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Abstract. In this paper, we show Hilbert C∗-module versions of Hölder–
McCarthy inequality and its complementary inequality. As an application, we
obtain Hölder type inequalities and its reverses on a Hilbert C∗-module.

1. Introduction

The Hölder inequality is one of the most important inequalities in functional
analysis. If a = (a1, . . . , an) and b = (b1, . . . , bn) are n-tuples of nonnegative
numbers, and 1/p + 1/q = 1, then

n∑
i=1

aibi ≤

(
n∑

i=1

ap
i

)1/p( n∑
i=1

bq
i

)1/q

for all p > 1

and

n∑
i=1

aibi ≥

(
n∑

i=1

ap
i

)1/p( n∑
i=1

bq
i

)1/q

for all p < 0 or 0 < p < 1.

Non-commutative versions of the Hölder inequality and its reverses have been
studied by many authors. Ando [1] showed the Hadamard product version of a
Hölder type. Ando and Hiai [2] discussed the norm Hölder inequality and the
matrix Hölder inequality. Mond and Shisha [15], Fujii, Izumino, Nakamoto and
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Seo [7], and Izumino and Tominaga [11] considered the vector state version of a
Hölder type and its reverses. Bourin, Lee, Fujii and Seo [3] showed the geometric
operator mean version, and so on.

In this paper, as a generalization of the vector state version due to [7], we show
Hilbert C∗-module versions of Hölder–McCarthy inequality and its complemen-
tary inequality. As an application, we obtain Hölder type inequalities and its
reverses on a Hilbert C∗-module.

2. preliminary

Let B(H) be the C∗-algebra of all bounded linear operators on a Hilbert space
H, and A be a unital C∗-algebra of B(H) with the unit element e. For a ∈ A ,

we denote the absolute value of a by |a| = (a∗a)
1
2 . For positive elements a, b ∈ A

and t ∈ [0, 1], the t-geometric mean of a and b in the sense of Kubo–Ando theory
[12] is defined by

a ]t b = a
1
2

(
a−

1
2 ba−

1
2

)t

a
1
2

for a > 0, i.e., a is invertible. In the case of non-invertible, since a ]t b satisfies the
upper semicontinuity, we define a ]t b = limε→+0(a + εe) ]t (b + εe) in the strong
operator topology. Hence a ]t b ∈ A ′′ in general, where A ′′ is the bi-commutant
of A . In the case of t = 1/2, we denote a ]1/2 b by a ] b simply. The operator
geometric mean has the symmetric property: a ]t b = b ]1−t a, and a ]t b = a1−tbt

for commuting a and b.
A complex linear space X is said to be an inner product A -module (or a pre-

Hilbert A -module) if X is a right A -module together with a C∗-valued map
(x, y) 7→ 〈x, y〉 : X ×X → A such that

(i) 〈x, αy + βz〉 = α〈x, y〉+ β〈x, z〉 (x, y, z ∈ X , α, β ∈ C),
(ii) 〈x, ya〉 = 〈x, y〉a (x, y ∈ X , a ∈ A ),
(iii) 〈y, x〉 = 〈x, y〉∗ (x, y ∈ X ),
(iv) 〈x, x〉 ≥ 0 (x ∈ X ) and if 〈x, x〉 = 0, then x = 0.

The linear structures of A and X are assumed to be compatible. If X satisfies
all conditions for an inner-product A -module except for the second part of (iv),
then we call X a semi-inner product A -module.

Let X be an inner product A -module over a unital C∗-algebra A . We define
the norm of X by ‖ x ‖:=

√
‖ 〈x, x〉 ‖ for x ∈ X , where the latter norm denotes

the C∗-norm of A . If X is complete with respect to this norm, then X is called
a Hilbert A -module. An element x of the Hilbert A -module is called nonsingular
if the element 〈x, x〉 ∈ A is invertible. For more details on Hilbert C∗-modules,
see [13, 14].

