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Automorphisms of nearly finite Coxeter groups

W. N. Franzsen and R. B. Howlett

(Communicated by A. Cohen)

Abstract. Suppose that I is an infinite Coxeter group of finite rank #, and suppose that 1 has
a finite parabolic subgroup W} of rank n — 1. Suppose also that the Coxeter diagram of W has
no edges with infinite labels. Then any automorphism of W that preserves reflections lies in the
subgroup of Aut(W) generated by the inner automorphisms and the automorphisms induced
by symmetries of the Coxeter graph. If, in addition, W is irreducible and every conjugacy class
of reflections in W has nonempty intersection with W, then all automorphisms of W preserve
reflections, and it follows that Aut(#) is the semi-direct product of Inn(#) by the group of
graph automorphisms.
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There is not much literature dealing with the automorphism groups of infinite Cox-
eter groups.! It seems that complete results are known only for rank 3 Coxeter groups
and the so-called right-angled Coxeter groups.

A Coxeter group is right-angled if the labels on all edges in the Coxeter diagram are
oo. These were investigated by James, [12], who described the automorphism groups
of Coxeter groups whose diagrams have the following form:

James’s result was extended by Tits, [16], to include all irreducible right-angled Cox-
eter groups whose diagrams do not contain triangles. Finally, in [14], Miihlherr gave
a presentation for the automorphism group of any right-angled Coxeter group.

The automorphism groups of infinite rank 3 Coxeter groups whose diagrams have
no edges with infinite labels are described in [9]; in this case the automorphism group
is the semi-direct product of Inn(#) and the group of graph automorphisms. The
automorphism groups of rank 3 Coxeter groups with both finite and infinite edge
labels are described in [8].

! The closely related question of whether a Coxeter group may contain more than one class
of Coxeter generating sets is investigated in [5].
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For the purposes of this paper, we say that an infinite Coxeter group is nearly finite
if it has finite rank » and has a finite parabolic subgroup of rank n — 1. It is shown
that if W is nearly finite and does not have an edge labelled co then the group of all
automorphisms of W that preserve reflections is the semi-direct product of Inn(W)
and the group of graph automorphisms. In certain special cases we are able to show
that all automorphisms of W preserve reflections. In fact, if we restrict attention to
infinite irreducible Coxeter groups whose diagrams have no infinite edge labels, then
we know of no example having an automorphism that does not preserve reflections.

1 Preliminaries

Recall that a Coxeter group is a group with a presentation of the form
W = gpl{r,|ael}| (rarp)™ = 1forall a,b e IT) (1.1)

where IT is some indexing set, whose cardinality is called the rank of W, and
the my, satisfy the following conditions: m,, = my,, each my, lies in the set
{meZ|m=1}U{0}, and my = 1 if and only if @ = b. When m,;, = co the relation
(rarp)™® = 1is interpreted as vacuous. We shall restrict attention to finite rank groups
with mg, # oo for all a,b € I1.

As is well known, the isomorphism type of W as an abstract group does not
determine either the parameters m,;, or the rank of W as a Coxeter group. Hence we
always assume that the presentation (1.1) is given; in particular, {r,|a € IT} is a dis-
tinguished set of generators for the group W.

A reduced expression for an element w € W is a minimal length word expressing w
as a product of elements of the distinguished generating set. We define /(w) to be the
length of a reduced expression for w.

The Coxeter diagram of W is a graph with vertex set IT and edge set consisting of
those pairs of vertices {a, b} for which m,;, > 3. The edge {a, b} is given the label 1.
We say that W is irreducible if its diagram is connected.

Let R be the real field, and V' the vector space over R with basis I1. Let B the
bilinear form on ¥V such that for all a, b € I,

B(a,b) = —cos(n/mg).

To make our notation more compact we define u - v = B(u,v) for all u,v e V. Note
that a-a = 1 for all a € I, since m,, = 1.

For each ae V such that a-a=1 the transformation of V' given by v+—
v—2(a-v)a is called the reflection along a. It is well known (see, for example, Cor-
ollary 5.4 of [11]) that W has a faithful representation on V" such that, for all a € I1,
the element r, acts as the reflection along a. We shall identify elements of W with
their images in this representation. We also use the notation r, for the reflection along
a whenever a € V satisfies a - a = 1. It is straightforward to show that each reflection
r, preserves the form B; hence all elements of W preserve B. Furthermore, the
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equation gr,g~' = ¥ga holds for all a € V" such that a-a =1 and all transformations
g that preserve B.

We write Ref (W) for the set of all reflections in W. It is immediate from the above
comments that if ® = {wa|w e W,a eI} then {ry|b e ®} = Ref(W).

The set @ is called the root system of W, and elements of ® are called roots. Ele-
ments of the basis IT are called simple roots, and the reflections r, for a € IT are called
simple reflections. A root is said to be positive if it has the form ),y A.a with 4, >0
for all a e I, and negative otherwise. We write @ for the set of all positive roots and
@~ for the set of all negative roots.

Lemma 1. With the notation as above, the following statements hold.

(1) Every negative root has the form )",y Aaa with 2, < 0 for all a € T1. Furthermore,
O ={-blbed}.

(2) If we W and a € 11 then

Iw)+1 if wae®",

Howra) = {l(w) -1 if waed.

(3) If t e Ref (W) then t = 1y for some b € ®.
(4) The group W is finite if and only if the bilinear form B is positive definite.
(5) The root system @ is finite if and only if the group W is finite.

Proof. Proofs of (1) and (2) can be found in [11, Section 5.4], Theorem 4.1 in [6]
includes both (4) and (5), and (3) is [10, Lemma 2.2]. O

For each w e W we define N(w) = {b € ®* |wbh € ®~}. By Part (2) of Lemma 1, if
w # 1 then N(w)NII # J. An easy induction shows that N(w) has exactly /(w) ele-
ments. In particular, N(w) is a finite set. It is also easily shown that if @ is finite then
there is a unique w € W such that N(w) = ®*. This element, which we denote by wy,
is also the unique element of maximal length in W (which is a finite group).

We need the following simple fact.

Lemma 2. Suppose that we W is an involution, and let a € N(w) NI1. Then either
wa = —a or I(rywr,) = I(w) — 2.

Proof. Observe that —wa € @, since a € N(w). Now N(r,) = {a}, since a € I1, and
so if —wa # a it follows that r,(—wa) € ®*. But this implies that (r,w)a € ®, and so
by Lemma 1 combined with the obvious fact that each element has the same length
as its inverse,

I(rawry) =1(rgw) — 1 =1(wr,) — 1 =1(w) =2

as claimed. [
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The following lemma is one of the key ingredients in the proof of our main
theorem.

Lemma 3 (Brink [2]). Suppose that b is a positive root, and write b =",y Aqa. For
each a eI, if 4, > 0 then 1, = 1.

2 Parabolic subgroups and reflection preserving automorphisms

Let W be a Coxeter group, and continue with the notation introduced in the pre-
ceding section. For each I = IT we define W} to be the subgroup of W generated by
{rqs|a e I}. These subgroups are called the standard parabolic subgroups of W. A
parabolic subgroup of W is any subgroup of the form wW;w~! for some w e W and
I = T1. We shall use the phrase “maximal parabolic subgroup” to mean “maximal
proper parabolic subgroup”.

It is clear that if 7 = IT then W} preserves the subspace V; of V' spanned by I, and
acts on this subspace as a Coxeter group with [ as its set of simple roots. We write @,
for the root system of W; in V;, and ®;, ®; for the sets of positive and negative roots
in (D[.

Lemma 4. In the above situation, ®; = ® N V7.

Proof. For each b =, _; Aq,a € ® define supp(b) = {a e IT| 4, # 0}. It is clear that
if b = wa for some a € I and w € W; then supp(b) < I; we must prove that the con-
verse also holds. Without loss of generality we may assume that b is positive.

Let b e ®" with supp(h) = 1. Since r, #1 we may choose a simple root c e
N(rp)NIL. Then ¢ —2(b-c)b=rpyce®, and so b-¢ > 0. Since a-c¢ <0 for all
a € IT\{c} it follows that ¢ € supp(b).

We proceed by induction on /(rp). If /(r,) =1 then we must have b = ¢, and
b = wa holds with w= 1€ W; and a = c € I. Now suppose that /(ry) > 1, so that
b # ¢, and put d = r.b. Lemma 2 gives /(ry) = I(r.rpr.) = I(rp) — 2; moreover, since
d =b—2(c-b)c we see that supp(d) = supp(b). By the inductive hypothesis d = wa
for some w € W} and a € I, and since ¢ € I it follows that r.w € W}, and b = (r,w)a is
an equation of the desired form. O

The next proposition, classifying involutions in Coxeter groups, is a useful tool in
the analysis of automorphisms.

Proposition 5 (Richardson [15]). Suppose that w € W is an involution. Then there is an
I < I such that Wy is finite, w is conjugate to wy (the maximal length element of W)
and wy is central in W7.

Proof. Let L = {a e I1|wa = —a}. First observe that ®; < N(w) is finite, and so, by
Lemma 1, W, is finite. If a € L then wr,w = r,,, = r_, = r,, and so it follows that w
centralizes Wj.

If w=w, then we are finished; so suppose that w # w;. Then w;w # 1, and so
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we may choose an ae N(wyw)NIL If wae ®", then, as wywae ®, we have
wa € N(wr) = ®; . But then

a=w(wa) e wb; = d,

which is a contradiction. Hence ¢ € N(w) NI1. Now wa # —a, since wa = —a would
mean that ¢ € L, and

wrwa = wr(—a) e w,®; = ®;,

contradicting @ € N(w,w). Hence /(r,wr,) = [(w) — 2 by Lemma 2, and we can use
induction on the length to complete the proof. O

Note that the above proof in fact shows that w = ¢t~ w;¢ for some r € W such that
I(w) =21(t) + I(wy).

Our main tool in the analysis of automorphisms of infinite Coxeter groups is the
following lemma, which appears in [1, Exercise 2d, p. 130].

Lemma 6 (Tits). If Wis a Coxeter group and H < W is finite, then H is contained in a
finite parabolic subgroup of W.

One immediate consequence of Lemma 6 is that every maximal finite subgroup of
a Coxeter group is parabolic.

Lemma 7 (Kilmoyer). Let I,J < I1. Then every (Wy, Wy) double coset in W contains
a unique element of minimal length; moreover, if d is the minimal length element of
W dW; then Wy NdW;d—' = Wy, where K = INdJ.

Proof. See [4, Theorem 2.7.4]. O

Corollary 8. The intersection of a finite number of parabolic subgroups is a parabolic
subgroup.

