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Translation spreads of the split Cayley hexagon
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Abstract. Some results concerning translation spreads of the classical generalized hexagon HðqÞ
are given, motivated by known analogous results for translation ovoids of the generalized
quadrangle Qð4; qÞ. In addition, semi-classical spreads are characterized in terms of their
kernels. Finally, a new spread of HðqÞ is described which is also a new 1-system of the non-
degenerate parabolic quadric in PGð6; qÞ.

1 Introduction

The geometries called generalized polygons were introduced by Tits [15], encapsulat-
ing projective planes as generalized triangles and rank 2 polar spaces as generalized
quadrangles. Also, it was in that work of Tits that the generalized hexagon HðqÞ was
born. For the sake of brevity, the word ‘generalized’ will often be omitted in the fol-
lowing.

A spread of a generalized polygon G is, roughly speaking, a set of lines that are in a
sense ‘spread’ out evenly over G. The dual concept is that of an ovoid. This is made
precise in Section 2.1. Translation spreads and ovoids are then essentially those with
a high level of symmetry and these were introduced by Bloemen, Thas and Van Mal-
deghem [1]. In Section 3.1 of that paper, the authors give a range of details about
translation spreads of the hexagon HðqÞ, and then in Section 3.2 they discuss trans-
lation ovoids of the quadrangle Qð4; qÞ. Although some of the results of the latter
section are analogous to results in the former, on the whole they go beyond their
partners in the hexagon case. Here we extend on the results pertaining to translation
spreads of HðqÞ to bring them more in line with those of [1, Section 3.2].

In addition to the analogy between them, there is also a more concrete connection
between spreads of HðqÞ and ovoids of Qð4; qÞ in the form of semi-classical spreads.
These were introduced in [1, Section 5], and as a result of their investigations there,
the authors discovered new spreads in the case of odd q. Here we give an algebraic
characterization of semi-classical spreads as those whose kernels are the entire under-
lying field and subsequently describe a new class of spreads for even q.

Most of the contents of this paper are taken from the author’s doctoral thesis [6],
undertaken under the supervision of Dr C. M. O’Keefe and Dr L. R. A. Casse.



2 Preliminaries

2.1 Generalized polygons, spreads and ovoids. A generalized n-gon of order ðs; tÞ,
with s; t > 1, is a geometry G ¼ ðP;L; IÞ in which each line is incident with exactly
sþ 1 points, each point is incident with exactly tþ 1 lines, and whose incidence graph
has diameter n and girth 2n. When s ¼ t, we say that G has order s. An apartment in
G is a sequence of n points and n lines forming a circuit of the minimum length 2n in
the incidence graph, which is just an n-gon in the ordinary sense. Details can be found
in the book [16] by Van Maldeghem and in the chapter [14] by Thas.

Let G be a generalized 2m-gon of order ðs; tÞ, so m ¼ 2 for the case of quadrangles
and m ¼ 3 for hexagons. The distance dðu; vÞ between two elements u and v of G is the
distance between them in the incidence graph of G. In particular, the value of dðu; vÞ
is at most 2m, the diameter of the incidence graph. When dðu; vÞ ¼ 2m, the elements u
and v are said to be opposite. When dðu; vÞ < 2m, the unique element incident with u

and at distance dðu; vÞ � 1 from v is called the projection of v onto u.
A spread of G is a set S of mutually opposite lines such that for each element u

of G there is a line L A S such that dðu;LÞcm. The dual notion is that of an ovoid,
which is then a similar set of mutually opposite points. Concerning the sizes of these,
a set of mutually opposite lines (respectively points) is a spread (respectively ovoid)
if and only if: (a) it contains stþ 1 elements in the case that G is a quadrangle (see
[16, 7.2.3(i)]); and (b) it contains s3 þ 1 elements and the order of G is s ð¼tÞ in the
case that G is a hexagon (see [8]).

As a comment on notation used in this paper, whenever two variables are repre-
sented by di¤erent cases of the same letter, for instance x and X , we represent their
di¤erence by Dx ¼ x� X . Also, the operator D is considered as having higher pre-
cedence than any arithmetical operation, so an expression like Dx2 is to mean ðDxÞ2
and not Dðx2Þ.

2.2 The quadrangle Q(4, q). Let P4 be the nondegenerate parabolic quadric in
PGð4; qÞ given by the equation X0X4 þ X1X3 þ X 2

2 ¼ 0. The geometry of points and
lines on P4 with their natural incidence is the classical generalized quadrangle Qð4; qÞ
of order q. Labelling the points and lines as indicated in Table 1, where all variables
take values in the field GFðqÞ, we obtain a coordinatization of Qð4; qÞ as described in
[16, 3.4.7]. Incidence is then given by the paths

½k; b; k 0� I ðk; bÞ I ½k� I ðyÞ I ½y� I ðaÞ I ½a; l� I ða; l; a 0Þ

together with ða; l; a 0Þ I ½k; b; k 0� if and only if

b ¼ a 0 þ ak2 þ 2lk

k 0 ¼ lþ ak:
ð1Þ

Notice that the points of Qð4; qÞ opposite ðyÞ are those with three coordinates in
this coordinatization, and similarly for the lines opposite ½y�. In addition, two points
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ða; l; a 0Þ and ðA;L;A 0Þ are opposite if and only if Dl2 0DaDa 0 (use the relations in
(1) or consider coordinates in P4 and use the associated bilinear form; alternatively,
see [1, Section 3.2]).

2.3 The hexagon H(q). Let P6 be the nondegenerate parabolic quadric in PGð6; qÞ
given by the equation X0X4 þ X1X5 þ X2X6 ¼ X 2

3 . This quadric has points, lines
and planes lying entirely on it, with the planes being the generators of P6. Following
Tits [15], the generalized hexagon HðqÞ has a natural embedding in P6. Specifically,
the points of HðqÞ are all the points of P6, and the lines of HðqÞ are the lines of this
quadric whose Grassmann coordinates satisfy

p12 ¼ p34; p20 ¼ p35; p01 ¼ p36;

p65 ¼ p30; p46 ¼ p31; p54 ¼ p32:

Incidence in HðqÞ is then simply that inherited from P6. This hexagon HðqÞ has order
q and is known as the split Cayley hexagon.

