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Abstract. To any compact set definable in an o-minimal structure, we associate a signed mea-
sure, called scalar curvature measure. This generalizes the concept of scalar curvature on Rie-
mannian manifolds. The main result states that, if the definable set is an Alexandrov space
with curvature bounded below by k, then the scalar curvature measure is bounded below by
kmðm � 1Þ volmð�Þ, where m is the dimension of the space and volmð�Þ the m-dimensional
volume. This is a non-trivial generalization of a fact from di¤erential geometry. The proof
combines techniques from o-minimal theory and from Alexandrov space theory. The back-
ground of the definition of scalar curvature measure is given in the second part of the paper,
where it is related to integral geometry and expressed by geometric quantities.

1 Introduction

1.1 Plan of the paper and main results. The theory of o-minimal structures is a power-
ful generalization of the theory of subanalytic sets. In the last few years, much prog-
ress has been made on this subject leading on the one hand to new examples of
o-minimal structures and on the other hand to many interesting properties inherent
to all such structures. We are mainly interested in the inner geometric properties and
quantities, i.e. those that do not depend on an embedding of the set in a Euclidean
space, but only on the set as a metric space. One such quantity is the volume of the
set, another example is the Euler characteristic. The aim of this paper is to show that
there is another inner quantity of an o-minimal set, a (signed) measure called ‘‘scalar
curvature measure’’, which behaves in many respects like the scalar curvature of a
smooth Riemannian manifold.
Metric di¤erential geometry has seen a growing interest in the last few years. Alex-

androv spaces were known for a long time, but their importance became clear in
the fundamental work [6]. The set of Riemannian manifolds with given dimension,
bounded diameter and sectional curvature bounded below by some fixed number k
is not compact with respect to the Gromov–Hausdor¤ metric. On the other hand,
Alexandrov’s condition is a restatement of the condition of bounded sectional cur-
vature which makes sense for each length space and leads to a compact set of spaces,
called Alexandrov spaces. The study of Alexandrov spaces yielded many new results
which even in the smooth case were not known before.



The main theorem of this paper is a non-trivial generalization of the following easy
fact from di¤erential geometry: If an m-dimensional Riemannian manifold has sec-
tional curvature bounded from below by k, then its scalar curvature is bounded from
below by kmðm � 1Þ. With the right interpretation, this will remain true in the setting
of o-minimal structures. More precisely, we have the following (for the definition of
scalðS;�Þ see Subsection 1.2 or Theorem 1.2)

Main Theorem 1.1. Let S be a compact connected definable set of dimension m,
which is an Alexandrov space with sectional curvatured k (with respect to the inner

metric). Then scalðS;�Þd kmðm � 1Þ volð�Þ, i.e. for each Borel set UHS we have

scalðS;UÞd kmðm � 1Þ volðUÞ.

Remarks. This theorem is one reason why we speak of ‘‘scalar curvature measure’’. A
second reason is that if S happens to be a Riemannian manifold, then scalðS;�Þ is
nothing else than the integral over the usual scalar curvature.
Under some minor (and necessary) topological restrictions, an analogous theorem

holds true if the set has sectional curvature bounded from above by k in the sense of
CAT -spaces (see [3] for these spaces). Then scalðS;�Þc kmðm � 1Þ volð�Þ.
Furthermore, it can be shown that the measure scalðS;�Þ depends only on S as a

metric space and not on the embedding of S in a Euclidean space. The proof of these
last two assertions will be presented in another paper.

The plan of this paper is the following. We begin by recalling in Subsection 1.2 the
basic definitions of o-minimal structures and of Alexandrov spaces. Tame stratifica-
tions are introduced for technical reasons. Lipschitz–Killing curvature measures can
be defined in the setting of o-minimal structures as was seen by Bröcker–Kuppe [4]
and Fu [13]. One of these Lipschitz–Killing curvature measures will be interpreted as
scalar curvature measure for definable sets. The definition is given in Definition 1.9.
This measure is very closely related to the inner geometry of the set and can be ex-
pressed by geometric terms. More precisely, we will show in Section 3 the following
theorem:

Theorem 1.2. Let S be a connected compact definable set of dimension m with a tame

stratification S ¼ 6
i
X i and U HS a Borel subset. Then

scalðS;UÞ ¼
X
X m

ð
UVX m

sðxÞ dvolmðxÞ

þ 2
X
X m�1

ð
UVX m�1

Xk

a¼1
tr IIwa

dvolm�1ðxÞ

þ 4p
X
X m�2

ð
UVX m�2

1

2
þ ð�1Þm wlokðS; xÞ

2
� ymðS; xÞ

� �
dvolm�2ðxÞ:

The summation is to be taken over all strata of codimensions 0, 1 and 2 respectively.
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The vectors w1;w2; . . . ;wk are the normal vectors of a codimension 1 stratum X m�1 in

direction of the highest dimensional strata and tr IIwa
is the trace of the second funda-

mental form of X m�1 in direction wa (IIwa
¼ �‘wa). By wlokðS; xÞ we denote the local

Euler characteristic of S at x and by ymðS; xÞ the m-dimensional density of S at x.

The reader mainly interested in Alexandrov spaces can take this as a definition of
scalar curvature measure. Some of the terms will be explained later in the paper. The
proof of the main theorem only uses the above formula. However, we want to point
out that the motivation for defining scalar curvature measure the way we do comes
from integral geometry.
In Section 2, we are going to prove the main theorem. This is done for each stra-

tum dimension separately. Strata of codimension 0 can be treated as in the smooth
case. Strata of codimension 2 can be easily handled using facts about Alexandrov
spaces and some topological considerations. Strata of codimension 1 present more
di‰culties. We have to investigate the metric structure of the definable set near such a
stratum. Using o-minimal theory and stratifications, we will get bounds for Alexan-
drov angles between certain geodesics. These geodesics can be used to construct, with
the help of Alexandrov space theory, some points on the unit sphere with pairwise
‘‘big’’ distance. Counting volumes of sphere sections finally yields the result.
The proof of Theorem 1.2 can be found in Section 3. Again, we argue for each

stratum dimension separately, the most di‰cult case being strata of codimension 2.
We have to prove several facts about the density of definable sets in order to relate
the inner geometry of the set to the exterior geometric terms. A result of independent
interest is the normal section formula for densities (Theorem 3.7).

1.2 Basic definitions. For the convenience of the reader, we collect some basic def-
initions that will be used in the sequel.
The unique simply connected complete space form of constant curvature k and

dimension m is denoted Hm
k . We refer to it as the ‘‘k-plane’’.

Definition 1.3. An Alexandrov space with curvature bounded below by k is a locally
complete metric space M with the following two properties:

a) The metric ofM is intrinsic, that is for any x; y A M, d > 0 there is a finite sequence
of points z0 ¼ x, z1; . . . ; zk ¼ y such that dðzi; ziþ1Þ < d for i ¼ 0; . . . ; k � 1 andPk�1

i¼0 dðzi; ziþ1Þ < dðx; yÞ þ d.

b) For each point x A M there is a neighborhood Ux such that for any four distinct
points P, A, B, C in Ux we have the inequalityeAPB þeBPC þeCPAc 2p.
Here,eAPB denotes the angle at the vertex ~PP of a triangle ~PP ~AA ~BB in the k-plane with
side lengths dð ~PP; ~AAÞ ¼ dðP;AÞ, dð ~PP; ~BBÞ ¼ dðP;BÞ, dð ~AA; ~BBÞ ¼ dðA;BÞ, and the
other angles are defined in a similar way.

Since the metric spaces we will consider here are always intrinsic, we refer to the
second condition as Alexandrov’s condition. Alexandrov spaces are a generalization
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of the concept of manifolds with sectional curvature bounded below to metric spaces.
More precisely, we have:

Toponogov’s Theorem 1.4. A complete Riemannian manifold ðM; gÞ is an Alexandrov

space with curvatured k if and only if its sectional curvature is dk.