Proof. If H and K are parabolic subgroups then H = x~'W;x and K = y~' W,y for

some I,J < ITand x, y € W. Let d be the minimal length element in W;xy~! W, and
choose u € W; and t € W such that d = uxy~'t. Then

HNK =x'uw "WuxNy "Wy = x ' ' (W N dWyd " ux,

which is a parabolic subgroup by Lemma 7. Induction completes the proof. OJ

Since the image under any automorphism of a maximal finite subgroup must be
another maximal finite subgroup, Corollary 8 immediately yields the following
result.
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Corollary 9. Let W be an infinite Coxeter group, and o€ Aut(W). If H is a subgroup
of W that can be written as the intersection of a collection of maximal finite subgroups,
then a(H) is a parabolic subgroup of W.

A special case of Corollary 9 provides a possible method for proving that an auto-
morphism preserves reflections.

Corollary 10. If W is an infinite Coxeter group, o. € Aut(W) and r is a reflection such
that {r) can be written as an intersection of maximal finite subgroups, then o(r) is a
reflection.

Suppose that I < IT is such that W; is a maximal finite standard parabolic sub-
group of W (in the sense that W} is finite and W} is infinite for all J with I & J < IT).
We shall show that W; is not properly contained in any finite subgroup of W.

Lemma 11. Let Wy be a maximal finite standard parabolic subgroup. Then Wi is not
conjugate to a subgroup of any other finite standard parabolic subgroup.

Proof. Suppose that W; < tWxt~! for some ¢t € W and some K < IT such that Wy is
finite and K # I. These assumptions are not altered by replacing z by another element
of the double coset W;tWk; so we may assume that 7 is the minimal length element of
WitWkg. By Corollary 7 it follows that W; = Wk, and so I < tK.

Since W; is a maximal finite standard parabolic subgroup, ¢ # 1. So, by Lemma
1, we may choose a simple root ¢ such that r~!¢ = d is negative. As ¢ has minimal
length in Wk, Lemma 1 guarantees that fa is positive for all a € K, and hence tb is
positive for all b € ). But —d is positive while 7(—d) = —c is negative, and so we
conclude that d is not in ®x. Thus when d = ¢~ !¢ is expressed as a linear combina-
tion of simple roots, some e ¢ K appears with a negative coefficient. Now suppose
that b e <I)I+u 1\ @1, so that b = Jc + v for some 4 > 0 and some ve V. Sincetr ' = K
it follows that #~'v e Vx, and hence +~'h = A(r"'¢) + r~'v involves e with negative
coefficient. So t~'b € ®~. But ®;yqy is infinite, while @; is not. So ¢+~! takes an infinite
number of positive roots to negative roots, and hence has infinite length. This is a
contradiction. O

Corollary 12. If W is any infinite Coxeter group, then all maximal finite standard par-
abolic subgroups of W are maximal finite subgroups of W.

Proof. If Wy is a maximal finite standard parabolic subgroup but not a maximal finite
subgroup then W; < tW;t~! for some te W and J < I with |W;| < |W;| < oo, by
Lemma 6. But this contradicts Lemma 11. O

If I and J are disjoint subsets of I such that m,, = 2 foralla e I and b € J, then V;
and Vj are orthogonal to each other, and it follows readily that W;y; = Wy x Wj.
Moreover, ®;y; = Wiy, (IUJ) = W IUW;J = ®,Ud,, since each we W, fixes
each a € J and each w € W} fixes each a € I. So we obtain the following result.
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Lemma 13. Let W be a Coxeter group of rank n and I1 the set of simple roots. If I and
J are disjoint subsets of Tl such that no edge of the Coxeter diagram joins a root in I
and a root in J, then

Ref(W,;,) = Ref (W;) URef (W)).
(where the symbol U signifies a disjoint union).

Corresponding to the connected components of the Coxeter diagram we obtain
a decomposition IT = L; UL,U---UL, such a,b eIl liec in the same subset L; if
and only if there exists a chain of simple roots a = ay,as,...,a; = b such that the
reflections along consecutive terms do not commute. We call the L; the irreducible
components of I1, and the corresponding standard parabolic subgroups W, the irre-
ducible components of W. Note that W = Wy, x W, x --- x Wy, and Ref(W) =
Ref (W, )U---URef(W},).

It is clear that reflections belonging to different irreducible components commute.
On the other hand if b € ® is not simple then it is clear that there exists a simple root
a such that r,(b) # b, and so r, and r, do not commute. It follows that reflections r
and ' belong to the same component if and only if there is a chain of reflections
I =Tr1,I,...,r =1’ such that consecutive terms do not commute.

Lemma 14. Let o : Wi — W), be an isomorphism of Coxeter groups of finite rank with
a(Ref(W1)) = Ref (Wh), and let r,r" € Ref(W)). If r and v’ belong to the same com-
ponent of Wy then o(r) and o(r") belong to the same component of W,.

Proof. This follows from the discussion above, since the image of a non-commuting
chain from r to r’ is a non-commuting chain from o(r) to o(r’). O

Clearly symmetries of the Coxeter diagram give rise to automorphisms that per-
mute the simple reflections; we call these graph automorphisms. We say that an auto-
morphism is inner by graph if it lies in the subgroup of Aut(W) generated by the inner
automorphisms and the graph automorphisms.

Note that since every reflection in W is conjugate to a simple reflection, there are
only finitely many conjugacy classes of reflections. Moreover, it is clear that if « is an
automorphism and C, C’ conjugacy classes such that «(C) = C’, then a(C) = C’. So
if o preserves reflections, in the sense that a(Ref (1)) < Ref (W), then a(Ref(W)) =
Ref(W). In particular, o~ also preserves reflections.

We denote by R(W) the set of all automorphisms of W that preserve reflections.
In view of the reasoning above we see that R(W) is a subgroup of Aut(W). Clearly
R(W) includes all automorphisms that are inner by graph.

Given a € R(W) there exists a function ¢, : IT — @ such that o maps the reflec-
tion along a to the reflection along ¢ (), for all a € I1. Note that ¢, is not uniquely
determined by o; indeed, since r, = r. if and only if » = +¢ (given that b, ¢ € @), there
are exactly two choices for each ¢,(a). Since the reflections {r, | b € ¢,(I1)} generate
W, the roots in ¢, (IT) must span ¥ (by [10, Lemma 2.8]). Hence ¢, (IT) is a basis of V.
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If a, b € 1 then r,r, has order m = my, and a - b = —cos(n/m). So if ¢,(a) = ¢ and
p,(b) = d then r.rqg = a(r,rp) has order m. Since r.r; acts as a rotation on the plane
spanned by ¢ and d, we deduce that

9,(a) - ¢,(b) = cos(Im/mqp) (2.1)
for some / coprime to m,. In particular, ¢,(a) - ¢,(b) = 0if m = 2.

Lemma 15. Let oo € R(W), and suppose that T, the Coxeter diagram of W, is a forest.
Then the function ¢, above can be chosen so that ¢,(a)-¢,(b) <0 for all distinct
a,bell.

Proof. Observe that we can write IT = {a;, a3, . .., a, }, choosing the numbering so that
for each i the valency of ¢; in the diagram associated with the subset {a;, as, ..., a;} is
atmost 1. If by, by, ..., b, are chosen arbitrarily subject to o(r,,) = 13, then for each i
there is at most one j < i such that b; - b; # 0, and we can successively choose signs
&1,€,...,8&, so that (gb;) - (¢;b;) < 0 whenever i # j. O

It is not necessarily true that ¢,(a) - ¢,(b) = a - b, even if they agree in sign. How-
ever, if m = 2, 3, 4 or 6, then the only numbers / € {1,2,...,m — 1} coprime to m are
/=1and /=m— 1, and cos((m — 1)r/m) and cos(n/m) have opposite signs. Hence
we deduce the following result.

Corollary 16. Suppose that o.€ R(W) and T is a forest with edge labels in the set
{3,4,6}. Then we can choose ¢, so that ¢,(a) - ¢,(b) =a-b for all a,b € I1.

The next result is an unpublished theorem of J.-Y. Hée. It follows immediately
from [10, Theorem 4.1].

Theorem 17. Suppose that Wy, W, are irreducible Coxeter groups, with root systems
@, D, and sets of simple roots 11,1, in the spaces Vi, Va. Suppose that g : Vi — V3
is linear, maps @, to ®, bijectively, and satisfies (gu) - (gv) = u-v for all u,v e V.
Then there exists w e W, and ¢ = +1 such that gI1| = ewll,.

Clearly gIl; = ewlIl, implies that the Coxeter diagrams of W) and W, are iso-
morphic. In the case W; = W, we see that the automorphism x — g~!xg is inner by
graph.

Theorem 18. Suppose that o. € R(W') and suppose that the function ¢, can be chosen so
that ¢,(a) - ¢,(b) = a-b for all a,b € T1. Then o is inner by graph.

Proof. The function ¢, : [T — ® extends uniquely to a linear map g : V' — V. The
hypothesis that ¢,(a) - ¢,(b) = a - b for all a, b € I ensures that (gu) - (gv) = u - v for
allu,veV.

Let Wi, W, ..., W, be the irreducible components of W, and Ly, L,,..., L,, the
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corresponding subsets of II. Write ¥} for the subspace of V' spanned by L;. By
Lemma 14 the sets Ref(W)),Ref(W,),...,Ref(W,,) are permuted by «. Now if
i,je{1,2,...,m} satisfy a(Ref(W;)) = Ref(W;) then ¢,(a) € V; for all a € L;, and
so g restricts to a linear map V; — V;. Moreover, g maps the root system of W;
bijectively onto the root system of W}, since « is bijective. Hence Theorem 17 applies,
and we conclude that there exists w; € W; and ¢; = +1 such that ejw_/fl(/)a(a) e L; for
all a € L;. Repeating this construction for all values of j yields a bijective map
0 : T — II such that 8/wj"0(a) = ¢,(a) when 0(a) € L;.

If a, b € 1 belong to different components then so do 0(a) and 0(b), while if they
belong to the same L; then

0(a) - 0(b) = w;ib(a) - w;0(b) = &w;0(a) - &w;0(b) = ¢,(a) - p,(b) =a - b.

So in all cases we must have that mg .95 = map, whence 0 gives rise to a graph auto-
morphism of . We denote this graph automorphism by 7.

LetaelIl, and define b e ® and je {1,2,...,m} by b = ¢,(a) and 0(a) € L;. Then
b = &w;'0(a) € Ref(W)), and we have

- -1
V(ra) =Tg(a) = Feywb = Twip = erbwj = (WIWZ te Wm)rb(wlwz ce Wm)

since wi,wy,...,w, centralize each other, and w; centralizes r, when i # j. But
ry = a(ry) (since b = ¢, (a)), and so, writing w = wiwy - - - wy,,, we deduce that y(r,) =
wa(r,)w™! for all a e T1. Since the r, generate W it follows that a(x) = w™!y(x)w for
all x e W, whence « is inner by graph. O

Corollary 19. If the Coxeter diagram is a forest whose edge labels all belong to the set
{3,4, 6}, then all automorphisms of W that preserve reflections are inner by graph.