Labelling the points and lines as indicated in Table 2, where all variables take
values in the field GFðqÞ, we endow HðqÞ with a coordinatization as described in
[16, 3.5.1].

Incidence is given by the paths

½k; b; k 0; b 0; k 00� I ðk; b; k 0; b 0Þ I ½k; b; k 0� I ðk; bÞ I ½k� I ðyÞ I

½y� I ðaÞ I ½a; l� I ða; l; a 0Þ I ½a; l; a 0; l 0� I ða; l; a 0; l 0; a 00Þ
ð2Þ

together with ða; l; a 0; l 0; a 00Þ I ½k; b; k 0; b 0; k 00� if and only if

Table 1. Coordinatization of Qð4; qÞ

POINTS

Coordinates in Qð4; qÞ Coordinates in PGð4; qÞ

ðyÞ ð1; 0; 0; 0; 0Þ
ðaÞ ða; 0; 0; 1; 0Þ
ðk; bÞ ð�b; 1; k;�k2; 0Þ
ða; l; a 0Þ ð�l2 þ aa 0;�a; l; a 0; 1Þ

LINES

Coordinates in Qð4; qÞ Coordinates in PGð4; qÞ

½y� hð1; 0; 0; 0; 0Þ; ð0; 0; 0; 1; 0Þi
½k� hð1; 0; 0; 0; 0Þ; ð0; 1; k;�k2; 0Þi
½a; l� hða; 0; 0; 1; 0Þ; ð�l2;�a; l; 0; 1Þi
½k; b; k 0� hð�b; 1; k;�k2; 0Þ; ð�k 0 2; 0; k 0; b� 2kk 0; 1Þi
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l ¼ �a3k þ k 00 � 3a2b� 3ab 0;

a 0 ¼ a2k þ b 0 þ 2ab;

l 0 ¼ a3k2 þ k 0 þ kk 00 þ 3a2kbþ 3bb 0 þ 3ab2;

a 00 ¼ ak þ b:

ð3Þ

Notice that the lines opposite ½y�, and similarly the points opposite ðyÞ, are pre-
cisely those that have five coordinates in this coordinatization. Since two points of
HðqÞ are opposite if and only if they are not collinear in P6 (see [15, Section 4]), the
condition that two points opposite ðyÞ should themselves be opposite is readily deter-
mined by using the bilinear form associated with the quadric P6. The result of this
computation can be found in the proof of [1, Theorem 23] and in [7, Section 3]. The
case of lines opposite ½y� is treated by the following lemma.

Lemma 1. The two lines ½k; b; k 0; b 0; k 00� and ½K ;B;K 0;B 0;K 00� of HðqÞ are opposite if

and only if

ðDb2 � DkDb 0ÞðDb 02 þ DbDk 00Þ

� ð�k 00Dk � Dk 0 þ DbDb 0 � 3b 0DbÞðK 00Dk þ Dk 0 þ DbDb 0 þ 3B 0DbÞ0 0:

Table 2. Coordinatization of HðqÞ

POINTS

Coordinates in HðqÞ Coordinates in PGð6; qÞ

ðyÞ ð1; 0; 0; 0; 0; 0; 0Þ
ðaÞ ða; 0; 0; 0; 0; 0; 1Þ
ðk; bÞ ðb; 0; 0; 0; 0; 1;�kÞ
ða; l; a 0Þ ð�l� aa 0; 1; 0;�a; 0; a2;�a 0Þ
ðk; b; k 0; b 0Þ ðk 0 þ bb 0; k; 1; b; 0; b 0; b2 � kb 0Þ
ða; l; a 0; l 0; a 00Þ ð�al 0 þ a 0 2 þ la 00 þ aa 0a 00;�a 00;�a;�a 0 þ aa 00;

1; lþ 2aa 0 � a2a 00;�l 0 þ a 0a 00Þ

LINES

Coordinates in HðqÞ Coordinates in PGð6; qÞ

½y� hð1; 0; 0; 0; 0; 0; 0Þ; ð0; 0; 0; 0; 0; 0; 1Þi
½k� hð1; 0; 0; 0; 0; 0; 0Þ; ð0; 0; 0; 0; 0; 1;�kÞi
½a; l� hða; 0; 0; 0; 0; 0; 1Þ; ð�l; 1; 0;�a; 0; a2; 0Þi
½k; b; k 0� hðb; 0; 0; 0; 0; 1;�kÞ; ðk 0; k; 1; b; 0; 0; b2Þi
½a; l; a 0; l 0� hð�l� aa 0; 1; 0;�a; 0; a2;�a 0Þ; ð�al 0 þ a 0 2; 0;

�a;�a 0; 1; lþ 2aa 0;�l 0Þi
½k; b; k 0; b 0; k 00� hðk 0 þ bb 0; k; 1; b; 0; b 0; b2 � kb 0Þ;

ðb 0 2 þ bk 00;�b; 0;�b 0; 1; k 00;�kk 00 � k 0 � 2bb 0Þi
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Proof. From Table 2, a line ½k; b; k 0; b 0; k 00� is generated by the two points whose coor-
dinates in PGð6; qÞ are

ðk 0 þ bb 0; k; 1; b; 0; b 0; b2 � kb 0Þ;

ðb 02 þ bk 00;�b; 0;�b 0; 1; k 00;�kk 00 � k 0 � 2bb 0Þ:

Using the bilinear form associated with P6, the points that lie in the generators con-
taining ½k; b; k 0; b 0; k 00� then satisfy the equations

b 0X1 þ ðb2 � kb 0ÞX2 � 2bX3 þ ðk 0 þ bb 0ÞX4 þ kX5 þ X6 ¼ 0;

X0 þ k 00X1 þ ð�kk 00 � k 0 � 2bb 0ÞX2 þ 2b 0X3 þ ðb 02 þ bk 00ÞX4 � bX5 ¼ 0:
ð4Þ