Alexandrov spaces are important as limits of sequences of manifolds with bounded
sectional curvature: On the set MET of metric spaces there is a distance, called
Gromov–Hausdor¤ distance dG�H . Riemannian manifolds of fixed dimension and
sectional curvatured k form a non-compact subset. Boundary points can be spaces
with di‰cult singularities. Even the dimension can be smaller (collapsing). On the
other hand, the set of Alexandrov spaces with dimensionc n, curvatured k and
diametercD is a compact subset of ðMET ; dG�HÞ. Sequences of Riemannian
manifolds satisfying these inequalities (with uniform bounds n;D; k) have therefore
subsequences converging to Alexandrov spaces. The study of the latter is therefore
important even when one is mainly interested in the smooth case. Our basic reference
for Alexandrov spaces is the very good survey article [6].
Next, we come to the the theory of o-minimal structures.

Definition 1.5. An o-minimal structure is a sequence s ¼ ðsnÞn¼1;2;3;... such that

a) sn is a Boolean algebra of subsets of Rn and Rn A sn.

b) For 1c i < jc n the set fxi ¼ xjg is contained in sn.

c) If S A sn then S � R A snþ1 and R � S A snþ1.

d) If S A snþ1 then pðSÞ A sn where p : Rnþ1 7! Rn is the projection onto the first n

coordinates.

e) The graphs of addition and multiplication belong to s3. (Equivalently: algebraic
subsets belong to s)

f ) s1 consists exactly of all finite unions of points and intervals.

The smallest example of an o-minimal structure is the set of semi-algebraic sets.
Other examples are globally subanalytic sets or sets definable over Rexp. The basic
reference for o-minimal structures is [22], see also [10].
In the rest of the paper, we fix an o-minimal structure and refer to its elements as

definable sets.
A closed definable set is embedded in a Euclidean space and has an induced length

metric. We call it the inner metric.

Definition 1.6.We call aWhitney stratification S ¼ 6X i HRn of a compact definable
set tame if there is a stratification6N m of the normal space Nore SHRn�Sn�1HR2n

satisfying the following two conditions:

a) fN mg is compatible with the sets Nore TX iX j, X i HX j.

b) The projection p : Nore S 7! S, ðx; veÞ 7! x is a submersion on each stratum.
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Tame stratifications (and tame sets) are introduced in [16]. There the interested
reader can find many facts about them. We only need here that each definable set
admits a tame stratification, that the Lipschitz–Killing curvatures can be defined for
such a stratification and do not depend on it.
We remark that Lipschitz–Killing curvatures are defined in various situations and

under various names. Several authors introduced them in the case of convex sets,
manifolds (with boundary), sets with positive reach and piecewise linear spaces. The
case of definable sets presents more di‰culties, as multiplicities have to be counted
correctly. This is where stratified Morse theory enters. Without giving any details, we
sketch the definition of Lipschitz–Killing curvatures and refer to [16] for the general
theory. We remark that there is a di¤erent approach due to Fu [13] using geometric
measure theory.
First we have to define an index b:

Definition 1.7. Let SHRn be a compact definable set with a tame stratification
S ¼ 6X i. Let ðx; vÞ A NorS. We set

bðx; vÞ :¼ 1� wðOd;yðx; vÞVSÞ; 0 < df yf 1

where

Od;yðx; vÞ :¼
�

x þ w

����eðv;wÞc p

2
� y; w;

v

kvk

� 	
¼ d tan y



:

The index b̂bðx; vÞ is defined analogously, where

ÔOd;yðx; vÞ :¼
�

x þ w

����eðv;wÞc p

2
� y; kwk ¼ d

cos y



:

Remarks. For y and d su‰ciently small, the above Euler characteristic is constant.
In [16], Lipschitz–Killing curvatures are defined using the index b. On a Whitney

stratified space both indices are equal almost everywhere. Calculations with b̂b can be
easier, so we use this second index if necessary. The indices b and b̂b can be interpreted
as the normal Morse indices of some height or distance function respectively (see [14]
for stratified Morse theory).

Using the map E : NorS 7! Rn, ðx; vÞ 7! x þ v, one gets a volume form
d VolNorS :¼ E � d VolRn on NorS. We let TubrðS;BÞ denote the set of normal vec-
tors with base-points in some Borel set BJS and lengths bounded by r.
Let bk denote the volume of a k-dimensional Euclidean unit ball.

Proposition and Definition 1.8. In the setting as above,

Volb TubrðS;BÞ :¼
ð
TubrðS;BÞ

bðx; vÞ dVolNorSðx; vÞ

Scalar curvature of definable Alexandrov spaces 33



is a well defined polynomial in r:

Volb TubrðS;BÞ ¼:
Xn

k¼0
bkLn�kðS;BÞrk:

The (signed ) measures LiðS;�Þ are called Lipschitz–Killing curvatures and are inde-

pendent of the stratification.

If the dimension of S is m, then LkðS;�Þ vanishes identically for k > m, and
LmðS;�Þ is the volume measure. L0ðS;�Þ is the Gauß–Bonnet measure, in particu-
lar L0ðS;SÞ ¼ wðSÞ, the Euler characteristic of S.
In this paper we are concerned with Lm�2ðS;�Þ which plays the role of scalar cur-

vature (up to some factor). The restriction of this measure to strata of dimension
smaller than m � 2 vanishes identically, therefore our proofs consist of three parts,
one for each stratum dimension. Note that it follows from the general theory that
Lm�2 is continuous on each stratum with respect to the corresponding volume mea-
sure.

Definition 1.9. Let S be a compact definable set of dimension m. Then the signed
measure

scalðS;�Þ :¼ 4pLm�2ðS;�Þ

is called the scalar curvature measure of S.

Remark. The name scalar curvature is justified by at least two facts. If S happens to
be a Riemannian manifold, this measure yields the integral over the usual scalar
curvature. The second justification comes from our main theorem which is a non-
trivial generalization of an easy fact from di¤erential geometry relating sectional and
scalar curvature.

2 Proof of the Main Theorem

In this section, we suppose S to be a compact connected definable set of dimension m

which is an Alexandrov space with sectional curvatured k. We have to show

scalðS;UÞd kmðm � 1Þ volðUÞ

for each Borel subset U HS.
From the additivity of both sides and the fact that both sides vanish on strata of

dimension less than m � 2, we see that it su‰ces to show that for each Borel set
U HX k, k ¼ m � 2;m � 1;m we have scalðS;UÞd kmðm � 1Þ volðUÞ. This will be
done in Propositions 2.3, 2.6 and 2.10. First of all, we need some topological argu-
ments showing that along strata of codimension at most 2, the topology of a defin-
able Alexandrov space is not complicated.
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2.1 Topological consequences. Recall that a boundary point of an Alexandrov space
of finite dimension is defined inductively: a one-dimensional Alexandrov space is just
a 1-dimensional manifold and the boundary in Alexandrov’s sense is its usual bound-
ary. Otherwise a point is a boundary point if its space of directions has non-empty
boundary. The boundary of an Alexandrov space is a closed subset and is charac-
terized by local topological properties ([6], [20]).

Lemma 2.1. An ðm � 1Þ-stratum X m�1 lies in the boundary of exactly one or two m-

strata. In the first case, each point of the stratum is a boundary point.

Proof. Since the Hausdor¤ dimension of S equals m, the burst indices near each point
are m (see [6], Corollary 6.5). This excludes the case that there is no m-stratum
neighboring our given stratum.
If there are 3 or more such m-strata, we choose a point P A X m�1. The normal

section ðTPX
m�1Þ? VS consists of at least 3 one-dimensional curves g1, g2, g3 that

can be parameterised by arc-length. For fixed positive t set AðtÞ ¼ g1ðtÞ, BðtÞ ¼ g2ðtÞ,
CðtÞ ¼ g3ðtÞ.
Each path between two of these three points has to go through X m�1. With

estimates similar to those that we will use quite often in Section 2.3, we see that
limt!0eðAðtÞ;P;BðtÞÞ ¼ p and accordingly for the other angles. This contradicts
Alexandrov’s condition for the quadruple ðP;AðtÞ;BðtÞ;CðtÞÞ for t su‰ciently small
and shows the first statement.
Next, suppose there is exactly one m-stratum neighboring X m�1. A neighborhood

of a point P A X m�1 is homeomorphic to a half-space of dimension m. Therefore, P is
a boundary point in Alexandrov’s sense ([6], Theorem 13.3 a). r

Lemma 2.2. For a stratum X m�2 of codimension 2 and a point P A X m�2 there are the

following two possibilities:

a) The local Euler characteristic of the normal section at P is 0 and the point is a

boundary point in Alexandrov’s sense.

b) The local Euler characteristic of the normal section at P is 1.

