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Abstract. Let C be a smooth real plane curve. Let c be its degree and g its genus. We assume
that C has at least g real branches. Let d be a nonzero natural integer strictly less than c. Let e
be a partition of cd of length g. Let n be the number of all real plane curves of degree d that are
tangent to g real branches of C with orders of tangency e1; . . . ; eg. We show that n is finite and
we determine n explicitly.
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1 Introduction

Enumerative real algebraic geometry has known a growing attention throughout the
last decade or so (see [10] for a survey). In his work on intersection theory, Fulton
attracted attention to the number of real solutions of enumerative problems in alge-
braic geometry [1, p 55]. As an example, he explicitly posed the question of how
many of the 3264 conics tangent to five given real conics can be real. He proved that
all of them can be real (unpublished). Independently, Ronga, Tognoli and Vust also
proved this fact [7]. Sottile proved analogous results [9]. Fulton’s question naturally
leads to the more general question of how many real curves of degree d are tangent to
a certain number of real branches of a given real plane curve of degree c.

In this paper we answer the above question for any smooth real plane curve of any
degree c that has many real branches. Let us explain what we mean by a real plane
curve having many real branches. By Harnack’s Inequality [2], a smooth real plane
curve C of degree c has at most gþ 1 real branches, where g is the genus of C, i.e.,
g ¼ 1

2 ðc� 1Þðc� 2Þ. Harnack also showed that, for any natural number c, there is
a smooth real plane curve of degree c having gþ 1 real branches. Such real plane
curves are also known as M-curves. They are subject to intensive study ever since
Hilbert included them in his 16th problem. We say that a smooth real plane curve has
many real branches if its genus g is at least 1 and if it has at least g real branches. To



put it otherwise, a smooth real plane curve has many real branches if it is either a
nonrational M-curve or a nonrational ðM � 1Þ-curve.

Before we can state one of our main results, we need to fix some terminology. Let n
be a natural number. A partition of n is an element e of Nl, for some natural integer
l, such that

n ¼ e1 þ � � � þ el and e1 d � � �d el d 1:

The integer l is called the length of the partition. Let e be a partition of n of length l.
Let k be a natural number. We say that k is a member of e if there is an i A f1; . . . ; lg
with ei ¼ k. The partition e of n is even if all its members are even. If k is a member
of e, then the multiplicity of k in e is the number of indices i A f1; . . . ; lg such that
ei ¼ k. A multiplicity of e is a multiplicity of a member of e.

Let C be a smooth real algebraic curve in P2 having many real branches. Let c be
its degree and let g be its genus. Let d be a nonzero natural integer. Let e be a parti-
tion of cd of length g. A real algebraic curve D in P2 of degree d is said to have tan-

gency e to g real branches of C if D is tangent to g real branches of C with orders of
tangency e1; . . . ; eg.

Theorem 1.1. Let C be a smooth real algebraic curve in P2 having many real branches.
Let c be its degree and let g be its genus. Let e be a partition of cðc� 1Þ of length g.
Let n be the number of real plane curves of degree c� 1 having tangency e to g real

branches of C. Then, n is finite. Moreover, n0 0 if and only if e is an even partition. In
that case,

n ¼

g!

m1! . . .mr!
�
Yg
i¼1

ei if C is an ðM � 1Þ-curve; and

ðgþ 1Þ!
m1! . . .mr!

�
Yg
i¼1

ei if C is an M-curve;

8>>>><
>>>>:

where m1; . . . ;mr are the multiplicities of e.

In Section 4 we show a similar statement for the number of real curves of degree
c� 2 that are tangent to g real branches of a given real plane curve C of degree c

(cf. Theorem 4.3). By Bezout, there are no real curves of degree strictly less than c� 2
that are tangent to g real branches of a given real plane curve C of degree c.

Example 1.2. Let C be a smooth real cubic curve in P2. Since the degree of C is equal
to 3, the genus of C is equal to 1. Moreover, CðRÞ0q. Hence, C necessarily has
many real branches. Let n be the number of real conics tangent to one real branch
of C with order of tangency equal to 6. Then, according to Theorem 1.1, n ¼ 6 if C
has only one real branch, and n ¼ 12 if C has exactly 2 real branches. This statement
is the well-known fact that a real elliptic curve has either 6 or 12 real points whose
order is a divisor of 6 [8].
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Example 1.3. Let C be a smooth real quartic curve in P2. Since the degree of C is
equal to 4, the genus of C is equal to 3. Therefore, in order to apply Theorem 1.1, we
assume that C has at least 3 real branches. The partitions of 4 � 3 ¼ 12 of length 3 and
in even numbers are ð8; 2; 2Þ, ð6; 4; 2Þ or ð4; 4; 4Þ. Let e be one of these partitions. Let
n be the number of real cubics tangent to 3 real branches of C with orders of tangency
e1; e2; e3. When one applies Theorem 1.1 to the current situation one obtains the fol-
lowing values for n. If C has exactly 3 real branches then