Also, the line ½K;B;K 0;B 0;K 00� is given by the system of equations

X0 � ðK 0 þ BB 0ÞX2 � ðB 02 þ BK 00ÞX4 ¼ 0;

X1 � KX2 þ BX4 ¼ 0;

� BX2 þ X3 þ B 0X4 ¼ 0;

� B 0X2 � K 00X4 þ X5 ¼ 0;

�ðB2 � KB 0ÞX2 � ð�KK 00 � K 0 � 2BB 0ÞX4 þ X6 ¼ 0:

ð5Þ

Now two lines of HðqÞ are opposite if and only if every generator of P6 containing
one is disjoint from the other (which follows from the fact that two points are oppo-
site precisely when they are not collinear in the quadric; see also [11, 8.2]), and this
corresponds to the equations in (4) and (5) having no nonzero solution in common.
Taking the equations in the given order to produce a coe‰cient matrix A, what we
then require is that A should be nonsingular. Performing the row operations R1 :¼
R1 � b 0R4 þ 2bR5 � kR6 � R7 and R2 :¼ R2 � R3 � k 00R4 � 2b 0R5 þ bR6 on A, this
is equivalent to the 2� 2 determinant

Db2 � DkDb 0 K 00Dk þ Dk 0 þ DbDb 0 þ 3B 0Db

�k 00Dk � Dk 0 þ DbDb 0 � 3b 0Db Db 02 þ DbDk 00

����
����

being nonzero. Expanding this determinant gives the desired result.

A line regulus is a set R of qþ 1 pairwise opposite lines in HðqÞ for which there are
two opposite points, say u and v, that lie at distance 3 from each of them; that is, such
that dðL; uÞ ¼ dðL; vÞ ¼ 3 for each L A R. The name derives from the fact that the
lines of R all lie in a common three dimensional space P that meets P6 in a hyper-
bolic quadric (see [1, Section 2.2]), and as such they form a regulus in the usual sense.
It follows that R is uniquely determined by any two of its lines since the space P is
uniquely determined by them.
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We shall write ½½k; b; b 0; k 00�� for the line regulus determined by the lines ½y� and
½k; b; k 0; b 0; k 00�. Noticing that the points ðk; bÞ and ð0; k 00; b 0Þ are at distance 3 from
these two lines, another line ½K ;B;K 0;B 0;K 00� opposite ½y� belongs to this line reg-
ulus if and only if ðk; bÞ ¼ ðK ;BÞ and ð0; k 00; b 0Þ ¼ ð0;K 00;B 0Þ. Thus

½½k; b; b 0; k 00�� ¼ f½y�gU f½k; b; x; b 0; k 00� j x A GFðqÞg:

Two line reguli, R and R 0, on a common line L are compatible if each line
M A RnfLg is opposite every line of R 0. Thus two line reguli on a common line
could exist together in a spread only if they are compatible. When the common line is
the line ½y�, the following result identifies compatible line reguli.

Lemma 2. Two line reguli ½½k; b; b 0; k 00�� and ½½K ;B;B 0;K 00�� are compatible if and only

if (i) for odd q, the expression

ðDbDb 0 þ DkDk 00Þ2 þ 4ðDb 0Dk � Db2ÞðDbDk 00 þ Db 02Þ

is a non-square, and (ii) for even q,

Tr
Db2Db 02 þ Db3Dk 00 þ Db 03Dk

Db2Db 02 þ Dk2Dk 002

 !
¼ 1;

where TrðaÞ ¼ aþ a2 þ a2
2 þ � � � þ a2

h�1

is the trace from GFðqÞ onto its prime field

GFð2Þ.

Proof. By Lemma 1, arbitrary lines ½k; b; k 0; b 0; k 00� and ½K ;B;K 0;B 0;K 00� from the line
reguli ½½k; b; b 0; k 00�� and ½½K ;B;B 0;K 00�� are opposite if and only if the expression

x2 þ ðAþ BÞxþ ðA� CÞðBþ CÞ þD ð6Þ

is nonzero, where x ¼ Dk 0 and

A ¼ k 00Dk þ 3b 0Db; B ¼ K 00Dk þ 3B 0Db;

C ¼ DbDb 0; D ¼ ðDb2 � DkDb 0ÞðDb 02 þ DbDk 00Þ:

Thus the two line reguli are compatible if and only if the quadratic (6) in x is irreduc-
ible. For odd q, this corresponds to the discriminant ðAþ BÞ2 � 4ðA� CÞðBþ CÞ�
4D ¼ ðA� B� 2CÞ2 � 4D being non-square. For even q, since x2 þ ðAþ BÞX þ
AB is reducible, the irreducibility of (6) is equivalent to the irreducibility of x2 þ
ðAþ BÞxþ ðAþ BÞC þ C2 þD, which is in turn equivalent to the given trace con-
dition. For the results used here regarding the irreducibility of quadratics, see for
example [3, Section 1.4].

2.4 Some groups. Let the generalized n-gon G be either the quadrangle Qð4; qÞ or
the hexagon HðqÞ. Let u be an element of G and let v I u be an element incident with
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it. For the group of collineations that fix both u and v elementwise we write Gfu; vg.
Define Gu ¼ hGfu;wg jw I ui to be the group generated by all collineations that fix u,
as well as some element incident with u, elementwise.

Lemma 3. The groups defined above have orders jGfu; vgj ¼ qn�2 and jGuj ¼ qn�1, and
the group Gu acts regularly on the set of elements opposite u.

Proof. This is a consequence of the fact that each of these groups is a product of
so-called root groups (see, for example, [10] or [16, 5.2.1]). For the group Gfu; vg, the
necessary result can be found in [16, 5.2.3]. In the case of the group Gu, it is by the
definition of root groups that Gu at least contains the product of n� 1 adjacent root
groups. The reverse containment then follows from a result of Weiss [17, Lemma 2]
(see also [16, 5.3.3, Lemma 3]). For the case of G ¼ HðqÞ, see also [1, Lemma 4].