Proof. The normal section at P consists of a finite union of two-dimensional sets which
look like two one-dimensional curves emanating from P and a two-dimensional stra-
tum between them. Each two of them can be neighboring (this means that their bound-
aries contain a common one-dimensional curve) or not. It is impossible for three of
them to have the same one-dimensional curve on their boundary, since this would lead
to a contradiction to the above lemma. Hence, we can partition the set of these two-
dimensional sets in equivalence classes for the relation ‘‘being connected via a chain
of neighboring sets’’. Equivalence classes are sequences of the form ðA1;A2; . . . ;AlÞ,
where two consecutive sets are neighboring and A1 and Al can be neighboring or not.
Suppose there are three or more of such equivalence classes. Then with similar ar-

guments as in the proof of Lemma 2.1 we would get a contradiction to Alexandrov’s
condition.
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Suppose there is exactly one such equivalence class ðA1;A2; . . . ;AlÞ. If A1 and Al

are neighboring, then a neighborhood of P is homotopic to a Euclidean space R2 and
the local Euler characteristic is 1. If A1 and Al are not neighboring, a neighborhood
of P is homotopic to a two-dimensional half-space and the local Euler characteristic
is 0. The curve on the boundary of A1 which does not lie in the boundary of A2 con-
sists of boundary points since it corresponds to an ðm � 1Þ-stratum on the boundary
of exactly one m-stratum. Since the boundary is closed, P must be a boundary point.
It remains the case that there are exactly two such equivalence classes. We denote

them by A ¼ ðA1; . . . ;AlÞ and B ¼ ðB1; . . . ;BkÞ. If A and B are closed, i.e. A1 and Al

as well as B1 and Bk are connected, then wlok ¼ 1 and we are in the second case. If A
is open and B closed (or vice versa), wlok ¼ 0 and P is a boundary point as above.
So we can restrict to the case where A and B are both open. In this case wlok ¼ �1.

Let a1 denote the angle of A at P and a2 the angle of B at P. If a1 > 0, we take
its boundary curves, which are those curves which lie on the boundary of A1 and
Al , but not on the boundary of some other Ai. We parameterise them by arc-
length and call them g1 and g2. Furthermore, let g3 be some curve in B. Then,
limt!0eðP; g1ðtÞ; g2ðtÞÞ ¼ a1 > 0, limt!0eðP; g1;2ðtÞ; g3ðtÞÞ ¼ p. This establishes a
contradiction to Alexandrov’s condition. Consequently, a1 ¼ 0 and analogously
a2 ¼ 0.
It follows that the angle of the normal section vanishes and, using Proposition 3.4,

we see that the density of the normal section of S at P is zero. The local Euler char-
acteristic is constant along the stratum X m�2 (by Thom’s Isotopy Lemma) and con-
sequently the density of the normal section is zero along the stratum. From the nor-
mal section formula 3.7 we will be able to deduce that the density of the set S itself
vanishes almost everywhere along the stratum X m�2. In particular, there is at least
one point P 0 A X m�2 such that yðS;P 0 Þ ¼ 0. This is a contradiction to the fact that
the density at each point of an Alexandrov space is strictly positive (see Proposition
2.8). We therefore see that the case that both A and B are open cannot occur. This
finishes the proof of Lemma 2.2. r

Remark. In view of Lemma 2.1 one could conjecture that a definable Alexandrov
space is always a topological manifold with boundary, but this would be false. As an
example, take CP2 with a metric of positive sectional curvature ðd k > 0Þ. Embed
this space isometrically in some RN (by Nash) and approximate it by a definable
manifold M 0 with positive sectional curvature. Then embed RN HRNþ1 ¼ RN � R
in the natural way and consider the spherical projection on the R-sphere with center
P ¼ ð0; 0; . . . ; 0;RÞ. By simple continuity arguments, for R big enough, the projection

M 00 of our M 0 will have sectional curvature bounded below by
k

2
. We choose R big

enough, such that R2 k

2
> 1. Then the cone C over M 00 with vertex P is definable and

a space with curvatured 0 (cf. [6], Proposition 4.2.3.). On the other hand, the local
Euler characteristic at P is given by wlokðC;CnPÞ ¼ 1� wðM 00Þ ¼ 1� wðCP2Þ ¼ �2.
The local Euler characteristic at each point of a topological manifold (with bound-
ary) is �1, 0 or 1. This shows that the constructed set C is not a topological manifold.
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2.2 Strata of highest dimension. From Theorem 1.2 we see that the scalar curvature
measure on X m is nothing else than the integral over the usual scalar curvature. Near
smooth points, Alexandrov’s condition (for some k) is equivalent to the condition
that the sectional curvature K is bounded below by k. From K d k it follows that
sd kmðm � 1Þ. Hence we have shown:

Proposition 2.3. Let S be a connected definable Alexandrov space of dimension m and

with sectional curvature bounded below by k, then

scaljX mðS;�Þd kmðm � 1Þ voljX mð�Þ

for each m-stratum X m.

2.3 Strata of codimension 1.As usual, for a function f : R 7!R, we write f ðsÞ ¼OðsÞ
if f ðsÞ

s
stays bounded for s ! 0. If moreover lims!0

f ðsÞ
s

¼ 0, we write f ðsÞ ¼ oðsÞ.
We suppose first that we are given an ðm � 1Þ-stratum X m�1 in the boundary of

exactly two m-strata. The inward normal directions are denoted by w1;w2.
Choose some point P A X m�1. On T ¼ TPX

m�1 we choose an orthonormal coor-
dinate system. Coordinate lines are mapped under the exponential map of X m�1 to
mutually orthonormal (at P) curves x1; . . . ; xm�1 that are parameterised by arc-
length. Using this map f, we must show that

hðPÞ ¼ 2ðtr IIw1 þ tr IIw2Þ ¼ 2
Xm�1

i¼1
x 00

i ð0Þ;w1 þ w2

* +

is non-negative on X m�1, if S is an Alexandrov space with sectional curvature
bounded below by k. We do the calculation only for the case k ¼ 0, the general case
following from easy modifications (e.g. replace Rm with spaces of constant curvature
k and so on). However, we will give some hints how to treat the general case at the
end of the subsection.
Let T? denote the a‰ne space of dimension n � m þ 1 which is orthogonal to T

and which passes through P. Then T? VS consists (locally) of a union of two defin-
able curves that we parametrise by arc-length. Thus we have functions

g1; g2 : ½0; eÞ 7! T? HRn

such that g1ð0Þ ¼ g2ð0Þ ¼ P. For a ! 0 we get the following asymptotic behavior

gjðaÞ ¼ P þ awj þ rjðaÞ:

Here rj is a function such that hjðaÞ :¼
krjðaÞk

a
tends to 0. Therefore

gjðaÞ ¼ P þ awj þ OðahjðaÞÞ ð1Þ

This relation remains true if we replace hj by some bigger function that still tends to
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0. Hence we can assume, for instance, that hj is monotonically decreasing for a ! 0
and that hjðaÞd a2. This will be needed later on.