n ¼
96 if e ¼ ð8; 2; 2Þ;
288 if e ¼ ð6; 4; 2Þ;
64 if e ¼ ð4; 4; 4Þ:

8><
>:

If C has exactly 4 real branches then

n ¼
384 if e ¼ ð8; 2; 2Þ;
1152 if e ¼ ð6; 4; 2Þ;
256 if e ¼ ð4; 4; 4Þ:

8><
>:

The cases where e ¼ ð4; 4; 4Þ have already been shown in [4]. According to my
knowledge, the other cases are new.

We refer to Section 4 for examples of higher degree (see Remark 4.1 and Example
4.2).

Theorem 1.1 is an application of Theorem 2.1 below that may be of independent
interest. Section 2 is devoted to the proof of Theorem 2.1. In Section 3, we give appli-
cations to enumerative problems for real curves in any projective space. In Section 4,
we specialize to plane curves; we prove Theorem 1.1 and formulate and prove The-
orem 4.3. We also give several examples.

2 Divisor classes on real algebraic curves

Let C be a smooth geometrically integral proper real algebraic curve. A real branch

of C is a connected component of the set CðRÞ of real points of C. By Harnack’s
Inequality [2], C has at most gþ 1 real branches, where g is the genus of C. We will
say that C has many real branches if gd 1 and the number of real branches of C is at
least g.

Theorem 2.1. Let C be a smooth geometrically integral proper real algebraic curve

having many real branches. Let g be the genus of C. Let B1; . . . ;Bg be mutually distinct

real branches of C and put

B ¼
Yg
i¼1

Bi:
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Let e1; . . . ; eg be nonzero natural integers, and let

j : B ! PicðCÞ

be the map defined by jðPÞ ¼ clð
Pg

i¼1 eiPiÞ, where cl denotes the divisor class. Then, j
is a topological covering of its image of degree

Qg
i¼1 ei.

Proof. Since B is connected, there is a connected component X of PicðCÞ such that
jðBÞJX . Since B and X are of the same dimension, it su‰ces to show that the map
j is unramified, in order to show that j is a topological covering map.

Let P A B and let v be a tangent vector to B at P. Suppose that the tangent map
Tj of j maps v to 0. We have to show that v is equal to 0, in order to show that j is
unramified.

Since B ¼
Q

Bi, P ¼ ðP1; . . . ;PgÞ and v ¼ ðv1; . . . ; vgÞ, where Pi A Bi and vi is a
tangent vector to Bi at Pi. Let T ¼ SpecðR½e�Þ, where R½e� is the R-algebra of dual
numbers [3]. Each pair ðPi; viÞ determines a morphism

fi : T ! C 0 ¼ C �SpecðRÞ T ;

the image of each fi is a relative Cartier divisor Di of C
0=T [6]. If xi is a local equa-

tion for Pi on C, then xi � lie is a local equation for Di on C 0, for some li A R. We
have to show that li ¼ 0 for i ¼ 1; . . . ; g, in order to show that v ¼ 0.

Recall [3] that one has a short exact sequence

0 ! H 1ðC;OCÞ ! PicðC 0Þ ! PicðCÞ ! 0:

In fact, this short exact sequence is naturally split since C can be identified with the
special fiber of C 0=T . Let D be the relative Cartier divisor

P
eiDi on C 0=T . Con-

sider the class clðDÞ of the divisor D in PicðC 0Þ. The hypothesis that Tj maps v

onto 0 implies that clðDÞ is contained in the image of the natural section of the map
PicðC 0Þ ! PicðCÞ. Hence, the natural projection from PicðC 0Þ onto H 1ðC;OCÞ maps
clðDÞ onto 0. Now, let us compute the image of clðDÞ by this natural projection.