When G is the generalized quadrangle Qð4; qÞ and u is the point ðyÞ, we now have

GðyÞ ¼ fCða; l; a 0Þ j a; l; a 0 A GFðqÞg;

where Cða; l; a 0Þ is the unique collineation in GðyÞ that maps the point ð0; 0; 0Þ to
ða; l; a 0Þ.

Similarly, for the hexagon HðqÞ we have

G½y� ¼ fY½k; b; k 0; b 0; k 00� j k; b; k 0; b 0; k 00 A GFðqÞg;

where Y½k; b; k 0; b 0; k 00� is the unique collineation in G½y� that maps the line ½0; 0; 0;
0; 0� to the line ½k; b; k 0; b 0; k 00�.

The explicit forms of the collineations Cða; l; a 0Þ and Y½k; b; k 0; b 0; k 00� appear in
[1]. In particular, the action of Y½K ;B;K 0;B 0;K 00� is given by

ða; l; a 0; l 0; a 00Þ 7! ða; lþ K 00 � a3K � 3a2B� 3aB 0; a 0 þ B 0 þ a2K þ 2aB;

l 0 þ K 0 þ KK 00 þ lK þ a3K 2 þ 3BB 0 þ 3aa 0K þ 3aB2

þ 3a 0Bþ 3a2KB; a 00 þ Bþ aKÞ;

½k; b; k 0; b 0; k 00� 7! ½k þ K ; bþ B; k 0 þ K 0 � kK 00 � 3bB 0; b 0 þ B 0; k 00 þ K 00�;

where the action on all other elements of HðqÞ follows from (2) together with the fact
that the elements ðyÞ and ½y� are fixed.

2.5 Translation spreads and ovoids. In this section, we introduce translation spreads
and ovoids of generalized 2m-gons following the paper [1], although here we only
describe translation spreads explicitly, leaving it to the reader to dualize for the case
of translation ovoids.

Let G be a generalized 2m-gon of order ðs; tÞ, where m ¼ 2 or 3. Let S be a spread
of G (so if m ¼ 3 then necessarily s ¼ t) and let L be a line of S. We will write
Sþ ¼ SnfLg.
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First we define what it means for S to be a translation spread with respect to a flag
fL; ug, where u is a point incident with L. For each line M0L incident with u, let
VM be the set of lines of S that are at distance 2m� 2 from M. Then the t sets VM

contain sm�1 lines each and they partition Sþ. We say that the spread S is a trans-

lation spread with respect to the flag fL; ug if there exists a group GfL;ug of collinea-
tions of G that fixes the spread S, fixes L pointwise and u linewise, and in addition,
acts transitively on each of the sets VM . The group GfL;ug is called the group asso-

ciated with S with respect to the flag fL; ug. By [16, 4.4.2], the group GfL;ug is
uniquely determined and it is su‰cient to require only that it acts transitively on one
of the sets VM rather than all of them.

We say that S is a translation spread with respect to the line L if it is a translation
spread with respect to the flag fL; ug for every point u incident with L. The group
associated with S with respect to L is then the group GL ¼ hGfL;ug j u ILi generated
by the associated groups with respect to each flag.

Suppose now that G is either Qð4; qÞ or HðqÞ. Then GfL;ug cGfL;ug and GL cGL.
In addition, since jSþj ¼ qm and the group GL acts regularly on the lines opposite L,
it follows that jGLjc qm with equality if and only if GL acts transitively on Sþ.

It should be noted that we are only interested in the ovoid case for Qð4; qÞ as it
is known that this generalized quadrangle only admits spreads when it is self-dual
anyway (see [12]). Similarly, in HðqÞ it is su‰cient to only consider the case of trans-
lation spreads as this generalized hexagon only admits translation ovoids when it is
self-dual (see [7]).

3 Translation ovoids of Q(4, q)

In this section, we overview some results from [1] about translation ovoids of Qð4; qÞ
for comparison with the results for translations spreads of HðqÞ that appear in the
next section.

Let O be an ovoid of Qð4; qÞ. We may suppose without loss of generality that O con-
tains the points ðyÞ and ð0; 0; 0Þ so that it then takes the form

O ¼ fðyÞgU fðx; y; f ðx; yÞÞ j x; y A GFðqÞg; ð7Þ

where f ð0; 0Þ ¼ 0 (see [1, Section 3.2]).
It is shown in [1] that an ovoid O is a translation ovoid with respect to the point u

if and only if the stabilizer Gu
O of O in the group Gu has order q2, and that the asso-

ciated group Gu is then equal to this stabilizer (cf. Theorem 5). As a consequence,
an ovoid O as represented in (7) is a translation ovoid with respect to the point ðyÞ if
and only if the function f takes the form

f ðx; yÞ ¼
Xh�1

i¼0

ð f1ix p i þ f2i y
p iÞ; ð8Þ

where fki A GFðqÞ and p is the prime such that q ¼ ph (cf. Theorem 6).
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Suppose that O, represented as in (7), is a translation ovoid with respect to the
point ðyÞ so that the function f has the form shown in (8). The kernel of O is defined
to be the set

kerO ¼ fa A GFðqÞ j f ðax; ayÞ ¼ af ðx; yÞ for all x; y A GFðqÞg;

which is then a subfield of GFðqÞ.
It is proved in [1] that if kerO ¼ GFðqÞ then O is a classical ovoid (cf. Corollary 8).

These ovoids form one isomorphism class and those containing the points ðyÞ and
ð0; 0; 0Þ are

OEðm; nÞ ¼ fðyÞgU fðx; y;�nxþ myÞ j x; y A GFðqÞg; ð9Þ

where rðxÞ ¼ x2 � mxþ n is an irreducible quadratic. From this representation, it is
readily seen that OEðm; nÞ is indeed a translation ovoid with respect to ðyÞ and that
kerO ¼ GFðqÞ.