Step 1. First of all, the asymptotic behavior of the angleeðxiðsÞ;P; xjðsÞÞ is estimated
for i0 j.
We can write

xiðsÞ ¼ P þ sx 0
i ð0Þ þ

s2

2
x 00

i ð0Þ þ Oðs3Þ

xjðsÞ ¼ P þ sx 0
j ð0Þ þ

s2

2
x 00

j ð0Þ þ Oðs3Þ:

As these curves are parameterised by arc-length, we have hx 0ð0Þ; x 00ð0Þi ¼ 0.
Furthermore dðP; xiðsÞÞc s, dðP; xjðsÞÞc s. On the other hand,

dðP; xiðsÞÞ2d dEðP; xiðsÞÞ2 ¼ s2 þ Oðs4Þ

hence

dðP; xiðsÞÞd s þ Oðs2Þ:

Accordingly, we find dðP; xjðsÞÞds þ Oðs2Þ. The other distance can be bounded below
by Euclidean distance:

dðxiðsÞ; xjðsÞÞ2d dEðxiðsÞ; xjðsÞÞ2

¼ sðx 0
i ð0Þ � x 0

j ð0ÞÞ þ
s2

2
ðx 00

i ð0Þ � x 00
j ð0ÞÞ þ Oðs3Þ











2

¼ 2s2 � s3ðhx 0
i ; x

00
j iþ hx 0

j ; x
00
i iÞ þ Oðs4Þ:

From the law of cosines it follows that

coseðxiðsÞ;P; xjðsÞÞ ¼
dðxiðsÞ;PÞ2 þ dðxjðsÞ;PÞ2 � dðxiðsÞ; xjðsÞÞ2

2dðxiðsÞ;PÞdðxjðsÞ;PÞ

c
s2 þ s2 � 2s2 þ s3ðhx 0

i ; x
00
j iþ hx 0

j ; x
00
i iÞ þ Oðs4Þ

2ðs þ Oðs2ÞÞðs þ Oðs2ÞÞ

¼ s

2
ðhx 0

i ; x
00
j iþ hx 0

j ; x
00
i iÞ þ Oðs2Þ:

This shows that

eðxiðsÞ;P; xjðsÞÞd
p

2
� s

2
ðhx 0

i ; x
00
j iþ hx 0

j ; x
00
i iÞGOðs2Þ ð2Þ

Analogously,

eðxið�sÞ;P; xjðsÞÞd
p

2
� s

2
ðh�x 0

i ; x
00
j iþ hx 0

j ; x
00
i iÞGOðs2Þ:
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Step 2. Next, we turn to the asymptotic behavior of the angleeðxiðsÞ;P; gjðaÞÞ with
j ¼ 1; 2. Since gj is parameterised by arc-length and by equation (1) we get

a� OðahðaÞ1=2Þc dðP; gjðaÞÞc a:

Bounding the distance between xiðsÞ and gjðaÞ below by Euclidean distance yields

dðxiðsÞ; gjðaÞÞ
2
d dEðxiðsÞ; gjðaÞÞ

2

¼ gjðaÞ � P � sx 0
i ð0Þ �

s2

2
x 00

i ð0Þ þ
s3

6
x 000

i ð0Þ þ Oðs4Þ











2

:

By definition, gjðaÞ � P? x 0
i ð0Þ. Inserting the asymptotic development for gjðaÞ gives

us:

dðxiðsÞ; gjðaÞÞ
2
d a2 þ s2 � as2hw1; x

00
i ð0Þiþ Oða2hjðaÞÞ

þ Oðs4Þ þ Oðas3Þ þ OðahjðaÞs2Þ:

We put aj :¼ s2hjðsÞ�1=2c s. Then we have the following estimates:

a2j hjðajÞ
ajs2

¼ hjðsÞ�1=2hjðajÞc hjðsÞ1=2 ! 0

and

ajhjðajÞs2
ajs2

¼ hjðajÞ ! 0:

The two other O-terms behave in the same way. Thus,

dðxiðsÞ; gjðajÞÞ2d a2j þ s2 � ajs
2hwj; x

00
i ð0Þiþ oðajs

2Þ:

Again, we deduce from the law of cosines that

coseðxiðsÞ;P; gjðaiÞÞ ¼
dðxiðsÞ;PÞ2 þ dðgjðaÞ;PÞ

2 � dðxiðsÞ; gjðaÞÞ
2

2dðxiðsÞ;PÞdðgjðaÞ;PÞ

c
s2 þ a2j � a2j � s2 þ ajs

2hwj; x
00
i ð0Þiþ oðajs

2Þ
2ðs þ Oðs2ÞÞðaj þ OðajhjðajÞ1=2ÞÞ

¼ s

2
hwj; x

00
i ð0Þiþ oðsÞ:

We conclude that

eðxiðsÞ;P; gjðajÞÞd
p

2
� s

2
hwj ; x

00
i ð0Þiþ oðsÞ: ð3Þ

Analogous inequalities hold true if we replace xiðsÞ with xið�sÞ.
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Step 3. For technical reasons which will become clear later on, we need some knowl-
edge about the angleseðxiðsÞ;P; xið�sÞÞ andeðg1ða1Þ;P; g2ða2ÞÞ. We have

coseðxiðsÞ;P; xið�sÞÞ ¼ �1þ oð1Þ:

Here, oð1Þ denotes a term that tends to 0 for s ! 0. Hence,

eðxiðsÞ;P; xið�sÞÞ ¼ pþ oð1Þ: ð4Þ

The proof is similar to the proofs in Step 1 and Step 2 using the law of cosines and
bounding the distance dðxiðsÞ; xið�sÞÞ by the Euclidean one.
Analogously,

eðg1ða1Þ;P; g2ða2ÞÞ ¼ pþ oð1Þ: ð5Þ

Here, the distance between g1ða1Þ and g2ða2Þ is bounded below by the sum of the
two Euclidean distances dEðg1ða1Þ;X m�1Þ and dEðg2ða2Þ;X m�1Þ. Both terms behave
asymptotically as a1 and a2 respectively. The rest follows again from the law of co-
sines.
We have the following two trivial facts:

Lemma 2.4. Given 2m points ðA1;B1;A2;B2; . . . ;Am;BmÞ on the sphere Sm�1, suppose
that

dðAi;AjÞ; dðBi;BjÞd
p

2
� e for i0 j;

dðAi;BjÞd
p

2
� e for all i0 j; and

dðAi;BiÞd p� e:

Then

dðAi;AjÞ; dðBi;BjÞc
p

2
þ 2e for i0 j and

dðAi;BjÞc
p

2
þ 2e for all i0 j:

Lemma 2.5. Let Vmðd1; . . . ; d m
2ð ÞÞ be the ðm � 1Þ-dimensional volume of an m-simplex

on the sphere Sm�1 with side lengths d1; . . . ; d m
2ð Þ. Then, for each i ¼ 1; . . . ;

m

2

� �

km :¼ q

qdi

Vmðd1; . . . ; d m
2ð ÞÞ
����
d1¼���¼d m

2ð Þ¼p=2

> 0:

We want to apply these lemmas to our situation. By [6] there is some map
F : S 7! Rm that leaves distances from P invariant and does not decrease the other
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distances. We denote the image points by ~PP; ~AA; . . . The ray emanating from ~PP and
passing through ~AA intersects the sphere Sm�1 in exactly one point A. We have

eðA; ~PP;BÞ ¼eð ~AA; ~PP; ~BBÞdeðA;P;BÞ:

Next, we setA1 ¼ x1ðsÞ, B1 ¼ x1ð�sÞ,A2 ¼ x2ðsÞ, B2 ¼ x2ð�sÞ; . . . ;Am�1 ¼ xm�1ðsÞ,
Bm�1 ¼ xm�1ð�sÞ, Am ¼ g1ða1Þ, Bm ¼ g2ða2Þ (recall that aj ¼ ajðsÞ).
We choose e > 0 su‰ciently small such that the function ðm � 1Þ-volume is

monotonically increasing in all side lengths if these are contained in the interval
p
2 � 2e; p2 þ 2e
� �

. From inequalities (2), (3), (4) and (5) we see that the assumptions
of Lemma 2.4 are fulfilled for s su‰ciently small. Take an m-simplex which has for
each i ¼ 1; . . . ;m either Ai or Bi as a vertex. By Lemma 2.4, all its side lengths are in
the interval p

2 � 2e; p2 þ 2e
� �

where the volume function is monotonically increasing.
The sum of the volumes of these 2m simplices is exactly the volume of the ðm � 1Þ-
unit-sphere, sm�1, as they form a partition of this sphere.
Let