Proof. This follows immediately from Theorem 18 and Corollary 16. O

3 Nearly finite Coxeter groups

Recall our definition of “‘nearly finite”’: a Coxeter group of rank # is nearly finite if it
is infinite and has a finite parabolic subgroup of rank n — 1. In this section we begin
our investigation of nearly finite Coxeter groups and their automorphisms. We show,
in particular, that if W is irreducible and nearly finite, and o is an automorphism of
W whose restriction to a finite subgroup of rank n — 1 is inner by graph, then « itself
is inner by graph.

If W is a Coxeter group and IT its set of simple roots, then we shall say that a
subset J of I is of finite type if the corresponding standard parabolic subgroup W is
finite.

The n x n symmetric matrix M is reducible if there are non-empty sets / and J such
that TUJ = {1,...,n} and the (i, j)-entry of M is zero for all i € I and j € J. Other-
wise M 1is irreducible. We define the Gram matrix of the Coxeter group W to be
the n x n matrix whose (i, j)-entry is a; - a;, where Il = {ay,as, ..., a,}. Clearly, the
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Gram matrix of W is irreducible if and only if W is irreducible. We say that W is
nondegenerate if the Gram matrix is nonsingular. Note that if W is finite then it is
nondegenerate, since the Gram matrix is positive definite (by Lemma 1).

Lemma 20. Suppose that M is a positive definite real symmetric matrix such that the
off-diagonal entries of M are non-positive, and let Q = M~'. Then all entries of Q are
nonnegative. Moreover, if M is irreducible then all entries of Q are strictly positive.

Proof. Let n be the degree of M, and write m; and g;; for the (i, j)-entries of M and Q,
forall i, j e {1,2,...,n}. Let ¢; be the i-th vector in the standard basis of R”, written
as a column vector, and let v; be the i-th column of Q. Note that since M is sym-
metric, so too is Q. Hence v} is the i-th row of Q (where the “t” means “transpose”).

The principal minors of M are all positive, since M is positive definite, and g
equals the (i, 7)-th cofactor of M divided by the determinant of M. So it follows that
qii > 0 for all i.

Fix k€ {1,2,...,n}, and define

I={i|l <i<nand gy >0},

J={i|l1<i<nand gy < 0}.

Let x =), ;que; and y = >"._, que;, and observe that x + y = vx. Now oy M = e},
since Q = M~!, and so vp My is the k-th entry of y. But all the entries of y are non-
positive; so

0> v My=y"My+x'"My=y'My+ E qicqgje; Me; = y' My + E qikqjkMi-
iel iel
jeJ jeJ

Each term in this last sum is nonnegative, since i € I gives gy > 0 and j € J gives
gir < 0, while m; < 0 since i # j. Hence

0= y'My+ Z qigimi =y My,
77

and since M is positive definite it follows that y = 0. Hence vx = x, and so all entries
of v, are nonnegative. This applies for all k; so the entries of Q are all nonnegative.

Suppose that Q has at least one zero entry; say gm = 0. Let I = {i|gn; > 0} and
J={jlgy =0} Then IUJ = {1,2,...,n}, since g; = 0 for all i and ;. Our hypoth-
esis says that k € J, whereas & € I, since we proved above that ¢;;, > 0. Hence both 7
and J are nonempty. Furthermore, if j € J then j # &, and we have

t t t
0 =e,e; =v,Me; = Z qnie; Me; = Z qnimj.

iel iel
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Note that m; < 0 for all i € I, since j ¢ I, and since ¢;; > 0 for all i € I we see that all
the terms g;;m;; in the above sum are non-positive. So they must all be zero. Since
gni > 0 for all i € I, we deduce that m;; = 0 for all i € 1. Thus m; = 0 for all i € I and
j €J, and hence M is reducible. [

Corollary 21. Suppose that W is a finite Coxeter group, and let (&), be a family of
nonnegative real numbers indexed by the set I1 of simple roots. Then there exist non-
negative numbers (p,), . such that x =, 4,a satisfies x - a = &, for all a e T1. If
&, > 0 for some a € 11 then py, > 0 for all b in the same component of 1 as a.

In particular, if W is irreducible and &, > 0 for some a, then 1y, > 0 for all b.

Proof. Let L be an irreducible component of I1, and let M be the Gram matrix of
Wy. Then M is positive definite, by Lemma 1, and the off-diagonal entries of M are
non-positive since a - b = —cos(n/mg,) < 0 whenever a,b € IT with a # b. Further-
more, M is irreducible since W} is irreducible. By Lemma 20 the entries of M~! are
all positive.

Writing gp. for the (b,c)-entry of M~!, define p. =", ., qs.ép for each ce L.
Then u, >0, and . > 0 if any ¢, is nonzero. Furthermore, if x; =", u.c, then
xr -a =&, for all a € L. Repeating this construction for all components L, and defin-
ing x =), xz, we see that x-a = ¢, for all a eI, since distinct components are
orthogonal to each other; moreover, x = ), #,a with coefficients u, that are non-
negative, and positive when &, # 0 for some ¢ in the same component as a. O

We shall make use of the following triviality.

Lemma 22. Suppose that W is a Coxeter group, o an automorphism of W, and a, b, ¢
and d simple roots such that o(r,) = r. and a(rp) =rq. Thena-b = c-d.

Proof. We have a - b = —cos(n/my) and ¢ - d = —cos(n/mcq), where mg;, and m,; are
the orders of r,r, and r.ry. But these orders are equal since a(r,rp) = r.ry. O

We now come to the main result of this section.

Theorem 23. Suppose that W is irreducible, non-degenerate and nearly finite, and the
Coxeter diagram of has no infinite edge labels. Let S be the set of simple reflections.
Suppose that o is an automorphism of W that preserves reflections, and suppose that
there exist a,b € I1 (possibly equal) such that T1\{a} and II\{b} are of finite type and
a(S\{r.}) = S\{rp}. Then o is inner by graph.

Proof. Let V, and V}, be the subspaces of V" spanned by IT\{a} and IT\{b}. Let x € ¥,
be such that the vector u = x + a lies in the orthogonal complement of ¥, (which
exists since W is nondegenerate), and, similarly, let y € ¥}, be such that the vector
v =y + b lies in the orthogonal complement of V},. We shall show that y -y < x- x.
Since the same argument with @ and b interchanged and o replaced by o' will show
that x - x < y -y, it will follow that x - x =y - y.
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Write TT\{a} = J; UJyU---UJy, where the J; are the irreducible components of
IM\{a}. For each ¢ € IT\{a} define

&, =cos(n/mey) = —c-a,

and observe that, since W is irreducible, each J; contains at least one ¢ such that
¢, # 0. Now x is the orthogonal projection of —a onto V,, and since the sets J; are
mutually orthogonal it follows that

X=x1+x2+ -+ Xk

where x; is the orthogonal projection of —a onto the subspace spanned by J;. For all
c e J; we have

c-xj=—ca=¢ =0,

with strict inequality for at least one ¢ € J;, and so if we write x; = 3, u.c then it
follows from Corollary 21 that y, > 0 for all ¢ € J;. Thus x = >\ ( K¢ With all
coefficients yu, positive.

Since a(S\{r.}) = S\{r»} there is a bijection ¢ : IT\{a} — IT\{b} with a(r.) = 1
for all ¢ e IT\{a}. By Lemma 22 we have ¢-d = a(c) - a(d) for all ¢,d € I1\{a}, and
extending ¢ linearly gives an isomorphism ¢ : V, — V}.

Let / € ®* be such that a(r,) = ry. Since I's(c)'y has the same order as r.r,, namely
meq, we have that

f-a(c) = cos(l./mey)

for some /. coprime to m,,. Write 0, = cos(l.n/m,,), and note that &. > |0.| for all
c e IT\{a}, with 0. = 0 if and only if £, = 0.
Let z =} .\ (p) Acc be the orthogonal projection of f* onto V}, so that

o(c)-z=a(c) - f =0,
for all ¢ € IT\{a}. Since v = b + y is a nonzero element of the orthogonal complement

of V}, we have that f = z + wv for some scalar w. Now since f = wb + (z + wy) and
z 4 wy € Vp, it follows from Lemma 3 that w > 1. Note also that

z=z1+2Z+ -+ zZk

where z; = . J Zo(c)0(c) is the projection of f onto the space spanned by a(J;).

Fix an arbitrary j e {1,2,...,k}. Since &, > |0.| for all ¢ € J;, we have
0<é.—0.=c-x—o(c)-z=c- (Z,uﬂ’) —al(c) - (Z}vg(d)a(d)>
dGJj dGJ/

= Z(c ~d)y — Z(C‘ d)dga) = Z(C ~d) (g = Zo(a)),

dEJ/‘ dEJ/’ dE.],‘
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since g(c)-o(d) =c-d for all ¢,deJ;. Now by Corollary 21 it follows that
Uy — Ao(a) = 0 for all d € J;, and, moreover, if u; — 4,4y = 0 for some d € J; then we
must have &, — 0. = 0 for all ¢ € J;. Similarly,

0<E+0.= (c-d)(ty+ Ao(a)
delJ;

for all ¢ € J;; s0 py + Agqy = 0 for all d € J;, equality occurring for some d only if
¢+ 0. =0 for all ceJ;. Note in particular that, since j is arbitrary in the above
argument, i, > |Ay(q)| for all d e TT\{a}.

Each ¢ € V' can be written in the form ¢t =ty + vuwithfp € V,andve R. Ifu-u > 0
this gives

l~t:t0-to+v2u-u,

which is positive if 7y # 0 or if v # 0. Since W is infinite this contradicts Part (3) of
Lemma 1. If u-u =0 then ¢-u =0 for all € V, contrary to the assumption that W
is nondegenerate. So u - u < 0, and, by the same reasoning, v - v < 0.

Since f € @

l=f f=(C+o) (z+wv)=z 2+ v,

and we also have that

zZZ= Z /IU(C)O'(C)'ZZ Z /L,(C)Oc.

cel\{a} cell\{a}
Similarly,

l=a-a=(—x+u) - (—x+u)=x-x+u-u,
and also

X-X= Z U X = Z 1o
cell\{a} cel\{a}

Thus

u-u+ Z Ule=v-v+ Z a(e)0c,

cel\{a} cel\{a}

and so

Z (lucéc - /10'(0)00) = CUZU cU—U-U.
cell\{a}
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Since . = |Aq()| and &, > |0.] for all ¢, we see that ZLEH\{a}(lucéf Ao(e)0e) = 0, and
SO w?v-v > u-u. But w?> > 1, and since v-v < 0 it follows that v-v > w?v - v, and
hence v-v=>wu-u. Since 1 =x-x+u-u (shown above) and 1 =y-y+v-v (simi-
larly), it follows that y - y < x - x, as desired.