4 Translation spreads of H(q)

Let S be a spread of HðqÞ. Without loss of generality, we may suppose that S con-
tains the lines ½y� and ½0; 0; 0; 0; 0�. Then S takes the form

S ¼ f½y�gU f½x; y; z; f ðx; y; zÞ; gðx; y; zÞ� j x; y; z A GFðqÞg;

where f ð0; 0; 0Þ ¼ gð0; 0; 0Þ ¼ 0 (see [1, Lemma 3]). The spread S is said to be locally
hermitian in ½y� if it is a union of line reguli on the common line ½y�. The functions
f and g are then independent of z and the spread S can be expressed in the form

S ¼ 6
x;y AGFðqÞ

½½x; y; f ðx; yÞ; gðx; yÞ��; ð10Þ

where f ð0; 0Þ ¼ gð0; 0Þ ¼ 0.
Examples of locally hermitian spreads are the hermitian spreads. These form one

isomorphism class and those containing the lines ½y� and ½0; 0; 0; 0; 0� are

SHðm; nÞ ¼ 6
x;y AGFðqÞ

½½x; y;�nxþ my; mnx� ðm2 � nÞy��; ð11Þ

where rðxÞ ¼ x2 � mxþ n is an irreducible quadratic.
In analogy with the situation for translation ovoids of Qð4; qÞ, one might hope

that a spread S of HðqÞ is a translation spread with respect to a line L if and only if
the stabilizer GL

S of S in the group GL has order q3, corresponding to its action on
SnfLg being regular. From [1, Theorem 6], this is indeed so when q2 2 ðmod 3Þ,
and in this case, the stabilizer is the associated group GL. In addition, the desired
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result in the ‘if ’ direction holds for general q by [1, Lemma 5]. Here now we complete
the task for all q and as a consequence obtain a result similar to the one for quad-
rangles involving (8).

Theorem 4. Let S be a spread of HðqÞ, q ¼ ph, and let L be a line of S. If

(i) q2 2 ðmod3Þ and S is a translation spread with respect to two distinct flags on

L;

(ii) q1 2 ðmod3Þ, q odd, and S is a translation spread with respect to 2þ 2ðq�1Þ
p�1 dis-

tinct flags on L; or

(iii) q ¼ 22eþ1 and S is a translation spread with respect to 2ðqþ 1Þ=3 distinct flags

on L;

then S is a translation spread with respect to L. Moreover, the stabilizer GL
S of S in

GL acts transitively on SnfLg so jGL
Sj ¼ q3, and either GL ¼ GL

S or q ¼ 22eþ1 and

½GL
S : GL� ¼ 2.

Proof. SinceS is a translation spread with respect to at least two distinct flags on L, it
is locally hermitian in L (see [1, Theorem 6]), and so we may choose coordinates such
that S is represented as in (10) with L being the line ½y� and such that f½y�; ðyÞg is
one of the flags with respect to which S is a translation spread. By its transitive
action on the set V½0� (see Section 2.5), the associated group for the flag f½y�; ðyÞg is
then

Gf½y�; ðyÞg ¼ fY½0; y; z; f ð0; yÞ; gð0; yÞ� j y; z A GFðqÞg:

What we aim to show is that Gf½y�; ðyÞg acts transitively on the set of lines not
equal to ½y� that are incident with some point ðaÞ on ½y�, although we drop a little
short of this goal when q ¼ 22eþ1. Then if S is also a translation spread with respect
to the flag f½y�; ðaÞg, the group G ¼ hGf½y�; ðyÞg;Gf½y�; ðaÞgi acts transitively on the set
Snf½y�g, so jGj ¼ q3 and S is a translation spread with respect to the line ½y� by
[1, Lemma 5]. Furthermore, since GcG½y� cG

½y�
S and jG½y�

S jc q3, we will also have
G½y� ¼ G

½y�
S ¼ G.

Applying the collineation Y½0;Y ;Z; f ð0;Y Þ; gð0;Y Þ� in Gf½y�; ðyÞg to the line regulus
½½x; y; f ðx; yÞ; gðx; yÞ�� of S gives ½½x; yþ Y ; f ðx; yÞ þ f ð0;YÞ; gðx; yÞ þ gð0;Y Þ��,
which must also be a line regulus of S. Thus f ðx; yÞ ¼ f1ðxÞ þ f2ðyÞ and gðx; yÞ ¼
g1ðxÞ þ g2ðyÞ, where f2ðyþ Y Þ ¼ f2ðyÞ þ f2ðY Þ and g2ðyþ Y Þ ¼ g2ðyÞ þ g2ðYÞ.

The projection of the line ½0; y; z; f2ðyÞ; g2ðyÞ� of S onto a point ðaÞ is the line
½a; haðyÞ�, where

haðyÞ ¼ �3a2y� 3af2ðyÞ þ g2ðyÞ

as determined from the incidence equations in (3). For each a A GFðqÞ, let

Ka ¼ ker ha ¼ fy A GFðqÞ j haðyÞ ¼ 0g:
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Now as Gf½y�; ðyÞg acts transitively on the lines ½0; y; z; f2ðyÞ; g2ðyÞ�, it acts transitively
on the lines ½a; haðyÞ� for each a. So what we want to show is that for some a, the
function haðyÞ is a bijection, or equivalently, that Ka ¼ f0g.

First consider when q ¼ 3h so then haðyÞ ¼ g2ðyÞ. Applying Lemma 2 to the line
reguli ½½0; y; f2ðyÞ; g2ðyÞ�� and ½½0; 0; 0; 0��, we have �y3g2ðyÞ is non-square whenever
y0 0, so in particular, haðyÞ0 0 whenever y0 0. Thus for all a we have Ka ¼ f0g
and hence the result follows.