Recall [3] that H 1ðC;OCÞ can be identified with the cokernel R of the natural map

K ! 0
Q AC

K=OQ;

where OQ is the local ring of C at Q and K is the function field of C. Since

ðxi � lieÞei ¼ xei
i � eilix

ei�1
i e ¼ xei

i 1� eili
1

xi
e

� �
;

the image of clðDÞ in H 1ðC;OCÞ is equal to the element r ¼ ðrQÞ of R defined by

rQ ¼ �eili
1

xi
if Q ¼ Pi;

0 otherwise

8<
:
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Take some i A f1; . . . ; gg and let us show that li ¼ 0. By the Riemann–Roch
Theorem, there is a nonzero di¤erential form o on C such that o has a zero at the
points Pj, j ¼ 1; . . . ; g, j0 i. Since the divisor of o is of even degree on each real
branch of C, o has at least 2 zeros on each of the real branches Bj, j ¼ 1; . . . ; g, j0 i.
Since o has exactly 2ðg� 1Þ zeros, it follows that o does not vanish on Bi. In par-
ticular, o does not vanish at Pi. Let t be the trace map from H 1ðC;WCÞ into R [3].
Since r ¼ 0 in R, one has tðroÞ ¼ 0. From the definition of the trace map, it follows
that the residue of �eili

1
xi
o vanishes at Pi. Therefore, li ¼ 0. This proves that j is

unramified.
In order to finish the proof, we show the statement concerning the topological

degree of j. Choose a base point O A B and write O ¼ ðO1; . . . ;OgÞ. Let

c : B ! PicðCÞ

be the map defined by letting cðPÞ be the divisor class clð
P

Pi �OiÞ. By [5, Theorem
3.1], c is a homeomorphism onto the neutral component PicðCÞ0 of PicðCÞ. Let t be
the translation by �clð

P
eiOiÞ on PicðCÞ. Clearly, t maps the image X of j homeo-

morphically onto PicðCÞ0. In order to show that the degree of j is equal to
Q

ei, we
show that the self-map t � j � c�1 of PicðCÞ0 has degree

Q
ei.

Each factor Bi of B gives rise to an element bi of the first homology group
H1ðB;ZÞ. Clearly, b1; . . . ; bg is a basis of H1ðB;ZÞ. Then, c�ðb1Þ; . . . ;c�ðbgÞ is a

basis of H1ðPicðCÞ0;ZÞ. Since the multiplication-by-ei map on PicðCÞ0 induces the
multiplication-by-ei map on H1ðPicðCÞ0;ZÞ,

ðt � j � c�1Þ�ðc�ðbiÞÞ ¼ ei � c�ðbiÞ:

It follows that t � j � c�1 is of degree
Q

ei. r

Corollary 2.2. Let C be a smooth geometrically integral proper real algebraic curve

having many real branches. Let g be the genus of C. Let B1; . . . ;Bg be mutually distinct

real branches of C. Let S be a complete linear system on C of degree e. Let ei be the

degree mod 2 of S on Bi, for i ¼ 1; . . . ; g. Let e1; . . . ; eg be nonzero natural integers

satisfying

Xg

i¼1

ei ¼ e:

Let n be the number of divisors D of the form
Pg

i¼1 eiPi, for some Pi A Bi, that belong to

S. Then, n is finite. Moreover, n0 0 if and only if

ei 1 ei ðmod 2Þ for i ¼ 1; . . . ; g:

In that case, n ¼
Qg

i¼1 ei.

Proof. Let B ¼
Q

Bi, as before, and let j : B ! PicðCÞ be defined by jðPÞ ¼
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clð
P

eiPiÞ. Let X be the j-image of B. Suppose there is an integer i, 1c ic g, such
that ei 2 ei ðmod2Þ. Then, clðSÞ does not belong to X . Hence, there is no divisor D
in S of the form

P
eiPi for some Pi A Bi. In that case, n ¼ 0. Assume, now, that

ei � ei ðmod2Þ for all i ¼ 1; . . . ; g. Then, clðSÞ belongs to X . According to Theorem
2.1, the number of P A B such that jðPÞ ¼ clðSÞ is equal to

Q
ei. It follows that the

number of divisors D in S of the form
Pg

i¼1 eiPi, for some Pi A Bi, is equal to
Qg

i¼1 ei.
Therefore, n ¼

Qg
i¼1 ei. r

3 Enumerative problems for real space curves

Let C be a smooth geometrically integral real algebraic curve in Pn, where nd 2.
Let d be a nonzero natural number. We say that the linear system of all real hyper-
surfaces of degree d in Pn cuts out a complete linear system on C if the restriction
map

H 0ðPn;OðdÞÞ ! H 0ðC;OðdÞÞ

is an isomorphism.
Let B be a real branch of C. Then, B is a compact connected smooth real analytic

curve in the real projective space PnðRÞ. Since the fundamental group of PnðRÞ is
isomorphic to Z=2Z, two cases can occur: B is contractible in PnðRÞ or B is not.
In the latter case, we say that B is a pseudo-line of C. In the former case, B is an oval

of C.