In view of our earlier remarks, we must have v- v = u - u, and

0 < Z (ﬂcé(,’ - lg((’)ec) = (w2 — l)u U< 0
cell\{a}
since 0 > 1 and u-u < 0. Thus (w? — )u-u =0, giving w = 1, and
Z (/’tcfc - j~(7(L')Hc) = 07
cell\{a}

giving u &, = Ay(e)0c = |Ag(c)0c| for all ¢ € I\ {a}. Furthermore, we have
0< (:uc - Ma(c)l)éc < :ucic - Ma(a)' ‘90| =0,

and it follows that, for all ¢ € IT\{a}, either &, = 0 or |4,()| = #.. As noted above, for
each j e {1,2,...,k} there exists at least one d € J; with {; > 0, so that A, = £u,.
But as we have shown, if 4,4 = u, then 0. = &, for all ¢ € J;, and if Z,(45) = —p, then
0. = =&, for all ¢ € J;. In the former case we have

zi-o(c)=0.=¢ =x-¢
for all ¢ € J;, and it follows that z; = 6(x;). In the latter case,
zi-o(c)=0.=—-¢ =—xj-¢
for all ¢ € Jj, giving z; = —6(x;).
Let w be the the longest element of the parabolic subgroup corresponding to the
union of the sets ¢(J;) for which z; = 6(x;), let f be the inner automorphism of W

given by conjugation by w, and let o’ = flo. Since f permutes S\{r,} we see that o’
satisfies the same hypotheses as «. Now o'(r,) = wrpw™! = r,, and

wf =wz+v=(wz; +wzy + - +wzg) + v,

and here wz; is the projection of wf" onto the span of ¢(J;). Applying to o' the argu-
ments used above for o enables us to deduce that for each j

wz; = +o (%) +Zuc )s

cel;

where o' (r.) = 1y for all ¢ e IT\{a}. But w was chosen so that for each j the ele-
ment wz; is a negative linear combination simple roots, and so wz; = —¢’(x;). Thus
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wf = (—o'(x1) —a'(x2) — - — &' (xx)) + v = —a'(x) + v,

showing that wf - ¢/(¢) = —¢. = a - ¢ for all ¢ € TT\{a}. Since also ¢’'(d) - 6'(¢c) =d - ¢
for all ¢,d € TT\{a}, Theorem 18 shows that o’ is inner by graph. (Indeed, Theorem
17 yields that there exists a w’ € W and ¢ = +1 such that ew’(IT) = wf UTT\{b}. But
wf is easily shown to be positive, and it follows readily that e =1 and N(w') = .
Hence wf' = b, and o’ is in fact a graph automorphism.) O

Our main objective is to prove that Theorem 23 holds without the hypothesis that
a(S\{r.}) = S\{rp}. Our basic strategy is to show that if the given automorphism o
is replaced by off for some suitably chosen f that is inner by graph, then the hypoth-
eses of Theorem 23 are satisfied. Our next theorem accomplishes this in the case that
o preserves some maximal finite subgroup. We need to use a modification of the
argument used in the proof of Theorem 23 to deal with some of the cases.

Theorem 24. Suppose that W is irreducible, non-degenerate and nearly finite, and the
Coxeter diagram has no infinite edge labels. Suppose that o is an automorphism of W
that preserves reflections, and suppose that there exists a € I1 such that o( Wy (qy) =
Wi\{a)- Then o is inner by graph.

Proof. Write J = IT\{a}. Since W} is finite, the classification of finite Coxeter groups
(see [11, Section 2.7]) tells us that each irreducible component of J is of one of the
types in the following list. As is customary, labels equal to 3 are suppressed.

4
A, —o—o B, oo 9o ... o

RS

E;

4 5
Fy: o—eo—o—o H;y: o—o—o
Hy: e e o o L(m): e

Thus the Coxeter diagram of W is a forest, and so by Lemma 15 there is a function
¢, : J — ® such that a(ry) =r, ) for all beJ and ¢,(b) - p,(c) <0 for all b,ceJ
with b # c. As in Corollary 16 it follows that

9:(0) - 9,(c) =b-c (3-1)

unless m,. = 5 or my,. = 7. Furthermore, these values for mj. can only occur if b and
¢ lie in an irreducible component of J of type H3, Hy or I,(m), and then only for one
pair of simple roots in the component.

If Equation (3.1) does hold for all b, ¢ € J then by Theorem 17 there exists w € W
and ¢ = +1 such that ewg, (b) € J for all b € J, and if f§ is the inner automorphism of
W given by x — wxw~! then we see that fa permutes the simple reflections of 1.
Theorem 23 can then be applied, and it follows that fu is inner by graph, whence «
is also inner by graph.
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It remains to deal with those cases in which J has at least one irreducible compo-
nent of type Hz, Hy or I,(m) (where m = 5 or m = 7) on which Equation (3.1) does
not hold. Accordingly, assume that J has such a component. We use an argument
similar to that used in the proof of Theorem 23 to derive a contradiction.

In our calculations below we use the abbreviations c¢(¢) and s(#) for cos(6) and
sin(#), and we also write 7, for 7/m.

If b, c € J are such that Equation (3.1) fails, then b - ¢ = —c(n,,), where m = my,,
and ¢,(b) - ¢,(c) = —c(jm,,) for some j coprime to m. Since ¢,(b) - ¢,(c) < 0 we have
that 1 < j < m/2. If the component of J containing b and c is of type H3 or Hy then
m=>5and j=2.

Let M and M’ be matrices with rows and columns indexed by J, such that, for all
b,ceJ, the (b,c)-entry of M is b - ¢ and the (b, c)-entry of M’ is ¢,(b) - ¢,(c). We
assume that J is ordered so that M is a diagonal sum of matrices corresponding to the
various irreducible components of J. Since ¢,(b) - ¢,(c) =0 if and only if b- ¢ =0,
we see that M’ is also a diagonal sum, with blocks of the same sizes as those of M.

The blocks of M corresponding to components of types I»(m), Hz and Hy are as
follows (assuming the ordering is chosen appropriately).

1 —c(mm)
M=z 1
1 70(7[5) 0
M3: —C(7Z5) 1 —1/2
0 12 1
1 —c(rs) 0 0
—c(ms) 1 —=1/2 0
Mi=1 12 1 -1)2
L0 0o -1/2 1

The following matrices 73, T4 and T are the inverses of M3, My and M.

o US@E) )/ )
" () /P 1/ ()

%544 2V5 2445
Ty=|4+2V5 6+2V5 34+5
24+V5 3445 5

[28 +-12v/5 33 +15V5 224105 11+5V5
334+15V5 42+ 18V5 28+12V/5 14465
224+10V5 28+412v/5 20+8V5 10+4V5
L 1145V5 144+6V5 10+4/5 6425
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For components on which Equation (3.1) fails, the corresponding blocks of M are as
follows.

1 —c(jmm
M= )
L J7tm)
! —c(2n5) 0
M] = | —c(275) 1 -1/2
0 —1/2 1
(1 —c(2n5) 0 0
—c(27s) 1 -1/2 0
M =
4 0 —-1/2 1 —12
| 0 0 -12 1

The corresponding inverses are as follows.

po | VS Um) e /52 m)
T eUma) /2 Gmn) /52 ()

235 4425 243
Ti=|-4+2V/5 6-2V5 3-.5
245 3-v3 55

28— 12v/5  —33+415V/5 —22+410V/5 —11+5V5
—334+15V/5 42-18V/5 28—12V5 14—-6V5
—22+10v/5 28—12v/5  20-8V5  10—4V5
| —11+5V5  14-6V5 10-4/5  6-2V5

It can be checked that all the entries of 7/, T; and T, are positive and strictly less
than the corresponding entries of 77, T3 and T4. Hence if we write #,. and ¢, for the
(b, ¢)-entries of M~" and (M’)™", then we have #;, > t;. for all b, ¢ € J. Since there is
a component for which Equation (3.1) fails, there is a block in which #,. > ¢, for all
b and c.

As in the proof of Theorem 23, we suppose that «(r,) = rs, where f € ®*, and let z
be the projection of f onto V). Let x be the projection of —a onto V. Thenu = x + a
spans the orthogonal complement of V; in V, and u - u < 0 since W is non-degenerate
and infinite. Moreover, f = z + wu for some scalar w, and by Lemma 3 we have
=1

ForeachceJletc-a = —c(ny,) = —¢. Writex=>",_,pu.c. Forall ce J,

c-x=—-c-a=¢&,

sothat &, =5, ,(c-d)u,, and
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o= teaa.

delJ
Now for each ¢ € J there is an integer j. such that
9,(¢) -z =p,(c) - | = c(jemy,,) = O,

where |0.] < &, and 6, = 0 if and only if £, = 0. Writing z =Y __; A.¢,(c), we have

de =Y 104

del

for all ¢ € J. Now observe that

zoz=Y A0 (0)-2) = b= 1,004

celJ celJ ceJ del

and
Z:uc C- Cl Zﬂcéc - Z Z lcdécid'
celJ celJ ceJ del

Since £.&; = |0.04| = 0.0, and t.4 = >0forallc,deJ,

Z Z leaeCa 2 Z Z 14004

But there is an irreducible component of W for which #.; > ¢/,. As W is irreducible
there is an edge joining « to this component and hence there is a ¢ in this component
for which &, > 0. Then lccéf > ZCCOk > ¢ 0%, and so

ccre?

—Xx-a= szcdfcfd > ZZtédﬁcﬁd =z z
c d c d

Therefore 1 + x-a <1 —z-z. Now
u-u=(x+a)-u=a-u=a-at+a-x=1+a-x
Thusu-u<1—z-z and, since u-u < 0,

1>1_Z'Z.

u-u
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Since x € D,
l=x-x=(C+ou) z+ou)=z-z+0’u-u
Hence
o2 — 1—z-z <1
u-u
But w > 1, and so we have obtained the desired contradiction. O

4  Groups with two finite maximal parabolic subgroups

If o € Aut(W) and F is a maximal finite subgroup of W, then clearly «(F) is also a
maximal finite subgroup of W. Theorem 24 was concerned with the case a(F) = F;
in this section we dispense with this assumption.

Proposition 25. Suppose that o.: W — W' is an isomorphism of finite Coxeter groups
that maps reflections to reflections. Then W and W' have the same type.

Proof. Since the irreducible components of W and W' are generated by the reflections
they contain, it follows from Lemma 14 that « maps the components of W to the
components of W'. Hence it is sufficient to prove the result for irreducible W and W’.

If W is of type I>(m) then exactly half the elements of W are reflections, and since
o maps reflections to reflections it follows that half the elements of W' are reflections.
Since I, (m) is the only type of Coxeter group with this property, it follows that W’ is
of the same type as W. Of course a similar argument applies whenever W' is of type
I, (m); so we may assume that neither W nor W' is of type I, (m).