Suppose now that 3F q. Treating haðyÞ ¼ 0 with y0 0 as a quadratic in a, for odd
q, its discriminant is

9f2ðyÞ2 þ 12yg2ðyÞ ¼ �3ð�3f2ðyÞ2 � 4yg2ðyÞÞ; ð12Þ

and for even q, the S-invariant is

yg2ðyÞ
f2ðyÞ2

: ð13Þ

Since S is a spread, the line reguli ½½0; y; f2ðyÞ; g2ðyÞ�� and ½½0; 0; 0; 0�� are compatible,
so Lemma 2 says that for odd q

y2f2ðyÞ2 � 4y2ðyg2ðyÞ þ f2ðyÞ2Þ ¼ y2ð�3f2ðyÞ2 � 4yg2ðyÞÞ

is a non-square, and for even q, f2ðyÞ0 0 and

Tr
y2f2ðyÞ2 þ y3g2ðyÞ

y2f2ðyÞ2

 !
¼ Trð1Þ þ Tr

yg2ðyÞ
f2ðyÞ2

 !
¼ 1:

Thus when q1 1 ðmod3Þ, if q is odd then �3 is a square so the discriminant in (12)
is non-square, and if q is even then Trð1Þ ¼ 0 so the S-invariant in (13) has trace
one. Either way, haðyÞ ¼ 0 has no solutions in a for y0 0. Thus Ka ¼ f0g for all
a A GFðqÞ and the result follows for q1 1 ðmod3Þ.

Now suppose q1 2 ðmod 3Þ. Then the discriminant in (12) is a nonzero square and
the S-invariant in (13) has trace zero. Therefore, for each y0 0 there are exactly two
values, a and b, such that y A Ka and y A Kb. Also, for each a, the function ha is a
linear operator of GFðqÞ over GFðpÞ so Ka is a vector space over GFðpÞ and jKaj is
a power of p. Let Ni be the number of values of a for which jKaj ¼ pi, where i ¼
0; 1; . . . ; h. Counting the nonzero elements in the sets Ka, we then have

ðp� 1ÞN1 þ ðp2 � 1ÞN2 þ � � � þ ðph � 1ÞNh ¼ 2ðq� 1Þ: ð14Þ

Writing Ndi ¼ Ni þNiþ1 þ � � � þNh, this gives us ðp� 1ÞNd1 c 2ðq� 1Þ. Hence, if

in addition to the flag f½y�; ðyÞg we have at least
2ðq�1Þ
p�1 þ 1 other flags on ½y� with

respect to which S is a translation spread, then for at least one of these, say
f½y�; ðaÞg, we will have Ka ¼ f0g. The result now follows for odd q1 2 ðmod 3Þ.
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Finally, suppose q ¼ 22eþ1. From (14) we have 3Nd2 c 2ðq� 1Þ, which we can
tighten to Nd2 c 2ðq� 2Þ=3 since Nd2 is an integer. Thus if, including the flag

f½y�; ðyÞg, the spread S is a translation spread with respect to at least
2ðq�2Þ

3 þ 2 ¼
2ðqþ 1Þ=3 flags on ½y�, then for at least one of these, say f½y�; ðaÞg, we will have
jKaj ¼ 1 or 2. If the group H ¼ hGf½y�; ðyÞg;Gf½y�; ðaÞgi has order q3, as certainly
happens when jKaj ¼ 1, then the result follows as in the previous cases, so we suppose
now that jKaj ¼ 2 in which case jHj ¼ q3=2. The orbit of ½0; 0; 0; 0; 0� under H is then

S 0 ¼ f½x; y; z; f ðx; yÞ; gðx; yÞ� j x A A and y; z A GFðqÞg

for some subset AJGFðqÞ of order q=2, and the group H is

H ¼ fY½x; y; z; f ðx; yÞ; gðx; yÞ� j x A A and y; z A GFðqÞg:

The collineation Y½X ; 0; 0; f1ðXÞ; g1ðX Þ� A H sends the line regulus ½½x; 0; f1ðxÞ;
g1ðxÞ�� of S to ½½xþ X ; 0; f1ðxÞ þ f1ðXÞ; g1ðxÞ þ g1ðXÞ��, which is then another line
regulus of S. Thus f1ðxþ XÞ ¼ f1ðxÞ þ f1ðX Þ for all x A GFðqÞ and X A A. Also,
since the set S 0 is fixed by H, we have that for x A A and X A A, the sum xþ X

belongs to A as well, so A is a subgroup of ðGFðqÞ;þÞ of index 2. Consequently, if
x B A and X B A, then xþ X A A so f1ðxÞ ¼ f1ððxþ X Þ þ X Þ ¼ f1ðxþ XÞ þ f1ðX Þ
and therefore f1ðxþ XÞ ¼ f1ðxÞ þ f1ðX Þ. Similarly, g1ðxþ X Þ ¼ g1ðxÞ þ g1ðX Þ. It
now follows that the set fY½x; y; z; f ðx; yÞ; gðx; yÞ� j x; y; z A GFðqÞg of collineations
forms a subgroup of G½y� fixing S. Since its order is q3, this subgroup is the stabilizer
G

½y�
S ofS in G½y�, and the spreadS is a translation spread with respect to the line ½y�

by [1, Lemma 5]. Also, we have HcG½y� cG
½y�
S so either G½y� ¼ G

½y�
S or G½y� ¼ H,

in which case ½G½y�
S : G½y�� ¼ 2.

Remark. The exceptional case that GL 0GL
S when q ¼ 22eþ1 does indeed occur.

For example, in the hermitian spread SHð1; 1Þ in H½2�, we have G½y� ¼ Gf½y�; ð0Þg ¼
Gf½y�; ð1Þg ¼ Gf½y�; ðyÞg.

Theorem 5. A spread S of HðqÞ is a translation spread with respect to a line L if and

only if the stabilizer GL
S of S in GL has order q3.

Proof. This follows from Theorem 4 and [1, Lemma 5].