Cðx1ðGsÞ; . . . ; xm�1ðGsÞ; g1;2ða1;2ÞÞ

be the volume of the simplex on Sm�1, whose side lengths equal the angles of the
points ðx1ðGsÞ; . . . ; xm�1ðGsÞ; g1;2ða1;2ÞÞ with P. Then

X
Cðx1ðGsÞ; . . . ; xm�1ðGsÞ; g1;2ðaÞÞc sm�1

since the angles at ~PP between the image points A1 ¼ x1ðsÞ, B1 ¼ x1ð�sÞ; . . .Am�1 ¼
xm�1ðsÞ, Bm�1 ¼ xm�1ð�sÞ, Am ¼ g1ða1Þ, Bm ¼ g2ða2Þ are not smaller than the angles
between the original points and the volume function is increasing.
We calculate Cðx1ðsÞ; . . . ; xm�1ðsÞ; g1ða1ÞÞ:

Cðx1ðsÞ; . . . ; xm�1ðsÞ; g1ða1ÞÞ

¼ Vmðeðx1ðsÞ;P; x2ðsÞÞ;eðx1ðsÞ;P; x3ðsÞÞ; . . . ;eðx1ðsÞ;P; g1ða1ÞÞ; . . .Þ

dVm

p

2
� s

2
ðhx 0

1; x
00
2iþ hx 0

2; x
00
1iÞGOðs2Þ; . . . ; p

2
� s

2
hw1; x

00
1 ð0Þiþ oðsÞ; . . .

� �

¼Vm

p

2
; . . . ;

p

2

� �
� km

s

2
ððhx 0

1; x
00
2iþ hx 0

2; x
00
1iþ � � � þ hw1; x

00
1 ð0Þiþ � � �ÞÞ þ oðsÞ:

Similar inequalities are true for the other combinations (i.e. xðsÞ replaced by xð�sÞ or
g1ða1Þ replaced by g2ða2Þ). Summing up these inequalities, all terms of type hx 0

1; x
00
2i

vanish and we get
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sm�1d
X

Cðx1ðGsÞ; . . . ; xm�1ðGsÞ; g1;2ða1;2ÞÞ

d 2mVm
p

2
; . . . ;

p

2

� �
�
X

km
s

2
ðhw1;2; x 00

1 ð0Þiþ � � �Þ þ oðsÞ

¼ sm�1 � 2m�2kmsðhw1 þ w2; x
00
1 ð0Þiþ � � � þ hw1 þ w2; x

00
m�1ð0ÞiÞ þ oðsÞ:

It follows immediately that

Xm�1

i¼1
hw1 þ w2; x

00
i ð0Þid 0:

This term is (up to a positive constant) the term we have to integrate when calculat-
ing scalðS;�Þ on X m�1. Therefore this last measure is non-negative.

Remark.We have done the calculations for k ¼ 0. We want to indicate what has to be
done if k0 0. First, just apply the corresponding law of cosines to calculate angles.
The asymptotic behavior of the considered angles is the same. This is not surprising
since, in the small, space forms of constant curvature are almost the same.

Next, the map F will yield points in Hm
k . Join them to ~PP by geodesics. Then the

angles between these geodesics are just the angles between the corresponding points
(since we are in a space form of constant curvature). In the tangent space T~PPH

m
k ,

which is isometric to Rm, the tangents of these geodesics will have angles bounded
below according to our formulae. Identifying such a tangent with a point on the
sphere, we can apply Lemma 2.5 in exactly the same way as we did. Alternatively,
instead of taking F : S 7! Hm

k , take exp
�1
~PP

�F : S 7! T~PPH
m
k ¼ Rm. Then the same

argumentation as in the case k ¼ 0 applies.
Thus we have shown

Proposition 2.6. If S is an Alexandrov space with sectional curvatured k and X m�1 a

stratum in the boundary of exactly two m-strata, then scalðS;�ÞjX m�1 d 0.

Corollary 2.7. If S is an Alexandrov space with sectional curvatured k and X m�1 a

stratum in the boundary of exactly one m-stratum, then scalðS;�ÞjX m�1 d 0.

Proof of the corollary. Here, the normal section ðTPX
m�1Þ? VS consists of exactly

one curve with direction w. In order to calculate scalðS;�Þ on X m�1, we have to in-
tegrate over the expression 2

Pm�1
i¼1 hw; x 00

i ð0Þi (see Theorem 1.2).
By Lemma 2.1, all the points of the stratum are boundary points. We can glue two

copies of S along the boundary. Then, X m�1 becomes a stratum in the boundary of
exactly two m-strata. The corresponding metric space again has sectional curvature
bounded below by k by the doubling theorem of [6]. It follows from Lemma 2.6 thatPm�1

i¼1 hw; x 00
i ð0Þid 0. Hence, scalðS;�Þd 0 on X m�1. r

Andreas Bernig42



2.4 Strata of codimension 2. We recall a result of Shen about the density of Alex-
androv spaces [21]:

Proposition 2.8. Let S be an Alexandrov space with sectional curvatured k and di-

mension m, and P A S. Denote the m-dimensional Hausdor¤ measure by vol. Then the

density yðS;PÞ :¼ limr!0
volBiðP;rÞ

bmrm exists, is strictly positive and bounded above by 1.
If P is a boundary point, it is bounded above by 1

2.

Remark 2.9. In the case of a definable set of dimension m, all reasonable m-
dimensional measures coincide with m-dimensional Hausdor¤ measure.

From the above proposition we can conclude:

Proposition 2.10. If S is an Alexandrov space with sectional curvatured k and of di-

mension m, and X m�2 a stratum of dimension m � 2, then scalðS;�ÞjX m�2 d 0.

Proof. Let P A X m�2. We use Lemma 2.2. The term to be integrated in order to cal-
culate scalðS;�ÞjX m�2 is by Theorem 1.2 given by the expression

4p
1

2
þ 1

2
wlokððTPX

m�2Þ? VS;PÞ � yðS;PÞ
� �

:

If wlok ¼ 1, it equals almost everywhere 4pð1� yÞd 0. If wlok ¼ 0 and P a boundary
point, the expression is almost everywhere 4pð12� yðS;PÞÞd 0. In each case we inte-
grate over an almost everywhere non-negative function, this shows Proposition 2.10.

r

3 Calculation of the scalar curvature measure

Let us first describe the content of this section. The first part (Subsections 3.1, 3.2, 3.3,
3.4) is devoted to a more geometric expression of the scalar curvature measure. One of
the problems will be to calculate the scalar curvature measure of a two-dimensional
definable set. This yields an expression containing the density of the set, see Sub-
sections 3.5 and 3.6. The main problem will be to relate the density of the normal
section of a point to the density of the considered set. This is the so-called normal
section formula, which will be proved in Section 3.7.
Putting all these results together yields Theorem 1.2, which expresses the scalar

curvature measure as

scalðS;UÞ ¼
X
X m

ð
UVX m

sðxÞ d volmðxÞ

þ 2
X
X m�1

ð
UVX m�1

Xk

a¼1
tr IIwa

d volm�1ðxÞ

þ 4p
X
X m�2

ð
UVX m�2

1

2
þ ð�1Þm wlokðS; xÞ

2
� ymðS; xÞ

� �
d volm�2ðxÞ:
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3.1 Preliminaries. In what follows, we consider an o-minimal system and a compact
definable set S of dimension m. We take a tame stratification S ¼ 6X i, where X i

denotes a stratum of dimension i. Remember that this given stratification satisfies
Whitney’s conditions A and B. The existence of such a stratification follows from
[16], Proposition 5.1.8.
We recall that bk denotes the volume of the unit ball in k-dimensional Euclidean

space. The k-volume of the k-dimensional unit sphere will be denoted by sk. Then
sk ¼ ðk þ 1Þbkþ1 and bkþ2 ¼ 2p

kþ2 bk.