The only coincidences of order for finite irreducible Coxeter groups, excluding
groups of type I,(m), occurs for types A4 and Hj3, which both have order 120. They
are not isomorphic, since, for example, 44 has trivial centre while H3 does not. Since
W and W' have the same order and are isomorphic, we conclude that they are of the
same type. ]

Proposition 26. Suppose that W is an irreducible nearly finite Coxeter group, and let
a € I1 be such that TI\{a} is of finite type. Suppose that there exists b € I with b # a
and TI\{b} of the same type as II\{a}. If I\{a} and TI\{b} have at least one compo-
nent of type Hs, Hy or L(m) for m > 4, then the Coxeter diagram associated with W
either has a symmetry of order two that interchanges a and b, or is of type X (q) for
some q = 2, where these diagrams are as follows:
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Proof. Let T" be the Coxeter diagram of W, and I',, I, the diagrams obtained by
deleting a, b respectively. For each ¢ € I1 let val(c) be the valency of ¢ as a vertex of
I'. Observe that the valency of ¢ # a as a vertex of I}, is val(c) — 1 or val(c) if ¢
is adjacent to @ or not adjacent to « in I'; so the sum of the valencies in T, is
(>cer val(c)) — 2val(a). Applying the same reasoning also to I', we deduce that
val(a) = val(b), since I, and I, are isomorphic.

Suppose first that I, and I', are reducible, and b does not lie in a component of
T, of type Hj, Hy or I(m) for m > 4. Note that val(a) > 2 since there must be edges
from a to all components of T,.

By hypothesis ', has a component A of type H3, Hy or I,(m) that does not contain
b. Observe that A lies in a component A’ of T’ that also contains a, since a is con-
nected to A. Since H, and I,(m) for m > 5 are not contained in any larger diagrams
of finite type, it follows that A is of type H3 or I(5). Furthermore, the valency of a in
A’ is at most 2, since no diagram of finite type has a vertex of valency greater than 2
as well as an edge label greater than 3. So val(a) < 3.

If A is of type H; then A" must be of type Hy, and the valency of ain A" is 1. So a is
adjacent to b in I, and val(a) = 2. Hence T, has exactly two components (given that
it is reducible). One of these is A’, of type Hy, and the other must be of type Hj since
I, has a component of type Hz. Thus I is

a b
e e o o o o o o

5 q 5
and we see that there is a symmetry interchanging ¢ and b.
If A is of type I,(5) then A’ is of type Hz or Hy. In the former case @ has valency 1
in A’; so a is adjacent to b and val(a) = 2. Thus I, and T, are of type I,(5) x Hj,
whence I is

and there is a symmetry interchanging « and b. Turning to the other case, observe
that the valency of a in A’ (of type Hj) is 2, since deleting a gives a component of type
L(5). If a and b are not adjacent then val(a) = 2, and I, has two components, which
must be of types I>(5) and Hy. So I is

a b
*—o—0—0—0—0 9o

5 5

which has a symmetry swapping a and b. So suppose that a and b are adjacent, so that
val(a) = val(b) = 3. Let ¢ be the end vertex of A’ adjacent to a. If ¢ is also adjacent to
b then I, has only two components, and they are of types I(5) and Hy. Furthermore,
the valency of ¢ in I', is 1; so val(c) = 2, and I" must be
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which has a symmetry swapping « and b. Finally, suppose that c¢ is not adjacent to b.
Then T, and T, are of type I,(5) x A; x Hy, and there is a ¢’ adjacent to b that is not
adjacent to a. In this case I is

and again there is a symmetry swapping a and b.

Next we consider those cases for which I', and I', are reducible, and b lies in a
component A of T, of type Hs, Hy or I,(m) for m > 4.

Suppose that A has type Hj. Then the valency of b in I, is at most 2, and conse-
quently 2 < val(a) = val(b) < 3. Suppose val(a) = val(b) = 3. Then a and b must be
adjacent. The two end vertices of A cannot both be adjacent to a, since I’ is re-
ducible. If neither of them are adjacent to a then I';, has three components, and is thus
of type Ay x A1 x Hz. We see that in this case I is

and has a symmetry interchanging « and b. If one of the end vertices of A is adjacent
to a, then I', has two components and is of type 4; x H3. There are four possibilities:
two choices for the vertex of A that is adjacent to ¢, and then two choices for the edge
incident with a that has the label 5.

5 b 5 b 5 b 5 b
p—O p—O *—4 *—4¢
5:61 :ll q li:s
—© —oO *—4¢ *—4
a a 5 5 a a

The first and third of these have symmetries interchanging a and b, while the other
two are both of type X (g).

Now suppose that val(a) = val(h) = 2, still in the case that A is of type H3. Note
that I, and I', must have two components. If b is adjacent to a then it must be an end
vertex of A, and I', must be of type I,(5) x Hj or of type 4, x Hz. The two possi-
bilities for I" are as follows.

*—o—0 *—o—¢
q q
*—o—0 *—o—0
a 5 5 a

In both cases there is a symmetry interchanging a and b. If b is not adjacent to « then
it is the middle vertex of A, and, since only one of the end vertices can be adjacent to
a (given that I, is not irreducible), we see that the one that is not adjacent to a con-
stitutes a component of I, of type 4. So I', and I’y are of type 4, x H;. The four
possibilities for I" are as follows.
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5 b 5 b 5 b 5 b
Ne N oS A
a a s 5 a a
The first and third of these have symmetries interchanging ¢ and b, while the other
two are both of type X (2).
We have dealt with all possible cases for which A is of type Hj. Suppose now that
A is of type Hy. As in the H case we have 2 < val(a) = val(b) < 3.
Suppose first that val(a) = val(b) = 3. Then a and b are adjacent, and b is not an
end vertex of A. If no other vertex of A is adjacent to «, then I', has three components
and is of type Ay x Ay x Hy or Ay x I(5) x Hy. Since a may be either of the inner

vertices of the H, there are potentially four possibilities, but only two of these give I',
isomorphic to I'p. The two possibilities for I" are

b b
oio—o—o oio—o—o
q q
e e e o e o o o

5 a 5 a

and there is a symmetry interchanging « and b. If there were two vertices of A\{b}
adjacent to a then these vertices could not be adjacent to each other, since if they
were then I';, would contain a triangle, contradicting the fact that it is of finite type.
So the two components of A\{h} would have to each contain one of these vertices,
and this is also impossible since then I, would be irreducible. So it remains to con-
sider the cases in which a is adjacent to exactly one of the vertices in A\{b}. In each
case I', must have exactly two components, one of which is a component A\{b} and
the other of which has type Hs. Now b may be either of the two inner vertices of A,
and ¢ may be joined to any of the three vertices of A\{h}. Each of the six choices
gives a unique possibility for I'.

5 b 5 b 5 b
oo *——4 *—4
5: q q : q :
e ] *-—4 *—4¢
a 5 a 5 a
5 b 5 b 5 b
—o —o *—o—4¢
: q : q q :
—© ——O *—0—4
a a 5 a

In each case there is a symmetry of I' interchanging a and b.

Now suppose that val(a) = val(b) = 2, still in that case that A is of type Ha.
Observe that I'; and I', have two components. If 4 is an end vertex of A then it must
be adjacent to a, and I', must be either of type 43 x Hy or of type H3 x Hy. The
corresponding two possibilities for I" are

b 5 5 b
—eo—o o —eo o9
q q
—eo—o—o —eo—o—o
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and in both cases there is a symmetry interchanging a and b. If b is not adjacent to a
then it is an inner vertex of A, and, since only one of the other vertices can be adja-
cent to « (given that I', is not irreducible and does not contain a triangle), we again
obtain six possibilities: b can be either inner vertex of A and a can be adjacent to any
of the three vertices of A\{b}.

5 b 5 b 5h
DN Z
a 5 a 5 a
5 b 5 b 5 b
a a 5 a

In each case there is a symmetry interchanging a and b.

Having dealt with all possible cases for which A is of type H3 or Hy, we assume
now that A is of type I,(m). In this case b has valency 1 in in I[,, and hence has
valency 2 in I'. We see that @ and b are adjacent, and a is not adjacent to the other
vertex of A since I'y is reducible. So I, and I, are of type 4; x I,(m). Thus T is

a b
*—o—0o o
m g m

and there is a symmetry swapping ¢ and b.

We have now dealt with all cases in which I', and I’ are reducible, and it remains
to deal with the possibility that they are irreducible of type I»(m), H; or Hy. Observe
that I" has three vertices in the first case, four in the second and five in the third.

If T, is of type I,(m), with vertices b and ¢, then ', has vertices a and ¢, which must
be joined by an edge labelled m. So I' is

where ¢ = 2 is allowed. There is a symmetry of the desired kind.

If T, is of type H; and b is the middle vertex, then ¢ must also be adjacent to the
other two vertices, since val(a) = val(b). One of these edges must be labelled 5 and
the other 3, since I’ is of type H3. So there are two possibilities for T,

5 b 5 b
5:: ::5
a a

again allowing ¢ = 2. In each case there is a symmetry swapping « and b. If b is an
end vertex of T, then @ must be adjacent to exactly one of the remaining two vertices,
and since there are two choices for b there are four possibilities for I".
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b s b s 5 b 5 b
q: > q: ;5 : ;q ;q
Here again we allow ¢ = 2, and again each of the diagrams has a symmetry swapping
a and b.
Finally suppose that I, is of type Hy. If b is an inner vertex of ', then a must be
adjacent to exactly two of the other vertices of T, to ensure that val(a) = val(b). Fur-
thermore, these two must not belong to the same component of I',\{b} since I', must

not contain a triangle. There are two possibilities for b, and then two possibilities for
the vertices of I',\{b} adjacent to a. The four possibilities for I" are

5 b 5 b 5 b 5 b
NN S TN
allowing ¢ = 2. In each case there is a symmetry swapping a and b. We are left to
consider the cases when b is an end vertex of I',. Suppose first that b at the end with
the edge labelled 5. Since val(a) = val(b) we see that g, like b, is adjacent to exactly
one of the the other three vertices of T',. It cannot be the middle one, or this would
have valency 3 in I[';, contrary to the requirement that [, is of type H4. The other two
are both possible. If b is at the end of I, that does not have the edge labelled 5, we
again deduce that ¢ must be adjacent to exactly one of the other three vertices of T,.

However, only one of these three choices satisfies the requirement that I’ is of type
Hy. So altogether we have three more possibilities for I'. They are

b 5 b s b
qz 5 qz j5 ;q
a a a
allowing g = 2. In each case there is a symmetry swapping ¢ and b. OJ

5 Completion of the proof of the main theorem

Recall first the following trivial fact.

Lemma 27. Let W be a Coxeter group, and a,b € I1. If my, is odd then r, and ry are
conjugate in W.