In [6], from a viewpoint of operator geometric mean, we showed the following
new Cauchy–Schwarz inequality:

Theorem 2.1 (Cauchy–Schwarz inequality). Let X be a semi-inner product A -
module over a unital C∗–algebra A . If x, y ∈ X such that the inner product
〈x, y〉 has a polar decomposition 〈x, y〉 = u|〈x, y〉| with a partial isometry u ∈ A ,
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then

|〈x, y〉| ≤ u∗〈x, x〉u ] 〈y, y〉. (2.1)

Under the assumption that X is an inner product A -module and y is nonsin-
gular, the equality in (2.1) holds if and only if xu = yb for some b ∈ A .

Next we review the basic concepts of adjointable operators on a Hilbert C∗-
module. Let X be a Hilbert C∗-module over a unital C∗-algebra A . Let
EndA (X ) denote the set of all bounded C-linear A -homomorphism from X
to X . Let T ∈ EndA (X ). We say that T is adjointable if there exists a
T ∗ ∈ EndA (X ) such that 〈Tx, y〉 = 〈x, T ∗y〉 for all x, y ∈ X . Let L(X ) denote
the set of all adjointable operators from X to X . Moreover, we define its norm
by

‖ T ‖= sup{‖ 〈Tx, Tx〉 ‖
1
2 :‖ x ‖≤ 1}.

Then L(X ) is a C∗-algebra. The symbol I stands for the identity operator in
L(X ). The following lemma due to Paschke [16] is very important:

Lemma 2.2. Let X be a Hilbert C∗-module and let T be a bounded A -linear
operator on X . The following conditions are equivalent:

(1) T is a positive element of L(X );
(2) 〈x, Tx〉 ≥ 0 for all x in X .

In [8], we showed the following generalized Cauchy–Schwarz inequality on a
Hilbert C∗-module by virtue of (2.1) and Lemma 2.2:

Theorem 2.3 (generalized Cauchy–Schwarz inequality). Let T be a positive
operator in L(X ). If x, y ∈ X such that 〈x, Ty〉 has a polar decomposition
〈x, Ty〉 = u|〈x, Ty〉| with a partial isometry u ∈ A , then

|〈x, Ty〉| ≤ u∗〈x, Tx〉u ] 〈y, Ty〉. (2.2)

Under the assumption that 〈y, Ty〉 is invertible, the equality in (2.2) holds if and

only if T
1
2 (xu) = T

1
2 (yb) for some b ∈ A .

3. Hölder–McCarthy inequality

In this section, we show two Hilbert C∗-module versions of Hölder–McCarthy
inequality and its complementary inequality. For convenience, we use the notation
\t for the binary operation

a \t b = a
1
2

(
a−

1
2 ba−

1
2

)t

a
1
2 for t 6∈ [0, 1],

whose formula is the same as ]t.

Theorem 3.1. Let T be a positive operator in L(X ) and x a nonsingular element
of X .

(1) If p ≥ 1, then 〈x, Tx〉 ≤ 〈x, x〉 ]1/p 〈x, T px〉.
(2) If p ≤ −1 or 1/2 ≤ p ≤ 1, then 〈x, x〉 \1/p 〈x, T px〉 ≤ 〈x, Tx〉.
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Proof. For a nonsingular element x of X , Put

Φx(X) = 〈x〈x, x〉−
1
2 , Xx〈x, x〉−

1
2 〉 for X ∈ L(X ).

Then Φx is a unital positive linear map from L(X ) to A .
Suppose that p ≥ 1. Since t1/p is operator concave, it follows from [4, 5] that

Φx(T
1/p) ≤ Φx(T )1/p and this implies

〈x, x〉−
1
2 〈x, T 1/px〉〈x, x〉−

1
2 ≤

(
〈x, x〉−

1
2 〈x, Tx〉〈x, x〉−

1
2

)1/p

and

〈x, T 1/px〉 ≤ 〈x, x〉
1
2

(
〈x, x〉−

1
2 〈x, Tx〉〈x, x〉−

1
2

)1/p

〈x, x〉
1
2 (3.1)

= 〈x, x〉 ]1/p 〈x, Tx〉.

