
16

, 5
16

)
then we have for some

constant C3 = C3 (σ) > 0 that BC3 (0) ⊂ Vh (b), then inequality (178) follows from
(183). ¤

3. Proof of Theorem 2 completed

Recall we have convolved u to form a smooth function ψ := uρ0 that satisfies
(17), (18), (19) and (20). By applying Lemma 2 function v defined by (22) satisfies
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(23), (24), (25), (26), (27) and (28) and has all the necessary hypotheses to apply
Lemma 4. So

∫

BC3

d (Dv (x) , SO (2)) dL2x
(23)

≤ ε + c

∫

B

d
(
Dv (x) , K̃

)
dL2x + cL2 (B)

(23),(178)

≤ c
√

ε.

(184)

Since dq (Dv (x) , SO (2)) ≤ cd (Dv (x) , SO (2)) + cdq (Dv (x) , K) this gives
∫

BC3
(0)

dq (Dv (x) , SO (2)) dL2x
(184),(24)

≤ c
√

ε.

From the definition of v this implies there exists J ∈ {Id, H} such that
∫

BC3
(0)

dq (Dv (z) , SO (2) J) dL2z ≤ cε
1
2q .

Assuming C1 is chosen small enough we can apply the same argument to show
that for each x0 ∈ B 1

2
(0) there exists Jx0 ∈ {Id, H} such that

(185)
∫

B C3
2

(x0)

dq (Du (z) , SO (2) Jx0) dL2z ≤ cε
1
2q .

By Besicovitch covering Theorem we can find a finite collection of points {x1, x2, . . . ,
xm0} with the properties that B 1

2
(0) ⊂ ⋃m0

i=1 BC3
8

(xi) and ‖∑m0

i=1 χB C3
8

(xi)‖∞ ≤ 5.

Now if for some i1, i2 ∈ {1, 2, . . . , m0} we have xi1 ∈ BC3
4

(xi2) then




∫

B C3
8

(
xi1

+xi2
2

) dq (Dv (z) , SO (2) Jxa) dL2z




1
q

≤ cε
1

2q2 for a = 1, 2.

And this implies Jxi1
= Jxi2

and hence we can find J ∈ {Id, H} such that

(186) Jxi
= J for i = 1, 2, . . . , m0.

Thus
∫

B C3
2

(xi)
dq (Du (z) , SO (2) J) dL2z ≤ cε

1
2q for i = 1, 2, . . . , m0. Hence

∫

B 1
2
(0)

dq (Du (z) , SO (2) J) dL2z ≤ c

m0∑

k=1

∫

B C3
4

(xi)

dq (Du (z) , SO (2) J) dL2z

≤ cε
1
2q

thus establishes the first part of the conclusion of Theorem 2.
Now consider the case q > 1. If J = Id we can then apply Theorem 1 to

conclude there exists R ∈ SO (2) such that (5) holds true. If J = H we define
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w = u · lH−1 where lH−1 is an affine functions with derivative H−1, then∫

l−1

H−1

(
B 1

2
(0)

) dq (Dw (z) , SO (2)) dL2z ≤ cε
1
2q .

Applying Theorem 1 again allows us to conclude there exists R such that∫

l−1

H−1

(
B 1

2
(0)

) |Dw (z)−R|q dL2z ≤ cε
1
2q ,

changing varibles then allows to conclude (5). ¤
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