Corollary 3.1. Let nd 2 be an integer. Let C be a smooth geometrically integral real

algebraic curve in Pn. Let c be its degree and let g be its genus. Suppose that C has

many real branches and let B1; . . . ;Bg be mutually distinct real branches of C. Let d be

a nonzero natural integer such that the linear system of all real hypersurfaces of degree

d in Pn cuts out a complete linear system on C. Let e be a partition of cd of length g.
Let n be the number of real hypersurfaces D in Pn of degree d such that D is tangent to

the real branches B1; . . . ;Bg of C with order of tangency e1; . . . ; eg, respectively. Then,
n is finite. Moreover, n0 0 if and only if one of the following conditions is satisfied:

1. d is even and e is an even partition, or

2. d is odd and, for all i ¼ 1; . . . ; g, Bi is an oval of C if and only if ei is even.

Furthermore, if n0 0 then n ¼
Qg

i¼1 ei.

Proof. Let S be the linear system on C cut out by all real hypersurfaces of Pn of
degree d. By hypothesis, S is complete. Moreover, n is equal to the number of divi-
sors D in S of the form

P
eiPi, for some Pi A Bi. We determine the latter number.

The degree of S is equal to e ¼ cd. Let ei be the degree mod 2 of S on Bi. If d
is even then ei 1 0 ðmod2Þ for i ¼ 1; . . . ; g. If d is odd then ei 1 0 ðmod 2Þ if and only
if Bi is an oval of C. By Corollary 2.2, the number of divisors D in S of the formP

eiPi, for some Pi A Bi, is finite and is nonzero if and only if condition 1 or 2 is
satisfied. Moreover, in that case, this number is equal to

Q
ei. r
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Corollary 3.1 is a generalization of [4, Theorem 3.1], where we have counted only
hypersurfaces tangent to g real branches with one and the same order of tangency to
each of these branches.

As immediate consequences of Corollary 3.1, we mention the following two state-
ments.

Corollary 3.2. Let nd 2 be an integer. Let C be a smooth geometrically integral real

algebraic curve in Pn having many real branches. Let c be its degree and let g be its

genus. Let d be a nonzero even natural integer such that the linear system of all real

hypersurfaces of degree d in Pn cuts out a complete linear system on C. Let e be a

partition of cd of length g. Let n be the number of real hypersurfaces in Pn of degree d

having tangency e to g real branches of C. Then, n is finite. Moreover, n0 0 if and only

if e is an even partition. In that case,

n ¼

g!

m1! . . .mr!
�
Yg
i¼1

ei if C is an ðM � 1Þ-curve; and

ðgþ 1Þ!
m1! . . .mr!

�
Yg
i¼1

ei if C is an M-curve;

8>>>><
>>>>:

where m1; . . . ;mr are the multiplicities of e.

Corollary 3.3. Let nd 2 be an integer. Let C be a smooth geometrically integral real

algebraic curve in Pn having many real branches. Let c be its degree and let g be its

genus. Let d be the number of pseudo-lines of C. Let d be an odd natural integer such

that the linear system of all real hypersurfaces of degree d in Pn cuts out a complete

linear system on C. Let e be a partition of cd of length g. Let n be the number of real

hypersurfaces in Pn of degree d having tangency e to g real branches of C. Then, n is

finite. Moreover, n0 0 if and only if the number of odd members of e is equal to d. In
that case,

n ¼

d! � ðg� dÞ!
m1! . . .mr!

�
Yg
i¼1

ei if C is an ðM � 1Þ-curve; and

d! � ðgþ 1� dÞ!
m1! . . .mr!

�
Yg
i¼1

ei if C is an M-curve:

8>>>><
>>>>:

where, as before, m1; . . . ;mr are the multiplicities of e.