Replacing T by T p in (3.1), we have (1).
Suppose that p ≤ −1 or 1/2 ≤ p ≤ 1. Since −1 ≤ 1/p < 0 or 1 ≤ 1/p ≤ 2, we

have Φx(T )
1
p ≤ Φx(T

1
p ) by the operator convexity of t1/p and this implies(

〈x, x〉−
1
2 〈x, Tx〉〈x, x〉−

1
2

) 1
p ≤ 〈x, x〉−

1
2 〈x, T

1
p x〉〈x, x〉−

1
2 .

Hence it follows that

〈x, x〉 \1/p 〈x, Tx〉 ≤ 〈x, T
1
p x〉 (3.2)

and replacing T by T p in (3.2) we have (2). �

Remark 3.2. The inequality (2) of Theorem 3.1 does not hold for 0 < p < 1/2
in general. In fact, we give a simple counterexample to the case of p = 1/3 as
follows: Put

X = M4(C) = M2(M2(C)) and A = M2(C)⊕M2(C)

and

Φ(

(
X Y
Z W

)
) =

(
X 0
0 W

)
for X, Y, Z, W ∈ M2(C). Then X is a Hilbert A -module with an inner product
〈x, y〉 = Φ(x∗y) for x, y ∈ X . Let

z =


2 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 and x =


1/2 0 0 0
0 2 0 0
0 0 1 0
0 0 0 1

 .

If T = Tz is defined by Tzy = zy for all y ∈ X , then T is a positive operator in
L(X ) and (

〈x, x〉−1/2〈x, Tx〉〈x, x〉−1/2
)3

=

(
13 8
8 5

)
⊕
(

4 4
4 4

)
and

〈x, x〉−1/2〈x, T 3x〉〈x, x〉−1/2 =

(
29 22
22 17

)
⊕
(

17 17
17 17

)
,
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so that

〈x, x〉−1/2〈x, T 3x〉〈x, x〉−1/2 −
(
〈x, x〉−1/2〈x, Tx〉〈x, x〉−1/2

)3
=

(
16 14
14 12

)
⊕
(

13 13
13 13

)
6≥ 0⊕ 0.

Next, we show a complementary part of Theorem 3.1. For this, we need the
generalized Kantorovich constant K(α, β, p) for 0 < α < β, which is defined by

K(α, β, p) =
αβp − βαp

(p− 1)(β − α)

(
p− 1

p

βp − αp

αβp − βαp

)p

(3.3)

for any real number p ∈ R, see also [10, Definition 2.2]. The constant K(α, β, p)
satisfies 0 < K(α, β, p) ≤ 1 for 0 ≤ p ≤ 1 and K(α, β, p) ≥ 1 for p 6∈ [0, 1]. For
more details on the generalized Kantorovich constant, see [10, Chapter 2.7].

Theorem 3.3. Let T be a positive invertible operator in L(X ) such that αI ≤
T ≤ βI for some scalars 0 < α < β, and x a nonsingular element of X .

(1) If p ≥ 1, then

〈x, x〉 ]1/p 〈x, T px〉 ≤ K(α, β, p)1/p〈x, Tx〉.

(2) If p ≤ −1 or 1/2 ≤ p ≤ 1, then

〈x, Tx〉 ≤ K(αp, βp, 1/p)〈x, x〉 \1/p 〈x, T px〉,

where the generalized Kantorovich constant K(α, β, p) is defined by (3.3).

Proof. For a nonsingular element x of X , put Φx(X) = 〈x〈x, x〉− 1
2 , Xx〈x, x〉− 1

2 〉
for X ∈ L(X ). Then Φx : L(X ) 7→ A is a unital positive linear map.