Proof. If my, = 2k + 1 then r, = (rarb)kra(rar/,)*k. O
Our main theorem is as follows.
Theorem 28. If W is an irreducible non-degenerate nearly finite Coxeter group with

finite edge labels, then any automorphism of W that preserves reflections is inner by
graph.
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Proof. Let o€ R(W), and let a € I be such that J = IT\{a} is of finite type. Then
«(Wj) is a maximal finite subgroup of W, and so equals tWy¢~! for some € W and
some K < I1. Replacing o by w — ta(w)¢~! permits us to assume that o( W) = Wk.
By Proposition 25 and the fact that o preserves reflections, W; and Wx are of the
same type. Thus K = IT\{b} for some b € IT (possibly equal to a).

Suppose that J does not contain any component of type Hs, Hys or I(m) for
m > 4. As W, and Wg are of the same type there is an isomorphism £ : W; — Wx
taking simple reflections to simple reflections. Applying Corollary 19 to the auto-
morphism of W given by w — ! (a(w)), we deduce that there exists 7 € ¥} such that
y:w i (7 (o(w)))r ! is a graph automorphism of W;. Thus £y is an isomorphism
W; — Wk that takes simple reflections to simple reflections. But fy is the restriction
to Wy of the automorphism w — f(r)a(w)p(r)~", and it follows from Theorem 23
that this automorphism is inner by graph. Hence o is inner by graph.

Suppose, on the other hand, that J has a component of type Hs, Hy or I,(m) for
m > 4. If W is not of type X (¢) then by Proposition 26 there is a graph automorphism
y of W that takes Wx to W,. Now ya preserves W, and so Theorem 24 tells us that
yo is inner by graph. Hence « is inner by graph.

It remains to consider that possibility that W is of type X(g) for some ¢ > 2 and
J # K. Let Il = {a,b,c,d, e}, the Coxeter diagram being as follows.

b d

5 99—
c<q

o

as5 ¢

Note that ¢ = 2 is allowed. The simple reflection r, is central in W; therefore
o(re) € Z(Wk) = <ra, w»,

where wg is the longest element in Wx. As o(r,) is a reflection and r, is the only
reflection in Z(Wg) we deduce that a(r.) = r;. Now by Lemma 13

Ref (W) = Ref (Wi, pay) U{re}
Ref(Wx) = Ref (Wi aey) U{ra},

and it follows that a(Ref (W5 a1)) = Ref(Wic o). So el Wiepay) = Wie,a,e}-

Since the group W/, , ) has only one conjugacy class of reflections (by Lemma 27),
replacing o« by w +— t(a(w))¢~! for a suitably chosen ¢ e Wic.a,ey allows us to assume
that a(ry) = r.. Now r = a(rp) has the property that the order of rr, is three (since rpry
has order three), and of the fifteen reflections in Wy, , .y only four satisfy this require-
ment. Furthermore, these four are permuted transitively by the group Wy, ; so again
replacing replacing o by w +— t(a(w))¢~! for a suitably chosen ¢ permits us to assume
that r = r,.

Since r, commutes with r, we deduce that «(r.) is a reflection that commutes with r,.
There are just two possibilities for this: the reflection along e and the reflection along
g = —(A+ 1)e — 2Ja — Ac, where 1 = 2cos(n/5) (the positive solution of 2> = 4 + 1).
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If a(r.) =r, then Theorem 24 tells us that « is inner by graph. So assume that
a(r.) = ry, and let a(r,) = ry, where f € ®. We now have

a(re) =rp,  olrp) =re, 0(re) =1y, alrg) =r1e, are) =rq.

Since rsry has order three, f - g = +1/2. Replacing f by —f if necessary, we may
assume that f - g = —1/2. Since rsr, has order two, f - ¢ = 0. Since rsr, has order ¢
and ryry has order five, f -a = cos(jn/q) for some j coprime to ¢ and f-d =
—cos(krn/5) for some k coprime to 5. Let us write 0, =cos(jn/q) = f-a and
£, = cos(n/q); note that |0,| < &,. Let us also write 6, = cos(kn/5) = —f - d; note
that |6,| < cos(n/5) = 1/2.

For later reference, note that a - g = %(1 —A),whilec-g=e-g=d-g=0.

Define x = Aa + 3 Ac — 04d + (3 + (2 — 24)0,)e. Note that x e Vx. We compute
x - v for each v in the basis {q, ¢,d, g} of Vk.

x-a=2i—32+0+ (G+(2-24)0,)(-14)

% _—/L,“r(;\. —)L)9a=0a=f-a,
xoe=—3A+34404+0=0=f"c,
x-d=0+0-6,+0=f-d,

=L(1-2)+04+040=-1=71"4g.

Thus x is the orthogonal projection of f onto V.
Now define

y=((1420)+ (@ +40E)a+ ((+32) + (2+22)¢,)c
+3d+ ((1+432) + (2 +40)¢&,)e.
We find that
yra=(1+20)+@A+408, -3 (G+32) +2+22)&,) +0
—L((1+32) + (2+44)¢&,)
=3430-322+(3+21-22)¢, =¢, =~b-a,
yoo=—(1+20)+ (@ +40)¢&) + (B+32) + 2+24)&,) +0+0

ce=—3A((14+22)+ (4+40)E) +0+0+ ((1+34) + (2+44)&,)
=14+ A=+ 2+420-21)¢,=0=—b-e.
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Thus y is the projection of —b onto V. Put u = b+ y, a nonzero element of the
orthogonal complement of Vx. We can confirm that I is nondegenerate by checking
that u - u < 0. Indeed,

u-u=(y+b)-u=b-u=1+b-y
1—E((1+20) + 4 +40)E) —12(B+32) + 2 +28)&,) -1
= —2(1+22)&, — (4+41)E <0,

as expected. Now we find that
xoe=—1240+0+3+(2-20)0, =111+ (2-22)0,
and thus

xox=2a-x+3ic-x—04d-x+ (G+(2-22)0,)e-x
=20, +0+ 07+ 3+ (2-220,) (1 12+ (2-22)0,)
=05 +3 =30+ (A+3(1=2)+(3-31+21))0,+4(1 - 2)°0]
=05 +3 304203 -20)0, +4(2 - 2)02.

2? = 1(1 4+ 2). Furthermore, since we also have that |0,| < &,

Note that 05 < 12> =1

1
4

x-x < A+ 203 =240 |04] + 412 — 2] |0.]

7_1
472
1—1A+2024-3)¢, +4(2 - 1)E,

and therefore
l—x-x—u-u>1-I4+11-2021-3)¢ -42- )¢,
FA+2(1422)E, + (4 +42)E;
=(32-3) +85+ (8BA—4)e,
which is clearly positive since all the terms are positive. Therefore

1—x-x

<1

3

u-u

asu-u<0.

As in our earlier proofs we write f = x + wu, and use Lemma 3 to deduce that
either > 1 (if x e ®") or w < —1 (if x € @), and hence that w? > 1. Since f is a
root,
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l=f-f=Kx+ou) - (x+ou)=x-x+o’u-u,

and hence

and this is a contradiction. So this case cannot arise, and we conclude that o is inner
by graph. O

The next result provides a strengthening of our main theorem.

Theorem 29. Theorem 28 remains valid if the assumption that W is nondegenerate is
omitted.

Proof. Let n be the rank of W. Since W is nearly finite there is a subspace of V' of
dimension # — 1 on which the bilinear form B associated with W is positive definite.
If B is degenerate then its radical must be complementary to this positive definite
subspace, and so B is positive semidefinite with a 1-dimensional radical. The classifi-
cation of irreducible positive semidefinite Coxeter groups is given in [11, Section 2.7];
the groups concerned are isomorphic to the affine Weyl groups, and correspond to
the following list of Coxeter diagrams.

= 5 e = 4 4
Ay W, e—e—e— - —o—@
En: :>o—o——oio Dn: :>0—k4—<

Go: o’ e o

In each case the rank is one greater than the name might suggest: for example, A, has
rank n + 1. For types C, and A, we require n > 2; type A; is not covered by the
present theorem since its diagram has oo as an edge label (although the conclusion
of the theorem in fact remains valid). For B, and D, we require n > 3 and n > 4
respectively.

For all cases except A, the desired conclusion that every reflection-preserving
automorphism is inner by graph follows immediately from Corollary 19. So suppose
that W is of type 4, and let « € R(W). Choose a function ¢, : IT — ® such that
a(ry) =1y for all aeIl. Write IT1 = {ag,ai,...,a,}, where ao is adjacent to a,
and a; is adjacent to a;_; for 1 <i < n. Then ¢,(a;) - ¢,(a;) is +1/2 if a; and a; are
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adjacent, and zero otherwise. We can successively choose signs ¢, é;,...,&, so that
when ¢,(a;) is replaced by &¢,(a;) we have ¢, (a;—1) - ¢,(a;) = —1/2 for 1 <i<n.
Now if ¢,(ao) - ¢,(a,) = —1/2 then Theorem 18 guarantees that o is inner by graph.
Butif ¢,(ao) - ¢,(a,) = 1/2 then it is readily checked that the matrix whose (i, j) entry
is ¢,(a;) - ¢,(a;) is positive definite, contradicting the fact that B is degenerate. O

6 Groups with a finite irreducible maximal parabolic subgroup

In this section we shall not assume that the automorphism o« preserves reflections;
instead we shall prove that it must preserve reflections, given appropriate extra
hypotheses. Specifically, we shall investigate nearly finite Coxeter groups with a finite
irreducible maximal parabolic subgroup.

Our analysis depends upon some facts concerning automorphism groups of finite
irreducible Coxeter groups. We proceed to give a brief discussion of this topic.

Let W be a finite irreducible Coxeter group. The centre of W is either trivial or of
order two. We denote the non-identity element of the centre by z, when it exists. In all
of these cases, z is equal to wyy, the longest element of W. The group of all homo-
morphisms from W to the cyclic group of order two is isomorphic to the abelianiza-
tion of W, and has order four if the Coxeter diagram has an even edge label, and
order two otherwise. Let # denote the group of all homomorphisms from W to its
centre. It is clear that for all /" € # the mapping o : w — wf(w) is a homomorphism
from W to itself, and is an automorphism precisely when z is in the kernel of f (so that
zf (z) # 1). These automorphisms are reflection preserving if and only if W is of rank
2. Moreover, oy = oy, whenever f(z) = g(z) = 1; hence o (W) = {oy | z € ker f} is
a subgroup of Aut(W). Clearly all elements of .o/ (W) are self-inverse.

If W is of type B,, with the following diagram,

4
" o o ---—o— @

a

we let { : W — Z(W) be the homomorphism that maps r, — 1 and all other simple
reflections to z. It is easily checked that {(z) = 1, and so a; € Aut(W). Similarly, for
type Fy4 there are two conjugacy classes of reflections, and we let { : W — Z (W) map
the reflections in one of these to z and those in the other to 1. Again oy € Aut(W). In
all cases where wy =z e Z(W), let £ : W — Z (W) be the homomorphism that maps
each simple reflection to z. Then &(w) = z/™*) for all w e W, and so &(z) = 1 precisely
when /(z) is even. In particular, oz € Aut(W) when W is of type Bok, Do, Es, Fs or
H,. A straightforward calculation shows that oz commutes with all reflection preserv-
ing automorphisms.