4 Enumerative problems for real plane curves

Proof of Theorem 1.1. Let d ¼ c� 1. Let us show that the linear system of all real
curves of degree d in P2 cuts out a complete linear system on C. The restriction map

H 0ðP2;OðdÞÞ ! H 0ðC;OðdÞÞ
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is injective since d < c and C is irreducible. The dimension of H 0ðP2;OðdÞÞ is equal
to 1

2 ðd þ 2Þðd þ 1Þ. We need to show that H 0ðC;OðdÞÞ is of the same dimension. The
degree of OðdÞ on C is equal to cd ¼ 2gþ 2ðc� 1Þ. In particular, its degree is strictly
greater than 2g� 2. Hence, OðdÞ is nonspecial on C. By the Riemann–Roch Theo-
rem,

dimH 0ðC;OðdÞÞ ¼ cd � gþ 1 ¼ 1
2ðd þ 2Þðd þ 1Þ ¼ dimH 0ðP2;OðdÞÞ:

It follows that the linear system of all real curves of degree d in P2 cuts out a com-
plete linear system on C.

Now, there are two cases to consider: the case d is even and the case d is odd. If d
is even then the statement of Theorem 1.1 follows from Corollary 3.2. If d is odd then
c is even and the number d of pseudo-lines of C is equal to 0. Therefore, if d is odd,
the statement of Theorem 1.1 follows from Corollary 3.3. r

Remark 4.1. Let C, c and g be as in Theorem 1.1. Observe that there are many par-
titions e of cðc� 1Þ to which Theorem 1.1 applies, i.e. partitions e of cðc� 1Þ in even
numbers and of length g. Indeed, there are as many as the number of partitions of the
integer c� 1, if cd 4. Let us show this fact.

Let d be any partition of c� 1. Let k be its length. Since g ¼ 1
2 ðc� 1Þðc� 2Þ, the

number k satisfies

kc c� 1 ¼ 2g

c� 2
c g:

Define e A Ng by ei ¼ 2di þ 2 if ic k, and ei ¼ 2 if i > k. Then,

e1 þ � � � þ eg ¼ 2ðc� 1Þ þ 2k þ 2ðg� kÞ ¼ cðc� 1Þ:

It follows that e is a partition of cðc� 1Þ in even numbers and of length g.
Conversely, any partition of cðc� 1Þ in even numbers and of length g arises in this

way. Therefore, the number of partitions e of cðc� 1Þ in even numbers and of length
g is equal to the number of partitions of the integer c� 1, if cd 4.

Example 4.2. Let C be a smooth real quintic curve in P2 having many real branches.
Here, c ¼ 5 and g ¼ 6 and C has at least 6 real branches. There are 5 partitions of
c� 1 ¼ 4:

ð1; 1; 1; 1Þ; ð2; 1; 1Þ; ð2; 2Þ; ð3; 1Þ; ð4Þ:

The corresponding partitions of cðc� 1Þ ¼ 20 in even numbers and of length 6 are

ð4; 4; 4; 4; 2; 2Þ; ð6; 4; 4; 2; 2; 2Þ; ð6; 6; 2; 2; 2; 2Þ;

ð8; 4; 2; 2; 2; 2Þ; ð10; 2; 2; 2; 2; 2Þ:
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Then, for example, Theorem 1.1 states that there are exactly 7680 real quartics tan-
gent to 6 real branches of C with orders of tangency 4; 4; 4; 4; 2; 2, if C is an ðM � 1Þ-
curve. There are 53760 of such real quartics of C is an M-curve.

Theorem 4.3. Let C be a smooth real algebraic curve in P2 having many real branches.
Let c be its degree and let g be its genus. Let e be a partition of cðc� 2Þ of length g.
Let n be the number of real plane curves of degree c� 2 having tangency e to g real

branches of C. Then, n is finite. Moreover, n0 0 if and only if one of the following

conditions is satisfied:

1. c is even and e is an even partition,

2. c is odd and exactly one of the members of e is odd.

Furthermore, in Case 1,

n ¼

g!

m1! . . .mr!
�
Yg
i¼1

ei if C is an ðM � 1Þ-curve; and

ðgþ 1Þ!
m1! . . .mr!

�
Yg
i¼1

ei if C is an M-curve;

8>>>><
>>>>:

where, as before, m1; . . . ;mr are the multiplicities of e. In Case 2,

n ¼

ðg� 1Þ!
m1! . . .mr!