Suppose that p ≥ 1. It follows from [10, Lemma 4.3] that

Φx(T
p) ≤ K(α, β, p)Φx(T )p.

This implies

〈x, x〉 ]1/p 〈x, T px〉 ≤ K(α, β, p)1/p〈x, Tx〉
and we have (1).

In the case of p ≤ −1 or 1/2 ≤ p ≤ 1, since −1 ≤ 1/p < 0 or 1 ≤ 1/p ≤ 2,
it follows that Φx(T

1/p) ≤ K(α, β, 1/p)Φx(T )1/p. Similarly we have the desired
inequality (2). �

Next, we discuss Hölder–McCarthy type inequalities on a Hilbert C∗-module
outside intervals of Theorem 3.1.

Corollary 3.4. Let T be a positive invertible operator in L(X ) such that αI ≤
T ≤ βI for some scalars 0 < α < β, and x a nonsingular element of X . If
−1 < p < 0 or 0 < p < 1/2, then

K(αp, βp, 1/p)−1〈x, Tx〉 ≤ 〈x, x〉 \1/p 〈x, T px〉 ≤ K(αp, βp, 1/p)〈x, Tx〉,

where the generalized Kantorovich constant K(α, β, p) is defined by (3.3).
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Proof. For a unital positive linear map Φx from L(X ) to A , it follows from [10,
Lemma 4.3] that for −1 < p < 0 or 0 < p < 1/2

K(α, β, 1/p)−1Φx(T )1/p ≤ Φx(T
1/p) ≤ K(α, β, 1/p)Φx(T )1/p.

Hence we have this theorem as in the proof of Theorem 3.3. �

Similarly we have the following Hölder–McCarthy type inequality on a Hilbert
C∗-module and its complementary inequality as follows:

Theorem 3.5. Let T be a positive invertible operator in L(X ) such that αI ≤
T ≤ βI for some scalars 0 < α < β. Then for 0 < p < 1

K(α, β, p)〈x, x〉 ]p 〈x, Tx〉 ≤ 〈x, T px〉 ≤ 〈x, x〉 ]p 〈x, Tx〉
for every nonsingular element x ∈ X , where K(α, β, p) is defined by (3.3).

4. Hölder inequality

As an application of Theorem 3.1 and Theorem 3.3, we show Hölder type
inequalities on a Hilbert C∗-module and its reverses.

Theorem 4.1. Let A and B be positive invertible operators in L(X ) and x a
nonsingular element of X , and 1

p
+ 1

q
= 1.

(1) If p > 1, then

〈x, Bq ]1/p Ap x〉 ≤ 〈x, Bqx〉 ]1/p 〈x, Apx〉 (4.1)

or
〈x, Ap ]1/q Bq x〉 ≤ 〈x, Apx〉 ]1/q 〈x, Bqx〉. (4.2)

(2) If p ≤ −1 or 1
2
≤ p < 1, then

〈x, Bq \1/p Ap x〉 ≥ 〈x, Bqx〉 \1/p 〈x, Apx〉 (4.3)

or
〈x, Ap \1/q Bq x〉 ≥ 〈x, Apx〉 \1/q 〈x, Bqx〉. (4.4)

Proof. Replacing x and T by B
q
2 x and (B− q

2 ApB− q
2 )

1
p in (1) of Theorem 3.1

respectively, we have (4.1) of Theorem 4.1. By (4.1) and the symmetric property
of t-geometric mean, we have (4.2). The latter (4.3) and (4.4) are proved similarly.

�

By Theorem 3.5, we have the following weighted version of Cauchy type in-
equality on a Hilbert C∗-module.