In general, any Lipschitz–Killing measure on S is a stratified measure which is
continuous on each stratum. That means that for each stratum X i there are mea-
surable functions lj

i such that given a Borel subset U HS, we have

LiðS;UÞ ¼
X
X j

ð
UVX j

l
j
i d volj:

According to [4], Examples 5.3., these functions are given by:

l
j
i ðxÞ :¼

1

sn�i�1

ð
S n�j�1

aðx; veÞsj�iðIIx; ve
Þ dve; j ¼ 0; . . . ; i: ð6Þ

Here Sn�j�1 denotes the set of unit normal vectors at some stratum of dimension j

and aðx; veÞ is the normal Morse index at x of the height function hve
ðyÞ ¼ hy; vei.

3.2 Scalar curvature measure on Xm.

Proposition 3.1. Let U HX m be a Borel measurable set. Then

scalðS;UÞ ¼
ð
U

sðxÞ dvol

where s is the usual scalar curvature function (recall that X m is smooth near each of its

points).

Proof. Classical, see [24]. r

This proposition is the motivation for our definition of scalar curvature measure
for definable sets.

3.3 Scalar curvature measure on XmC1. We suppose in this subsection that we are
given an ðm � 1Þ-stratum X m�1 lying on the boundary of the m-strata X m

1 ;X m
2 ; . . . ;

X m
k .
Given any point x of the stratum X m�1, the normal section ðTxX

m�1Þ? VS is
(locally) a one-dimensional set consisting of k curves. Since these curves are definable,
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they have well-defined directions w1ðxÞ; . . . ;wkðxÞ. Considered as functions of x,
w1; . . . ;wk are definable and consequently d volm�1-almost everywhere di¤erentiable.
First it is easy to see that for each normal vector ve, aðx; veÞ equals 1 minus the

number of vectors among w1; . . . ;wk forming an angle bigger than
p
2 with ve. From

this we get by an easy integration

ð
S n�mþ1

aðx; veÞve dve ¼
sn�mþ2
2p

Xk

j¼1
wj:

We recall that IIwj
denotes the second fundamental form of X m�1 in direction wj. If

we denote by II the vector valued second fundamental form of X m�1, we have by
equation (6):

lm�1
m�2 ðxÞ ¼

1

sn�mþ2

ð
S n�mþ1

aðx; veÞ trðIIx; ve
Þ dve

¼ 1

sn�mþ2

ð
S n�mþ1

aðx; veÞ dve; tr II

� 	

¼ 1

2p

Xk

j¼1
wj; tr II

* +

¼ 1

2p

Xk

j¼1
tr IIwj

:

By definition, scalðS;�Þ equals 4pLm�2ðS;�Þ which immediately yields

Proposition 3.2. Let U HX m�1 be a Borel measurable set. Then

scalðS;UÞ ¼ 2

ð
U

Xk

j¼1
tr IIwj

dvolm�1:

3.4 Scalar curvature measure on XmC2. Let x be a point of a codimension 2-stratum.
By equation (6) we get

lm�2
m�2 ðxÞ ¼

1

sn�mþ2

ð
S n�mþ2

aðx; veÞ dve:

Since a only depends on the normal section, the right-hand side is nothing else than
the Lipschitz–Killing curvature L0ððTxX

m�2Þ? VS; fxgÞ of the two-dimensional nor-
mal section. We will evaluate this expression in the following subsections.
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3.5 Some propositions in the two-dimensional case. Before returning to strata of di-
mension m � 2, we need some propositions about two-dimensional definable sets.

Lemma 3.3. Let M HSn�1 be a one-dimensional definable subset of the ðn � 1Þ-
dimensional unit sphere. Then

ð
S n�1

wðBrðxÞVMÞ dx ¼ aðrÞwðMÞ þ bðrÞlðMÞ:

Here, BrðxÞ denotes the geodesic ball of radius r around x, aðrÞ its volume, bðrÞ the

volume of an r-tube around a big circle divided by 2p and lðMÞ the length of M.

Proof. This follows from easy approximation arguments. r

Proposition 3.4. Let M be a compact two-dimensional definable set, and P A M. Then

the limit aðM;PÞ :¼ lims!0
lðBsðPÞÞ

s
exists and the following equation holds:

L0ðM; fPgÞ ¼ 1

2
þ wlok

2
� a

2p
:

Here, wlok ¼ wðM;MnPÞ denotes the local Euler characteristic in P (see [2], Section

11.2), and l the length of a one-dimensional set.

Proof. Choose some Whitney stratification with P as a 0-stratum. Since both sides
of the equation are Euler additive, it su‰ces to show the statement for each stra-
tum separately. This is trivial for 1-strata ðwlok ¼ 0, a ¼ 0, L0 ¼ 1

2Þ. So we may as-
sume that M is a 2-stratum satisfying near P Whitney’s conditions. Then bðP; vÞ ¼
limy!0 limd!0 by; dðP; vÞ ¼ limy!0 limd!0 b̂by; dðP; vÞ almost everywhere. In order to cal-
culate L0ðM; fPgÞ we do the same steps as in the preceding subsections and find

L0ðM; fPgÞ ¼ 1

sn�1

ð
S n�1

bðP; vÞ dv

¼ 1

sn�1

ð
S n�1

lim
y!0

lim
d!0

by; dðP; vÞ dv

¼ 1

sn�1

ð
S n�1

lim
y!0

lim
d!0

b̂by; dðP; vÞ dv

¼ð�Þ 1

sn�1
lim
y!0

lim
d!0

ð
S n�1

b̂by; dðP; vÞ dv

¼ 1� 1

sn�1
lim
y!0

lim
d!0

aðrÞwðSs VMÞ þ bðrÞ lðSs VMÞ
s

� �
:

To simplify things, we have put r :¼ p
2 � y and s :¼ d

cos y. Equation ð�Þ follows from
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Lebesgue’s Convergence Theorem (remark that b is a definable and hence integrable
function). Furthermore, we have used Lemma 3.3. The existence of b almost every-
where combined with the convergence theorem yields the existence of the angle a. We
therefore have

L0ðM; fPgÞ ¼ 1� 1

sn�1
lim
y!0

ðaðrÞð1� wlokðM;PÞÞ þ bðrÞaðM;PÞÞ

¼ 1�
a p

2

� �
sn�1

ð1� wlokðM;PÞÞ �
b p

2

� �
sn�1

aðM;PÞ

¼ 1

2
þ wlokðM;PÞ

2
� a

2p
: r

In [17] it is proven that the following limit exists:

yðM;PÞ :¼ lim
r!0

vol2ðBrðPÞVMÞ
b2r2

:

It is called the density in P.

Proposition 3.5. For a two-dimensional definable set M and P A M, angle and density

are equal up to some factor:

yðM;PÞ ¼ aðM;PÞ
2p

:

Proof. We can use a Whitney stratification of M. It su‰ces to show the above for-
mula for 2-strata. This is a standard proof using Whitney’s condition B and the co-
area formula. r

Remark. Curvature measures for two-dimensional semi-algebraic sets are also defined
in a seemingly di¤erent, but in fact equivalent way (up to a constant factor 2p) in [5].
The equivalence with the definition of [16] follows from Lemma 3.2, Subsection 3.3
and Proposition 3.5.

3.6 Comparison between inner and outer density. We have defined scalar curvature
measure using integral geometry. The calculation yields terms of the outer geometry
of the set. One such term is the density of the set. We are going to show that the
density can already be computed using only the inner geometry of the set. This obser-
vation will be very important for the proof of our main theorem.