Theorem 6. Let S be a spread of HðqÞ, q ¼ ph, that is represented as in (10). Then S
is a translation spread with respect to the line ½y� if and only if the functions of the

representation have the forms

f ðx; yÞ ¼
Xh�1

i¼0

ð f1ix p i þ f2i y
p iÞ and gðx; yÞ ¼

Xh�1

i¼0

ðg1ix p i þ g2i y
piÞ;

with the coe‰cients fni; gni A GFðqÞ.
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Proof. Suppose S is a translation spread with respect to ½y�. Using Theorem 5, the
stabilizer of S in G½y� is G

½y�
S ¼ fY½x; y; z; f ðx; yÞ; gðx; yÞ� j x; y; z A GFðqÞg. Since

a collineation Y½X ;Y ;Z; f ðX ;Y Þ; gðX ;YÞ� from G
½y�
S maps the line regulus ½½x; y;

f ðx; yÞ; gðx; yÞ�� of S to the line regulus ½½xþ X ; yþ Y ; f ðx; yÞ þ f ðX ;YÞ; gðx; yÞþ
gðX ;Y Þ�� which must also belong to S, we see that f ðxþ X ; yþ Y Þ ¼ f ðx; yÞþ
f ðX ;Y Þ and gðxþ X ; yþ YÞ ¼ gðx; yÞ þ gðX ;Y Þ. It now follows that the functions
f and g have the claimed forms (see [9, Theorem 9.4.4]).
Suppose now that f and g have the given forms. Then the collineations Y½x; y; z;

f ðx; yÞ; gðx; yÞ� form a group of order q3 fixing S and the result then follows from
Theorem 5.

Remark. In addition to the representation in (10), a locally hermitian spread S may
also be representable as

6
x;y AGFðqÞ

½½x; f ðx; yÞ; gðx; yÞ; yÞ��; ð15Þ

with f ð0; 0Þ ¼ gð0; 0Þ ¼ 0. For example, using Lemma 2 it can be shown that this is
always so when q2 2 ðmod 3Þ. If this representation is used rather than that in (10)
then Theorem 6 holds without change.

Let S be a translation spread of HðqÞ with respect to the line ½y� represented as in
(10). The kernel of S is defined to be the set

kerS ¼ fa A GFðqÞ j f ðax; ayÞ ¼ af ðx; yÞ and

gðax; ayÞ ¼ agðx; yÞ for all x; y A GFðqÞg;

which is then a subfield of GFðqÞ. It can be shown that if y is any collineation of
HðqÞ that fixes the line ½y� and such that Sy contains the line ½0; 0; 0; 0; 0� so that Sy

also has a representation as given in (10), then kerSy ¼ kerS. In addition, kerS is
independent of whether S is represented as in (10) or as in (15), when the latter of
these applies.

5 Semi-classical spreads

Let S be a spread of HðqÞ that is locally hermitian in the line L. For each point x on
L, the spread S gives rise to an ovoid of Qð4; qÞ by a process called projection along

reguli (see [1]). Specifically, for each of the q2 line reguli on L that comprise S, there
is a unique transversal through x, and these together with the line L determine q2 þ 1
points of Qð4; qÞ that are then the points of an ovoid. We shall denote the resulting
ovoid by OðxÞ. In the event that the ovoids OðxÞ with x IL are all classical, the spread
S is called semi-classical. Here now we give the following characterization of semi-
classical spreads.

Theorem 7. Let S be a locally hermitian spread of HðqÞ in the line L. Then the fol-

lowing are equivalent:
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(i) S is semi-classical;

(ii) Two of the ovoids OðuÞ and OðvÞ, with u0 v, are classical;

(iii) S is a translation spread with respect to the line L and kerS ¼ GFðqÞ.

Proof. Without loss of generality, we suppose that coordinates are chosen such that L
is the line ½y� and such that S contains the line ½0; 0; 0; 0; 0�, so S is represented as in
(10). We begin by determining OðyÞ.

Let P4 be the four dimensional space given by X0 ¼ X4 ¼ 0. Choose coordinates
in P4 such that the point whose coordinates are ð0; x1; x2; x3; 0; x5; x6Þ in PGð6; qÞ
has coordinates ð�x6;�x1; x3; x5; x2Þ in P4. Then the equation in P4 of the quadric
P4 ¼ P6 VP4 is as in Section 2.2, so we use Table 1 for the coordinatization of the
quadrangle Qð4; qÞ.

We must identify the point in Qð4; qÞ that is determined by a line regulus ½½x; y;
f ðx; yÞ; gðx; yÞ�� of S. The transversal M of this line regulus through the point ðyÞ
also passes through the point ðx; y; 0; f ðx; yÞÞ of HðqÞ. Using Table 2, the line M is
then determined by the two points whose coordinates in PGð6; qÞ are ð1; 0; 0; 0; 0; 0; 0Þ
and ðyf ðx; yÞ; x; 1; y; 0; f ðx; yÞ; y2 � xf ðx; yÞÞ, so M meets P4 in the point whose
coordinates in P4 are ð�y2 þ xf ðx; yÞ;�x; y; f ðx; yÞ; 1Þ. Using Table 1, this is seen
to be the point ðx; y; f ðx; yÞÞ of the quadrangle Qð4; qÞ. Similarly, the line ½y� of
HðqÞ meets P4 in the point that is the point ðyÞ of Qð4; qÞ. Thus the ovoid OðyÞ is
given by

OðyÞ ¼ fðyÞgU fðx; y; f ðx; yÞÞ j x; y A GFðqÞg: ð16Þ

Next we take P 0
4 to be the subspace given by X2 ¼ X6 ¼ 0 and we choose coor-

dinates in P 0
4 such that the point whose coordinates are ðx0; x1; 0; x3; x4; x5; 0Þ in

PGð6; qÞ has coordinates ð�x0; x1;�x3;�x5; x4Þ in P 0
4. Then the equation in P 0

4 of
the quadric P 0

4 ¼ P6 VP 0
4 is as in Section 2.2, so again we use Table 1 for the corre-

spondence with coordinates in the quadrange Qð4; qÞ. Proceeding as in the previous
paragraph, we then find that the ovoid Oð0Þ is given by

Oð0Þ ¼ fðyÞgU fðy; f ðx; yÞ;�gðx; yÞÞ j x; y A GFðqÞg: ð17Þ

Suppose that (ii) holds. Without loss of generality, we may suppose that coor-
dinates have been chosen such that the two points u and v are ðyÞ and ð0Þ. Consid-
ering the ovoid OðyÞ in (16) and the representation of classical ovoids in (9), we see
that the function f ðx; yÞ is linear in x and y. Similarly from (17), the function gðx; yÞ
is linear in f ðx; yÞ and y, and therefore, in x and y. It now follows from Theorem 6
that S is a translation spread with respect to the line ½y� and, by the linearity of the
functions f and g, its kernel is all of GFðqÞ.