Theorem 4.2. Let A and B be positive invertible operators in L(X ) such that
αI ≤ A, B ≤ βI for some scalars 0 < α < β. Then for 0 < p < 1

K(
α2

β2
,
β2

α2
, p)〈x, B2x〉 ]p 〈x, A2x〉 ≤ 〈x, A2 ]p B2x〉 ≤ 〈x, B2x〉 ]p 〈x, A2x〉

for every nonsingular element x ∈ X .

Proof. Replace x and T by Bx and B−1A2B−1 in Theorem 3.5 respectively. Since
α2

β2 I ≤ B−1A2B−1 ≤ β2

α2 , the theorem follows. �
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If we put p = 1/2 in Theorem 4.2, then we have the following Pólya-Szegö type
inequality on a Hilbert C∗-module which is regarded as a reverse of Cauchy type
inequality, also see [8, Theorem 3.3].

Corollary 4.3. Let A and B be positive invertible operators in L(X ) such that
αI ≤ A, B ≤ βI for some scalars 0 < α < β. Then

〈x, Ax〉 ] 〈x, Bx〉 ≤ α + β

2
√

αβ
〈x, A ] Bx〉

for every nonsingular element x ∈ X .

Next, we show a complementary version of Theorem 4.1.

Theorem 4.4. Let A and B be positive invertible operators in L(X ) such that
αI ≤ A, B ≤ βI for some scalars 0 < α < β, and x a nonsingular element of X
and 1

p
+ 1

q
= 1.

(1) If p > 1, then

〈x, Bqx〉 ]1/p 〈x, Apx〉 ≤ K

(
α

βq−1
,

β

αq−1
, p

) 1
p

〈x, Bq ]1/p Ap x〉.

(2) If p ≤ −1 or 1/2 ≤ p < 1, then

〈x, Bqx〉 \1/p 〈x, Apx〉 ≥ K

(
αp

βq
,
βp

αq
,
1

p

)−1

〈x, Bq \1/p Apx〉.

Proof. Replace x and T by B
q
2 x and (B− q

2 ApB− q
2 )

1
p in (1) of Theorem 3.3 respec-

tively. Since α/βq−1I ≤ (B− q
2 ApB− q

2 )
1
p ≤ β/αq−1I, we have (1) of Theorem 4.4.

The latter (2) are proved similarly. �

Next, we discuss Hölder type inequalities in a complementary interval of The-
orem 4.1.

Corollary 4.5. Let A and B be positive invertible operators in L(X ) such that
αI ≤ A, B ≤ βI for some scalars 0 < α < β, and x a nonsingular element of X
and 1

p
+ 1

q
= 1. If −1 < p < 0 or 0 < p < 1

2
, then

K

(
αp

βq
,
βp

αq
,
1

p

)−1

〈x, Bq \1/p Apx〉 ≤ 〈x, Bqx〉 \1/p 〈x, Apx〉

≤ K

(
αp

βq
,
βp

αq
,
1

p

)
〈x, Bq \1/p Apx〉.

Proof. Replacing x and T by B
q
2 x and

(
B− q

2 ApB− q
2

) 1
p in Corollary 3.4 respec-

tively, we have this theorem. �

5. Weighted Cauchy–Schwarz inequality

In this section, we discuss weighted Cauchy–Schwarz inequality on a Hilbert
C∗-module. We cite [9] for the case of the Hilbert space operator.

For T ∈ L(X ), we denote the range of T and the kernel of T by R(T ) and
N(T ), respectively. A closed submodule M of X is said to be complemented if
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X = M ⊕M⊥. Suppose that the closures of the ranges of T and T ∗ are both
complemented. Then it follows from [13, page 30] that T has a polar decomposi-
tion T = U |T | with a partial isometry U ∈ L(X ) and N(U) = N(|T |). Also, we
showed in [8, Lemma 6.1] that

|T ∗|q = U |T |qU∗ for any positive number q. (5.1)

As a generalization of Theorem 2.3, we have the following inequality.