Proposition 3.6. Let S be a connected definable set of dimension m and P A S. Then

lim
r!0

volBiðP; rÞ
bmrm

¼ lim
r!0

volBeðP; rÞ
bmrm

:

Both limits exist.
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Proof. We can assume without restriction that P ¼ 0. We use a Whitney stratification
of S. Take the unit vector field vðxÞ ¼ �grad deð�; 0ÞðxÞ of Rnnf0g. From Whitney’s
condition B we deduce that for x A X j nf0g the angle between vðxÞ and TxX

j will be
small if x is near 0. We project v on each stratum of S and integrate with respect to
this vector field. The integral curves can leave a given stratum but will then be in a
stratum of smaller dimension. By the above remark about angles, the curve will be in
finite time at P. The length of the curve is trivially bigger than the Euclidean distance
between Q and 0. On the other hand, this length will be smaller than ð1þ eðrÞÞ times
the Euclidean distance between Q and 0, where eðrÞ is a function tending to 0 for
r ! 0. It follows that

Be P;
r

1þ eðrÞ

� �
JBiðP; rÞJBeðP; rÞ:

We divide each term by bmrm. Then the limits of the outer terms exist for r ! 0 and
are equal to the outer density (see [17]). Consequently the limit of the inner term exists
which proves the proposition. r

3.7 The normal section formula.

Theorem 3.7. Let S be a compact definable Whitney-stratified set and X i a stratum of

dimension i. Then at d voli-almost each point P A X i the density of S at P equals the

density of the normal section of S at P:

yðS;PÞ ¼ yððTPX
iÞ? VS;PÞ:

Proof. We proceed in three steps. From elementary measure theory we will verify
the statement for ‘‘thick’’ sets. Afterwards we will see that the formula holds true if
X i is a flat stratum. The generalization to arbitrary strata is done with the help of a
bi-Lipschitz map in the third step.

Step 1. We suppose that S is a thick set in Rn (this means S equals the closure of its
interior) and that the stratum X i is flat, i.e. X i HRi. We write Rn as the orthogonal
sum Rn ¼ Ri lRn�i.
It su‰ces to prove that

ð
Q

yðS;PÞ dP ¼
ð
Q

yðS V ðTPX
iÞ?;PÞ dP

for each box Q ¼ ða1 � e1; a1 þ e1Þ � � � � � ðai � ei; ai þ eiÞHRi. We denote for each
0 < r < minfe1; . . . ; eig with Q�ðrÞ the box

Q�ðrÞ ¼ ða1 � e1 þ r; a1 þ e1 � rÞ � � � � � ðai � ei þ r; ai þ ei � rÞ
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and by QþðrÞ the box

QþðrÞ ¼ ða1 � e1 � r; a1 þ e1 þ rÞ � � � � � ðai � ei � r; ai þ ei þ rÞ:

Then Q�ðrÞHQHQþðrÞ.
Let r > 0 be a fixed real number. Then we have for each y ¼ ðy0; y1Þ A

Q�ðrÞ � Rn�i with j y1jc r the following equality (use Pythagoras):

ð
Q

1Bðx; rÞVSðyÞ dx ¼ 1SðyÞbi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip
r2 � jy1j2

� �i
:

In the following calculations, we can use dominated convergence, which follows
either from the fact that the considered functions are definable or from the fact that
densities of thick sets are bounded by 1. Hence we can apply the theorems of Fubini
and Lebesgue. We use spherical coordinates for Rn�i and write y1 ¼ rf with r A ½0;yÞ
and f A Sn�i�1. Then dy ¼ rn�i�1 dy0 dr df and we see that

1

rn

ð
Q

volBðx; rÞVS dx ¼ 1

rn

ð
Q

ð
Rn

1Bðx; rÞVSðyÞ dy dx

¼ 1

rn

ð
Rn

ð
Q

1Bðx; rÞVSðyÞ dx dy

d
1

rn

ð
Q�ðrÞ�Bn�iðrÞ

ð
Q

1Bðx; rÞVSðyÞ dx dy

¼ 1

rn

ð
Q�ðrÞ�Bn�iðrÞ

1SðyÞbi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip
r2 � jy1j2

� �i
dy

¼ 1

rn

ð
Q�ðrÞ

ð
ð0; rÞ

ð
S n�i�1

1Sðy0; rfÞbi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � r2

p� �i
� rn�i�1 df dr dy0

¼
ð
Q

1

rn
1Q�ðrÞðy0Þ

ð
ð0; rÞ

ð
S n�i�1

1Sðy0; rfÞbi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � r2

p� �i
� rn�i�1 df dr dy0:

Now, we let r tend to 0. We can write the limit on both sides under the integral
sign, since we can use dominated convergence (this follows from the fact that the
volume of open balls can be trivially bounded from above). By definition of the
density, we have

lim
r!0

1

rn
volBðx; rÞ ¼ bnyðS; xÞ:
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We set for each y0 A Q

Iðy0Þ :¼ lim
r!0

1

rn
1Q�ðrÞðy0Þ

ð
ð0; rÞ

ð
S n�i�1

1Sðy0; rfÞbi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � r2

p� �i
rn�i�1 df dr

and Nðy0Þ :¼ ðTy0X
iÞ?. With this notation we have

Iðy0Þ ¼ lim
r!0

1

rn
1Q�ðrÞðy0Þ

ð r

0

ð
S n�i�1

1Sðy0; rfÞbi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � r2

p� �i
rn�i�1 df dr

¼ lim
r!0

1

rn

ð r

0

bi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � r2

p� �i
rn�i�1

ð
S n�i�1

1Sðy0; rfÞ df
� 


dr

¼ lim
r!0

1

rn

ð r

0

bi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � r2

p� �i
volNðy0ÞVS VSðrÞ

� 

dr:

Set

aðrÞ :¼ bi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � r2

p� �i
bðrÞ :¼ volNðy0ÞVS VSðrÞ

BðrÞ :¼
ð r

0

bðsÞ ds:

From the co-area formula we get BðrÞ ¼ volNðy0ÞVS VBðrÞ and consequently

lim
r!0

BðrÞ
bn�i rn�i

¼ yðNðy0ÞVS; y0Þ:

It is easy to see that

ð r

0

a 0ðrÞrn�i d r ¼ �rn

ð p=2
0

biiðcos aÞ i�1ðsin aÞn�iþ1
da ¼ �Cn; ir

n

with some positive constant Cn; i.
From partial integration and from the inequality a 0ðrÞ < 0 we conclude that for

given e > 0 and su‰ciently small r > 0 we have:

ð r

0

aðrÞbðrÞ dr ¼ �
ð r

0

a 0ðrÞBðrÞ dr

d�
ð r

0

a 0ðrÞbn�i r
n�iðyðNðy0ÞVS; y0Þ � eÞ dr

¼ Cn; ibn�iðyðNðy0ÞVS; y0Þ � eÞrn:
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It follows Iðy0ÞdCn; ibn�iyðNðy0ÞVS; y0Þ � e. Since this is true for arbitrary e > 0,
we see that Iðy0ÞdCn; ibn�iyðNðy0ÞVS; y0Þ. By Lebesgue’s Theorem we conclude
that ð

Q

bnyðS; xÞ dxd
ð
Q

Cn; ibn�iyðNðy0ÞVS; y0Þ dy0:

With similar computations we findð
Q

bnyðS; xÞ dxc
ð
Q

Cn; ibn�iyðNðy0ÞVS; y0Þ dy0

with the same constant Cn; i. Therefore,ð
Q

yðS; xÞ dx ¼ Cn; ibn�i

bn

ð
Q

yðNðy0ÞVS; y0Þ dy0:

With the help of an example, e.g. S ¼ Rn, we calculate Cn; i ¼ bn

bn�i
. This finishes Step 1

of the proof.

Step 2. Let us suppose now that SHRn is a compact definable set of dimension m

and X i a flat stratum. This means that there is a Euclidean space Ri embedded in Rn

such that X i HRi. Let P A X i be a point in the stratum and e > 0 be a fixed real
number.
Assertion: There is a neighborhood UP HRn of P and a decomposition of S VUP

in disjoint e-analytic pieces G1; . . . ;Gq such that the following conditions are satisfied
for each j ¼ 1; . . . ; q:

– There is an m-dimensional a‰ne subspace Ej of Rn that contains Ri, an open
definable subset Uj HEj and an analytic map fj : Uj 7! E?

j such that Gj can be
written as the graph of fj in Ej lE?

j ¼ Rn and such that kDufjkc e for each
u A Uj .

– S VUP and 6
j
Gj di¤er by a set of positive codimension.

Note that the important condition is the inclusion Ri HEj , the rest of the above
conditions is simply the fact that 6

j
Gj is a decomposition of S in e-analytic pieces.