Proposition 30. The group </ (W) defined above is trivial if W is of type Ay, Dag+1, Es,
E5 or Hz, has order two if W is of type Bayi1, D, Eg or Hy, and has order four if W is
of type By or Fy.

Indeed, o/ (W) = <oz for types Dy, Es and Hy, while o/ (W) = {or) for By,
and o/ (W) = {ag, 07 ) for By and Fy.
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When W is of type I,(m) it is obvious that Aut(W) = R(W), and in all other cases
o (W)NR(W) is trivial. So in these cases Aut(W) has a subgroup isomorphic to
the semidirect product R(W) < o/ (W) (since it is obvious that R(W) is normal in
Aut(W)). Let Gr(W) be the group of all graph automorphisms of . By Theorem
18 we know that R(W) = Inn(W) Gr(W) unless W is of type Hs or Hys. In these
cases there are at most two possibilities for the function ¢, in Lemma 15, and so
[R(W) : Inn(W) Gr(W)] < 2. In fact, as we shall see in the proof of Proposition 32,
types H; and H, do possess reflection preserving automorphisms that are not inner
by graph; so [R(W) : Inn(W) Gr(W)] = 2 in each case. For W of type I,(m) it can
be checked that R(W)/Inn(W) Gr(W) is isomorphic to the group of units of the ring
of integers modulo m.

As is well known, the groups of type A, are isomorphic to the finite sym-
metric groups, and all automorphisms are inner except when n =5, in which case
Inn(W) = R(W) has index two in Aut(#). The main assertion of Theorem 31 below
is that there are no other finite irreducible Coxeter groups W such that Aut(W) #
R(W)t (W).

Whenever the group of symmetries of the Coxeter diagram has order 2, we let y be
the corresponding nontrivial graph automorphism of W. If W is of type H3 or H,
we let p be the non-inner reflection preserving automorphism constructed in the proof
of Proposition 32 below. The following theorem then describes the classification of
automorphisms of finite irreducible Coxeter groups.

Theorem 31. If W is a Coxeter group of type B,, D,, E¢, E7, Es, Fy, H3 or Hy then
Aut(W) = R(W)L(W). Specifically:

1) If Wis of type B, n odd, then Aut(W) = W /{wn) > {ar).

2) If Wis of type By, n even, then Aut(W) = (W /{wny) X (o)) x {og).

3) If Wis of type Dy, n odd, then Aut(W) = R(W) = W.

4) If Wis of type Dy, n even and n > 4, then Aut(W) = ((W /<wrr)) X {p>) x Lag).
5) If Wis of type Dy then Aut(W) = ((W /{wmn)) X Sym;) x {oe).

12

(
(
(
(
(
(
(
(
(

6) If Wis of type E¢ then Aut(W) = R(W) =~ W.

7) If W is of type E7 then Aut(W) = R(W) = W /{wp).

8) If Wis of type Eg then Aut(W) = (W /{wm)) x {oe).
(

9) If Wis of type Fy then Aut(W) = (W /{wm)) X {p, ).
(10) If W is of type Hs then Aut(W) = (W /{wn)) X {p).
(11) If Wis of type Hy then Aut(W) = (W /<{wn)y) X {p)) x Lag).

Proof. (Outline) In all cases we consider the sizes of the conjugacy classes of
involutions; see [3]. We consider the simpler cases first.

For type Eg there are 4 classes of involutions, of sizes 270, 540, 45 and 36, the
class of reflections being the one of size 36. Clearly all automorphisms must preserve

)
)
)
)
)
)
)
)
)
)
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reflections and hence are inner by Corollary 19. In this case the graph automorphism
y is inner, being conjugation by wp. Thus we have:

Aut(W) = R(W) =~ W.

For type E; there are 63 reflections, and the other classes of involutions have sizes
945, 3780, 315, 3780, 316, 945, 63 and 1. In this case wpy is central and so if r is a
simple reflection then rwy is an involution. Thus the other class of involutions that
has size 63 must be the class of rwp. But /(rwp) = 62 is even, and so this class does
not generate . In the absence of graph automorphisms we therefore have:

Aut(W) = R(W) = W /{w).

For type Eg there are 120 reflections, and the other classes of involutions have sizes
3780, 37800, 113400, 3150, 37800, 3780, 120 and 1. Again the second class of size
120 is the class of rwyy, where r is a reflection. But o is an automorphism that inter-
changes these two classes. Thus, up to o, automorphisms preserve reflections and
hence are inner. We have:

Aut(W) = (W /<wn)) x {oe).

For type H; the class of reflections has size 15 while the other classes have sizes 15
and 1. By an argument similar to that used for type E7, the second class of size 15 does
not generate W. Thus Aut(W) = R(W). Since wyy is central, Inn(W) = W /{wp).
But, as explained above, Inn(#) has index two in R(W) in this case. So we have:

Aut(W) = (W /<wm)) X {p.

For type H,4 the class of reflections has size 60 while the other classes have sizes
450, 60 and 1. In this case o is an automorphism that swaps the two classes of size
60, and so Aut(#) is the product of R(W) and <{as). So we have:

Aut(W) = (W/<wnd) = (p)) x Cae.

For type F, there are two classes of reflections, each of size 12, and they are inter-
changed by the graph automorphism y. The remaining classes have sizes 18, 77, 12,
12 and 1. If r and s are representatives of the classes of reflections then rwp; and swyy
are representatives of the other classes of size 12. We can take the homomorphism
(: W — Z(W) defined above to satisty {(r) = wr and {(s) = 1. The reflection sub-
group generated by the reflections conjugate to r is of type D4, and contains wry.
Thus classes of r and rwyy together do not generate W, and the same applies for the
classes of s and swyy. This leaves 8 possible targets for the images of the two classes of
reflections under the action of an automorphism. Since y and o, generate a copy of
the dihedral group of order eight, we have:

Aut(W) = (W/<wn)) Xy, o).
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For types B, and D, we use the well known fact that groups of these types are
isomorphic to &, > Sym,, and &, > Sym,,, where &, = {x1,x2,...,X,) is an elemen-
tary abelian 2-group of order 2”, and &, is the subgroup of &, generated by elements
of the form x;x;. Thus involutions have the form f§;z; where f; is a product of i dis-
tinct transpositions and 7; is a product of j distinct x;’s, with the proviso that if x;,
appears in 7; and the transposition (k) appears in f; then x; also appears in 7;. It
can be shown that if W is of type B, then f,7; is conjugate to an element f;7; where
no term x; in 7; is moved by f;. The same is true in type D, provided that 2i < n,
although j (and /) must be even in this case. The number of elements in the class is

n!
iljl(n —j — 2i)!

If n = 2¢ then the involutions in D, of the form f,7; are conjugate either to 8, or to
B xix;, where (kl) is some transposition in ,. We obtain two classes of size

(2i)!

21!

In type B, the classes of reflections have representatives ;7 and f,7;, with sizes
n(n — 1) and n respectively. The latter class does not occur in type D,. The only
coincidences of class sizes that involve classes of reflections are as follows.

* In type By the class of (1 2)(3 4) has the same size as that of (1 2).

+ In type D4 the class of (1 2)(3 4)x;x, has the same size as that of (1 2).

+ In type Bs the classes of x;x;x3 and x;x,x3x4x5 have the same size as that of (1 2).
+ In type B, the class of x;wy has the same size as that of x;.

» In types B, and Dy, the class of (1 2)wy has the same size as that of (1 2).

The first three cannot give rise to automorphisms as the classes that would contain
the images of the reflections do not generate 1. The same applies in the fourth case
when 7 is odd, while when 7 is even the automorphism o interchanges the two classes
in question. In the fifth case the two classes are interchanged by the automorphism oy
of B, or the automorphism o of D,,. Thus in all cases Aut( W) is generated by .7 (W)
and R(W). Finally, observing that for n odd the graph automorphism of groups of
type D, is induced by conjugation by wp and that the group of graph automorphisms
of type D is isomorphic to Sym;, we have the following conclusions.

If W is of type By, n odd, then Aut(W) =~ W /{wp) > {or).

If W is of type B,, n even, then Aut(W) = ((W/<wny) X o)) x o).

If W is of type D,, n odd, then Aut(W) = R(W) =~ W.

If W is of type D,, n > 4 even, then Aut(W) = (W /<wm)) X {y)) x o).

If W is of type D4 then Aut(W) = (W /<{wr)) > Sym;) X {ag). O
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We now use the above discussion to prove the results that we actually need.

Proposition 32. Let W be a finite Coxeter group, and let o be an automorphism of W
that preserves reflections. Then o preserves the set of parabolic subgroups of W.

Proof. By Lemma 14 we know that o permutes the irreducible components of W,
and by Proposition 25 it maps each component to a component of the same type. So
replacing o by ya for a suitable graph automorphism 7y, we can assume that o pre-
serves each component. So it is sufficient to prove the result for irreducible Coxeter
groups. Since the group of all automorphisms that preserve parabolic subgroups con-
tains the inner and graph automorphisms we have only to consider types H3 and Hy,
and it is sufficient to prove that one element of R(W) that is not inner by graph pre-
serves the set of parabolic subgroups.
Let W be of type Hy and let IT = {a, b, ¢, d}, with the following diagram:

a b ¢ d
—eo—0o o
5

Let 4 =1(1++/5), and define a’ = (344 2)a + 34+ 3)b+2(A+ 1)c+ (A+ 1)d. It
can be checked that @’ € ® and a’- ¢ =a'-d = 0; furthermore, a’-b=1(A—1) =
—cos(2n/5). So there is an automorphism p € R(W) that fixes r;, r. and r,; and takes
r, to ry. If we define

W1 = Fplal'cIpl gV pV Ve pl ol bF aV VbVl dV el bFa,
W2 = Fel'plal'pVqF gVl plal bV ab VbV al' bV dV VbV al'bV a,

W3 = Fplal'pV gV gV eV bV gVpl VeV pF gV bV ale b aVb¥al' ¢ VbV g,
then a straightforward calculation reveals that
i
{wia’,wie,wid} ={a,d, c},

{wara',wab,wrd} = {a+ Ab,a,d},
{wsza’',wib,wic} = {c,la+ (. +1)b+c,a},

and therefore

P( W{mc,d}) = WII W{wla’,mc,wld}wl = WII W{a,dm}wla
PWiahay) = W3 Winar wsb wray W2 = W3 Wia b aywa,
p( W{a,b. c}) = W’;l W{w;,a’,w;b,w;c} w3 = W’;l W{a,b,c}w3-
In particular, these are all parabolic subgroups. It is obvious that p(Wy, . 4y) is par-

abolic, and so p preserves maximal parabolic subgroups. Since the result is known for
groups of lower rank apart from Hj, the proof for Hj is all that remains to be done.
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So now let W be a group of type Hs3, and let IT = {a, b, ¢}, arranged as for Hy. Let
a =2+ 1)a+ (A+1)b+ c. It is readily checked that a’ € ®, and also that &’ - ¢ =
%(i —1)and @’ - b = 0. So there is an automorphism p that interchanges r, and r, and
takes r, to 1. If w = rprarpr, then {wa’,wb} = {c,a}, and so p(Wy, ) is a parabolic
subgroup. If w = r.ryr, then {wa’,we} = {Aa + b, b}, and so p(Wy, ») is a parabolic
subgroup. So p preserves maximal parabolic subgroups, and hence all parabolic sub-

groups, since the result is already known for smaller rank. O

Proposition 33. Suppose that W is a finite irreducible Coxeter group of rank at least
three, and suppose that o, is a non-identity automorphism in of (W). If W' is a maximal
parabolic subgroup of W such that «(W') is also a parabolic subgroup then a(w) = w
forallwe W'.