�
Yg
i¼1

ei if C is an ðM � 1Þ-curve; and

g!

m1! . . .mr!
�
Yg
i¼1

ei if C is an M-curve:

8>>>><
>>>>:

Proof. Let d ¼ c� 2. We again need to show that the restriction map

H 0ðP2;OðdÞÞ ! H 0ðC;OðdÞÞ

is an isomorphism. For the same reasons as above, the map is injective. The degree of
OðdÞ on C is equal to cd ¼ 2gþ c� 2. In particular, its degree is strictly greater than
2g� 2. Hence, OðdÞ is nonspecial on C. By the Riemann–Roch Theorem,

dimH 0ðC;OðdÞÞ ¼ cd � gþ 1 ¼ 1
2ðd þ 2Þðd þ 1Þ ¼ dimH 0ðP2;OðdÞÞ:

It follows that the linear system of all real curves of degree d in P2 cuts out a com-
plete linear system on C.

There are again two cases to consider: the case d is even and the case d is odd. If d
is even then the statement of Theorem 1.1 follows from Corollary 3.2. If d is odd then
c is odd as well and the number d of pseudo-lines of C is equal to 1. Therefore, if d is
odd, the statement of Theorem 1.1 follows from Corollary 3.3. r
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Example 4.4. Let C be a smooth real cubic curve in P2. Let n be the number of real
lines tangent to one real branch of C with order of tangency equal to 3. Then, accord-
ing to Theorem 4.3, n ¼ 3. This statement is the well-known fact that a real cubic
curve has exactly 3 real inflection points [8].

Example 4.5. Let C be a smooth plane real quartic curve in P2. Let n be the number
of real conics tangent to 3 real branches of C with orders of tangency 4; 2; 2. If C has
exactly 3 real branches then n ¼ 48 by Theorem 4.3. If C has exactly 4 real branches
then n ¼ 192 by Theorem 4.3.

Remark 4.6. Let C, c and g be as in Theorem 4.3. If c is even and cd 4, then the
number of partitions e of cðc� 2Þ satisfying condition 1 of Theorem 4.3 is equal to
the number of partitions of 1

2 ðc� 2Þ. This can be shown in exactly the same manner
as in Remark 4.1.

If c is odd and cd 5, then there is a finite-to-one correspondence between the set of
partitions e of cðc� 2Þ satisfying condition 2 of Theorem 4.3 and the set of all parti-
tions d of 1

2 ðc� 1Þ. However, the correspondence is not bijective. Indeed, let d be a
partition of 1

2 ðc� 1Þ. Let k be its length. Let r be a natural integer satisfying either
1c rc k and drþ1 < dr, or r ¼ g. Define e A Ng by ei ¼ 2di þ 2 if ic k and i0 r,
ei ¼ 2di þ 1 if ic k and i ¼ r, ei ¼ 2 if i > k and i0 r, and ei ¼ 1 if i > k and i ¼ r.
Then, e is a partition of cðc� 2Þ of length g and satisfying condition 2 of Theorem
4.3. Moreover, each partition of cðc� 2Þ of length g and satisfying condition 2 of
Theorem 4.3 arises in this way.

Example 4.7. Let C be a smooth real quintic curve in P2 having many real branches.
Then, c ¼ 5 and g ¼ 6 and C has at least 6 real branches. There are two partitions of
1
2 ðc� 1Þ ¼ 2: ð1; 1Þ and ð2Þ. The corresponding partitions of cðc� 2Þ ¼ 15 of length 6
and satisfying condition 2 of Theorem 4.3 are

ð4; 4; 2; 2; 2; 1Þ; ð4; 3; 2; 2; 2; 2Þ

ð6; 2; 2; 2; 2; 1Þ; ð5; 2; 2; 2; 2; 2Þ:

Then, for example, Theorem 4.3 states that there are exactly 960 real cubics tangent
to 6 real branches of C with orders of tangency 4; 3; 2; 2; 2; 2, if C is an ðM � 1Þ-
curve. There are 6720 of such real cubics if C is an M-curve.
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de Beaulieu, 35042 Rennes Cedex, France
Email: huisman@univ-rennes1.fr

On the enumerative geometry of real algebraic curves having many real branches 71

http://www.ams.org/mathscinet-getitem?mr=1:908:140
http://www.emis.de/MATH-item?01663809
http://www.ams.org/mathscinet-getitem?mr=86i:11024
http://www.emis.de/MATH-item?0576.14026
http://www.ams.org/mathscinet-getitem?mr=99d:14059
http://www.emis.de/MATH-item?0921.14036
http://www.ams.org/mathscinet-getitem?mr=87g:11070
http://www.emis.de/MATH-item?0585.14026
http://www.ams.org/mathscinet-getitem?mr=99a:14079
http://www.emis.de/MATH-item?0986.14033
http://www.ams.org/mathscinet-getitem?mr=http://www.math.umass.edu/~sottile/