We omit the proof, which is almost the same as the proof of the existence of the
decomposition in e-analytic pieces (see [17]). The only new information to use is
Whitney’s condition A which guarantees that all limit tangent spaces on the stratum
X i contain Ri.
Let 6

k
Y k be a Whitney stratification of Rn that is compatible with Ri, Ej,

j ¼ 1; . . . ; q as well as Uj, j ¼ 1; . . . ; q. It induces a stratification of the set Uj; this set
is thick in the m-dimensional space Ej (since it is the closure of the open set Uj).
Consider an i-dimensional stratum Y i which is contained in Ri and lies on the
boundary of Uj. By Step 1 (applied to Uj HEj) we have for almost each point Q A Y i

yðUj ;QÞ ¼ yðUj V ðRi
QÞ

?;QÞ:

Scalar curvature of definable Alexandrov spaces 51



If Y i is a stratum in Ri which does not lie on the boundary of Uj, the above
equation trivially holds, since then Q is not on the boundary of Uj and both the
density of Uj at Q as well as the density of the normal section at Q are 0.
As the finite union of zero sets is a zero set, we have for almost each point

Q A X i VUP the equations ( j ¼ 1; . . . ; q):

yðUj ;QÞ ¼ yðUj V ðRi
QÞ

?;QÞ:

In the following, we write A@B if there is a function c : ð0;yÞ 7! ð1;yÞ such that
lime!0 cðeÞ ¼ 1 and cðeÞ�1AcBccðeÞA. By [17] each e-analytic piece Gj satisfies
the relation

yðUj;QÞ@ yðGj ;QÞ:

For each of the Gj the set ðRi
QÞ

? VGj is trivially an e-analytic piece in ðRi
QÞ

?. There-
fore we also have

yððRi
QÞ

? VUj;QÞ@ yððRi
QÞ

? VGj;QÞ:

We know that Sn6
j
Gj has dimension at most m � 1 (in particular, it is a zero

set with respect to m-volume). For almost each point Q A X i we therefore get that
ðS V ðRi

QÞ
?Þnð6

j
Gj V ðRi

QÞ
?Þ is a set of positive codimension, in particular a zero set

for ðm � iÞ-volume.
It follows for almost every point Q A X i VUP that

yðS;QÞ@ y
�
6
j

Gj;Q
�

¼
X

j

yðGj ;QÞ@
X

j

yðUj;QÞ ¼
X

j

yðUj V ðRi
QÞ

?;QÞ

@
X

j

yððRi
QÞ

? VGj; ðQÞÞ ¼ y
�
6
j

Gj V ðRi
QÞ

?;Q
�

¼ yðS V ðRi
QÞ

?;QÞ:

We rewrite this explicitly as

yðS;QÞ@ yðS V ðRi
QÞ

?;QÞ

for almost every point Q A X i VUP (with respect to i-dimensional volume).
To finish Step 2, we apply simple measure theoretic arguments to show that from

the last relation it follows that for almost every point we already have the equality
yðS;QÞ ¼ yðS V ðRi

QÞ
?;QÞ. Essential is that a countable union of zero sets is a zero

set and that X i is s-compact. The details are easy but technical and will not be given
here.
This finishes Step 2.

Step 3. Finally, let S be an arbitrary compact definable set and X i an arbitrary one of
its i-strata.
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Let e > 0 and P A X i be given. Let f : Ri IV 7! U HX i, ðx1; . . . ; xiÞ 7!
fðx1; . . . ; xiÞ be a coordinate system for a neighborhood of P in X i such that the
tangent vectors qf

qxj
form an orthonormal base in P. We choose a definable family of

di¤erentiably varying normal vector fields v1; . . . ; vn�i that form in each point Q of a
neighborhood of P an orthonormal base of the normal space ðTQX iÞ?.
We define a map H : V � Rn�i 7! Rn by

Hðx1; . . . ; xn�i; y1; . . . ; yiÞ ¼ fðx1; . . . ; xn�iÞ þ y1v1 þ y2v2 þ � � � þ yivi:

The di¤erential of H in ð0; . . . ; 0Þ with respect to the basis q
qx1

; . . . ; q
qxn�i

; q
qy1

; . . . ; q
qyi

on
and qf

qx1
; . . . ; qf

qxn�i
; v1; . . . ; vi

n o
is given by the identity.

Consequently there are su‰ciently small neighborhoods U1 of ð0; . . . ; 0Þ and U2 of
P in Rn respectively, such that H is a bi-Lipschitz map between U1 and U2 with
factor 1þ e. The pre-image S 0 of U2 VS under H is a definable set. The stratum X i

transforms under H in a flat stratum Ri VU1 and we can apply Step 2. Therefore, for
almost each point Q A Ri VU1 the density of the normal section ðTQRiÞ? VS 0 at Q

equals the density of the set S 0 at Q:

yððTQRiÞ? VS 0;QÞ ¼ yðS 0;QÞ:

Under H, the normal sections of S 0 along the stratum Ri VU1 transform in the
normal sections of S along X i. Furthermore, we know that H is bi-Lipschitz with
factor 1þ e. It follows that

yðS 0;Q 0Þ@ yðS;HðQ 0ÞÞ

and

yððTQ 0RiÞ? VS 0;Q 0Þ@ yððTHðQ 0ÞX
iÞ? VS;HðQ 0ÞÞ:

For almost each point Q in X i VU2 we thus have

yðS;QÞ@ yððTQX iÞ? VS;QÞ:

To sum up what we have proven so far: For given e > 0 there is for each point
P A X i a neighborhood UP, where the density of S and the density of the normal
section of S di¤er almost everywhere by at most a factor cðeÞ, where cðeÞ ! 1 for
e ! 0.
From simple measure-theoretic arguments we conclude that the density of S and

the density of the normal section of S agree in almost each point of X i. This finishes
Step 3 and the proof of Theorem 3.7. r
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Remark. For Lipschitz stratified sets (see [19]), the statement of Theorem 3.7 holds
not only almost everywhere, but for each point. This follows from simple arguments
(integration of vector fields and a product formula for densities). In the category of
globally subanalytic sets, the existence of Lipschitz stratifications was shown by
Parusiński. In general, the question of existence of Lipschitz stratifications is not
solved. For our Main Theorem, it su‰ces to have this weaker statement, since we
are only interested in measures. However, we conjecture that for each Verdier strati-
fied set the normal section formula holds true for each point.

Summing up what we have shown in this section, we get the following

Proof of Theorem 1.2. We have to show the following formula:

scalðS;UÞ ¼
X
X m

ð
UVX m

sðxÞ dvolmðxÞ

þ 2
X
X m�1

ð
UVX m�1

Xk

i¼1
tr IIwi

 !
dvolm�1ðxÞ

þ 4p
X
X m�2

ð
UVX m�2

1

2
þ ð�1Þm wlokðS; xÞ

2
� ymðS; xÞ

� �
dvolm�2ðxÞ:

The third term follows from Subsections 3.4 and 3.5 and Theorem 3.7. Note that
this formula remains true even if X m�2 is a stratum which does not lie on the bound-
ary of an m-stratum. If, in this case, there are exactly i strata of dimension m � 1 with
X m�2 on their boundaries, then we get from Euler additivity

wlok ¼ ð�1Þmð1� iÞ; Lm�2ðS;�ÞjX m�2 ¼ 1� i

2

� �
:volðS;�ÞjX m�2

The second term follows from the calculations in Subsection 3.3, it also remains
the same for strata not lying on the boundary of m-strata, because in this case k ¼ 0
and scaljX m�1 1 0.
The first term follows from Subsection 3.2. There are no other terms, since Lm�2

and therefore scal vanish identically on strata of dimension < m � 2. r
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[9] G. Comte, Densité et images polaires en géométrie sous-analytiques. Thèse de doctorat,
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[17] K. Kurdyka, G. Raby, Densité des ensembles sous-analytiques. Ann. Inst. Fourier (Gre-

noble) 39 (1989), 753–771. MR 90k:32026 Zbl 673.32015
[18] T. L. Loi, Verdier and strict Thom stratifications in o-minimal structures. Illinois J. Math.

42 (1998), 347–356. MR 99c:32058 Zbl 909.32008
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