Proof. Let o = ay where f € #, and let z be the element of W of maximal length.
Suppose that W’ is a maximal parabolic subgroup such that a(w) # w for at least
one element w € W', and suppose, for a contradiction, that o( W') is a parabolic sub-
group. It is trivial to check that inner automorphisms commute with all elements of
of (W); so without loss of generality we may assume that W' = ¥ for some J < II.

Let V' be the subspace of V' spanned by the root system of (W), and let v be
a nonzero element of the orthogonal complement of ¥’ in V. Then wv = v for all
w e a(W;), and in particular o(r,)v = v for all roots a € ®;. There is at least one
a € @} such that o(r,) # r,, since otherwise we would have a(w) = w for all w e W.
Moreover, o(r,) # r, implies that «(r,) = r,z. Now since z acts on V' as multiplica-
tion by —1, if a(r,) = r,z then r,v = —v, which implies that v is a scalar multiple of a.
Since there is at least one such a € @7, it is unique. Fix this root a, and note that it is
orthogonal to V.

If b € @) and b # a then rpa = a(rp)a = a. Hence a is orthogonal to @} \{a}. Thus
r, generates a component of W, of type A;, and every other component of W is
contained in o Wj). Furthermore, r, is not conjugate in W to any other reflection
ry € Wy, since f(r,) = z # f(rp). So Wis of type B, or Fy and Wj is of type Ay x A,_»,
where # is the rank of W. Let K = J\{a}, and note that Wy is a parabolic subgroup
of a(Wy). Thus a(W)) is also of type 4; X A,—». If n > 3 then the centre of «(¥)) has
order two and is generated by a reflection; however, this contradicts the fact that r,z
is not a reflection, since it acts as multiplication by —1 on the space V', which has
dimension greater than 1. So n = 3, and W is of type B;. Writing b for the unique
element of J\{a} we find that the two reflections in a( W) are r, and rpr,z. But these
are conjugate in W, whereas in type B; the parabolic subgroups of type 4, x 4, are
generated by a pair of non-conjugate reflections. O

Proposition 34. Let W be a finite irreducible Coxeter group of rank n, and suppose that
W is not of type As. Let o€ Aut(W), and suppose that for every reflection r € W the
element o(r) lies in a parabolic subgroup of W of rank less than n — 1. Then o.€ R(W).

Proof. Suppose that o ¢ R(W). The image of a proper parabolic subgroup under the
action of an element of R(W) is clearly always a proper parabolic subgroup. So
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we may replace o by of for any f € R(W) without affecting either the hypotheses of
the proposition or the assumption that « ¢ R(W). Since W is not of type 45 we may
assume that o € o/ (W). Let o = oy, where f € #. Now f # 1 since o # 1, and so
there exists a simple reflection r, such that f(r,) = z. It follows that r,z = «(r,) liesin a
parabolic subgroup W' of rank less than n — 1. If I/ is the subspace of ¥ spanned by
the root system of W' then all elements of W’ act trivially on the quotient space V' / V",
which has dimension at least 2. So r,z has 1 as a repeated eigenvalue, contradicting
the fact that it acts as —1 on the (n — 1)-dimensional space {v € V' |v-a = 0}. O

Note that if W is of type As then the automorphisms that do not preserve re-
flections take them to conjugates of the central element of a parabolic subgroup of
type 4;. However, to deal with type A5 we have the following fact.

Proposition 35. Let W be a Coxeter group of type As, and let o€ Aut(W). If there
exists a nontrivial proper parabolic subgroup W' of W such that o(W') is also a para-
bolic subgroup of W then o is inner.

Proof- We can identify W with the symmetric group of degree 6, and, modifying « by
an appropriate inner automorphism, we may assume that the action of o on the gen-
erators r; = (i,i + 1) (for 1 <i < 5) is as follows:

(I 2)— (1 3)(2 4)(5 6)
(23)—(16)2 53 4
(34)— (1 4)2 3)(506)
45— (16)24)(35)
(56)— (1 2)(3 4)(506).

If W’ is a nontrivial proper parabolic subgroup such that a(W"') is also parabolic
then a(W') certainly contains an element from the conjugacy class of W containing
the element (1 2)(3 4)(5 6). Hence a(W’) is of type 43 or Ay x Aj;. Since o is inner,
it suffices now to check that neither «(<ry, r3,rs») nor a(<ry,r,rs,rsy) is a parabolic
subgroup. We leave this straightforward task to the reader. O

Suppose that I is a nearly finite Coxeter group of rank n with no infinite edge
labels. Suppose that a € IT is such that J = IT\{a} is irreducible and of finite type,
and let o be an automorphism of W. From Corollary 12 we know that a(W) is a
maximal finite parabolic subgroup. Replacing « by its composite with an inner auto-
morphism permits us to assume that a(1;) = W for some K < II. Clearly the rank
of Wk is at most n — 1.

We claim that Wy is of the same type as W;. This depends on the following fact,
whose proof we omit.
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Proposition 36. Suppose that W is an irreducible finite Coxeter group that is abstractly
isomorphic to a direct product of two nontrivial Coxeter groups. Then W is either of
type By for some odd k > 1 or I,(2m) for some odd m > 1. The factors are of types A,
and Dy, in the former case (or Ay and As if k = 3), and of types A, and I,(m) in the
latter case.

This can be proved, for example, by an examination of the list of normal subgroups
of finite irreducible Coxeter groups given by Maxwell [13]. The proposition tells us
that if an irreducible finite Coxeter group is abstractly isomorphic to a reducible
Coxeter group, then the rank of the reducible group is one greater than the rank of
the irreducible group.

Hence in our situation above, Wx must be irreducible. As we noted in the proof of
Proposition 25, if two irreducible finite Coxeter groups are abstractly isomorphic
then they are of the same type. So W, and Wx are of the same type. Thus we have
proved the following result.

Theorem 37. If W is a nearly finite Coxeter group of rank n, and Wy a standard para-
bolic subgroup of W that is irreducible and of rank n — 1, then any automorphism of
W will map Wj to a conjugate of a standard parabolic subgroup Wy of the same type
as Wj.

The following is Lemma 9 in [9].

Lemma 38. If W is any infinite irreducible Coxeter group then the only graph auto-
morphism that is inner is the identity.

Our objective is to prove the following result.

Theorem 39. Suppose that W is a nearly finite Coxeter group with finite edge labels,
and suppose that J = TI\{a} is irreducible and of finite type. Suppose also that my is
odd for at least one b € J. Then all automorphisms of W are inner by graph, and indeed

Aut(W) = Inn(W) < Gr(W),
where Gr(W) is the group of all graph automorphisms of W.

Proof. Since Lemma 38 above tells us that Inn(W)NGr(W) = {1}, the assertion
that Aut(W) = Inn(W) > Gr(W) will follow once it has been shown that all auto-
morphisms are inner by graph. By Theorem 29 it suffices to prove that all auto-
morphisms preserve reflections.

Suppose, for a contradiction, that o € Aut(W) does not preserve reflections. By
Theorem 37 we may assume that o W;) = Wx for some K < IT of the same type as J.
Let f: Wx — W, be an isomorphism that takes simple reflections to simple reflec-
tions. Since r, is conjugate to an element of W, there exists at least one reflection
r € Wy such that a(r) is not a reflection; hence the automorphism y of W, given by
w — P(a(w)) is not in R(W).
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Let us first assume that J and K are not of type 4s. By Proposition 34 there is a
b € J such that y(b) does not lie in any parabolic subgroup of W; of rank less than
n — 2, where n is the rank of W. So «(rp) does not lie in any parabolic subgroup of
Wk of rank less than n — 2. Since m,, # oo there exists at least one maximal finite
parabolic subgroup W’ containing both r, and r,. Suppose there are more than one
of these, say W’ and W”". Then a(W') and a(W") are distinct proper parabolic
subgroups of W, and so a(W’')Na(W") is a parabolic subgroup of W of rank at
most n — 2 (by Lemma 7). Furthermore, a(W’')Na(W") is not contained in Wk,
since W’ N W" is not contained in Wj. So a(W')Na(W")N Wk has rank at most
n — 3 and is a parabolic subgroup of Wx containing «(r;). This contradiction shows
that there is a unique maximal finite parabolic subgroup W' containing r, and rp.
Since there is obviously a maximal finite standard parabolic subgroup containing r,
and ry, it follows from Lemma 12 that W' = W} for some L < I1. If W} has rank
n — 2 or less then o( W) N Wx has rank n — 3 or less and is a parabolic subgroup of
Wx containing r; as before, this is a contradiction. So L = IT\{c} for some c € J;
moreover, o W7) N Wx has rank n — 2.

Since W} is not of type As, there is a reflection preserving automorphism ¢ of W
such that dy € .o/ (W;). Now

07)(Wens) = 0(Bla(WL N Wy))) = o(Bla(WL) N W)

is a maximal parabolic subgroup of W, by Proposition 32. So by Proposition 33 it
follows that (dy)(w) = w for all w € Wyn,. Since r, € Wy and J preserve reflections,
it follows that y(r;) is a reflection, and hence o(r;) is a reflection. This is a contradic-
tion, and completes the proof in the case that J and K are not of type 4s.

So suppose that J and K are of type 4s. Let W be a maximal finite standard para-
bolic subgroup of W containing r, and r,. Then o( Wy) N Wk is the intersection of two
maximal finite subgroups of W, and hence is a nontrivial proper parabolic subgroup
of Wk. So p(a(Wr)N Wx) =9(Wrny) is a proper parabolic subgroup of W;. By
Proposition 35 it follows that y is inner, contradicting the fact that y ¢ R(W}). ]
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