Theorem 5.1 (Weighted Cauchy–Schwarz Inequality). Let T be an operator in
L(X ) such that the closures of the ranges of T and T ∗ are both complemented.
If x, y ∈ X such that 〈Tx, y〉 has a polar decomposition 〈Tx, y〉 = u|〈Tx, y〉| with
a partial isometry u ∈ A , then the following inequality holds

|〈Tx, y〉| ≤ u∗〈x, |T |2αx〉u ] 〈y, |T ∗|2βy〉 (5.2)

for any α, β ∈ [0, 1] and α + β = 1. In particular,

|〈Tx, y〉| ≤ u∗〈x, |T |2x〉u ] 〈y, UU∗y〉
and

|〈Tx, y〉| ≤ u∗〈x, U∗Ux〉u ] 〈y, |T ∗|2y〉.
Moreover, under the assumption that 〈y, |T ∗|2βy〉 is invertible for β ∈ [0, 1], the
equality in (5.2) holds if and only if Txu = |T ∗|2βyb for some b ∈ A .

Proof. In the case of α = 0 or 1, it follows from Theorem 2.1 that

|〈Tx, y〉| = |〈|T |x, U∗y〉| ≤ u∗〈x, |T |2x〉u ] 〈y, UU∗y〉
and

|〈Tx, y〉| = |〈x, |T |U∗y〉| = |〈x, U∗U |T |U∗y〉| = |〈Ux, |T ∗|y〉|
≤ u∗〈Ux, Ux〉u ] 〈|T ∗|y, |T ∗|y〉 = u∗〈x, U∗Ux〉u ] 〈y, |T ∗|2y〉

by (5.1).
In the case of 0 < α < 1, we have

|〈Tx, y〉| = |〈U |T |x, y〉| = |〈|T |αx, |T |βU∗y〉| by α + β = 1

≤ u∗〈x, |T |2αx〉u ] 〈y, U |T |2βU∗y〉 by Theorem 2.1

= u∗〈x, |T |2αx〉u ] 〈y, |T ∗|2βy〉. by (5.1).

Next, we consider the equality conditions in (5.2). Since 〈Tx, y〉 = 〈|T |αx, |T |βU∗y〉
and 〈y, |T ∗|2βy〉 is invertible for β ∈ [0, 1], it follows from Theorem 2.1 that
the equality in (5.2) holds if and only if |T |αxu = |T |βU∗yb for some b ∈ A .
Since |T |x = 0 if and only if |T |1/2x = 0, it follows that N(|T |) = N(|T |q)
for any positive real numbers q > 0. If |T |β

(
|T |αxu− |T |βU∗yb

)
= 0, then

|T |q
(
|T |αxu− |T |βU∗yb

)
= |T |α+qxu − |T |β+qU∗yb = 0 for any q > 0 and this

implies |T |αxu− |T |βU∗yb = 0. Therefore we have the following implications:

|T |αxu = |T |βU∗yb ⇐⇒ |T |α+βxu = |T |2βU∗yb ⇐⇒ U |T |xu = U |T |2βU∗yb

⇐⇒ Txu = |T ∗|2βyb by (5.1).

�
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If we put α = β = 1
2

in Theorem 5.1, then we have the following inequality.

Theorem 5.2. Let T be an operator in L(X ) such that the closures of the ranges
of T and T ∗ are both complemented. If x, y ∈ X such that 〈Tx, y〉 has a polar
decomposition 〈Tx, y〉 = u|〈Tx, y〉| with a partial isometry u ∈ A , then

|〈Tx, y〉| ≤ u∗〈x, |T |x〉u ] 〈y, |T ∗|y〉. (5.3)

Moreover, under the assumption that 〈y, |T ∗|y〉 is invertible, the equality in (5.3)
holds if and only if Txu = |T ∗|yb for some b ∈ A .

Acknowledgement. The authors would like to express their cordial thanks
to the referee for his/her valuable suggestions.
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