Consider now the case that (iii) holds. By Theorem 6 together with the analo-
gous result for ovoids of Qð4; qÞ, the ovoid OðyÞ is a translation ovoid with respect
to the point ðyÞ. Furthermore, in general we have kerSJ kerOðyÞ. Since here
kerS ¼ GFðqÞ, it follows that kerOðyÞ ¼ GFðqÞ, so the ovoid OðyÞ is a classical
ovoid. Since coordinates may be chosen such that any particular point on ½y� is the
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point ðyÞ, it follows that OðuÞ is a classical ovoid for every point u on ½y� and we
conclude that S is semi-classical.

Finally, notice that (ii) is implied by (i) simply by the definition of semi-classical,
and this completes the cycle of implications.

Corollary 8. Let S be a spread of HðqÞ, with q odd, that is a translation spread with

respect to the line ½y�. If kerS ¼ GFðqÞ then S is either hermitian or isomorphic to

the spread S½9� of [1].

Proof. In view of Theorem 7, this follows from the classification in [1, Theorems
30–32] of semi-classical spreads for odd q.

6 A new class of spreads

Just as Bloemen et al. discovered the spreads S½9� while considering the semi-classical
spreads of HðqÞ for odd q, so too has another new class of spreads arisen while inves-
tigating semi-classical spreads of HðqÞ for even q. These spreads, which are described
by the following theorem, were discovered immediately after submission of [6] and
have now already been known in the community for some time. Since they are non-
hermitian, these spreads are not contained in a hyperplane of PGð6; qÞ (see [13]), and
thus they provide us with a new class of 1-systems of the quadric P6 (see [11]). It has
been remarked by Luyckx in [4] that these also yield new 1-systems of the polar space
W5ð22eÞ by projection from the nucleus, and hence new semi-partial geometries.

Theorem 9. Let q ¼ 22e and let d be some fixed element of GFðqÞ with TrðdÞ ¼ 1. Then
the set

Sd ¼ 6
x;y AGFðqÞ

x; y;
d3

ðdþ 1Þ2
xþ d

dþ 1
y;

d3

ðdþ 1Þ2
xþ d2

dþ 1
y

" #" #
ð18Þ

is a non-hermitian semi-classical spread of HðqÞ.

Proof. Notice that if Sd is a spread then its kernel is kerSd ¼ GFðqÞ and so it is semi-
classical by Theorem 7. Also, Sd is not a hermitian spread as otherwise we would
have from comparison with (11) that d=ðdþ 1Þ ¼ 1, which is absurd.

For each nonzero pair ðx; yÞ A GFðqÞ2, we apply Lemma 2 to the corresponding
line regulus of Sd and ½½0; 0; 0; 0��. Let Tðx; yÞ be the resulting expression in the trace
in the statement of that lemma. By the linearity of the terms in (18), to show that Sd

is a spread we have only to show that TrðTðx; yÞÞ ¼ 1 for all pairs ðx; yÞ0 ð0; 0Þ.
Applying Lemma 2 to the hermitian spread SHð1; dÞ shows that

Sðx; yÞ ¼ Aðx; yÞ
Bðx; yÞ2

ð19Þ

has trace equal to 1 for all ðx; yÞ0 ð0; 0Þ, where
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Aðx; yÞ ¼ d3x4 þ d2x3yþ ðd2 þ dÞx2y2 þ ðdþ 1Þxy3 þ dy4;

Bðx; yÞ ¼ dx2 þ xyþ y2:

In terms of Aðx; yÞ and Bðx; yÞ, the function Tðx; yÞ is found to be

T
x

d
;

y

dþ 1

� �
¼ Aðx; yÞ þ xy3

ðBðx; yÞ þ x2Þ2
: ð20Þ

In order to compare Tðx; yÞ more readily with Sðx; yÞ, we make a change of varia-
bles so that the denominator in (20) is identical to that which appears in (19). Since
q ¼ 22e, there is an element y A GFðqÞ such that y2 ¼ yþ 1. Then Bðx; yxþ yÞþ
x2 ¼ Bðx; yÞ, so we let T 0ðx; yÞ ¼ Tðx=d; ðyxþ yÞ=ðdþ 1ÞÞ. Now to show that Tðx; yÞ
has trace equal to 1 for all nonzero pairs ðx; yÞ, we have only to show the same for
T 0ðx; yÞ, and since we know that this is so for Sðx; yÞ, we can instead endeavour to
show that TrðSðx; yÞ þ T 0ðx; yÞÞ ¼ 0 for all nonzero pairs ðx; yÞ. Now

Sðx; yÞ þ T 0ðx; yÞ ¼ Cðx; yÞ
Bðx; yÞ2

where

Cðx; yÞ ¼ Aðx; yÞ þ Aðx; yxþ yÞ þ xðyxþ yÞ3

¼ d2x4 þ ðdþ dyÞx3yþ dyx2y2 þ xy3:

It can be checked by direct substitution that X ¼ dyx2 þ xy is a solution of the qua-
dratic equation X 2 þ Bðx; yÞX þ Cðx; yÞ ¼ 0 for all nonzero pairs ðx; yÞ, thus this
quadratic is always reducible. Consequently, we have TrðCðx; yÞ=Bðx; yÞ2Þ ¼
TrðSðx; yÞ þ T 0ðx; yÞÞ ¼ 0. It now follows that Sd is a spread of HðqÞ.

Additional note. During the refereeing process of this paper, Cardinali et al. [2]
announced a new construction of non-hermitian semi-classical spreads Sl for 3F q.
As noted there, for odd q the spreads Sl are isomorphic to the spreads S½9� of [1].
For even q, the spreads Sl are isomorphic to the spreads Sd presented here, as is
remarked in [5]. Thus they have provided Sd and S½9� with a common description.
It should be noted further that in [5], Luyckx and Thas go on to classify, for even q,
the locally hermitian semi-classical 1-systems of the quadric P6 that do not lie in a
hyperplane.
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