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Automorphisms of nearly finite Coxeter groups
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Abstract. Suppose that W is an infinite Coxeter group of finite rank n, and suppose that W has
a finite parabolic subgroup WJ of rank n� 1. Suppose also that the Coxeter diagram of W has
no edges with infinite labels. Then any automorphism of W that preserves reflections lies in the
subgroup of AutðWÞ generated by the inner automorphisms and the automorphisms induced
by symmetries of the Coxeter graph. If, in addition, WJ is irreducible and every conjugacy class
of reflections in W has nonempty intersection with WJ , then all automorphisms of W preserve
reflections, and it follows that AutðW Þ is the semi-direct product of InnðW Þ by the group of
graph automorphisms.
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There is not much literature dealing with the automorphism groups of infinite Cox-
eter groups.1 It seems that complete results are known only for rank 3 Coxeter groups
and the so-called right-angled Coxeter groups.

A Coxeter group is right-angled if the labels on all edges in the Coxeter diagram are
y. These were investigated by James, [12], who described the automorphism groups
of Coxeter groups whose diagrams have the following form:

� y � y � � � � � y �:

James’s result was extended by Tits, [16], to include all irreducible right-angled Cox-
eter groups whose diagrams do not contain triangles. Finally, in [14], Mühlherr gave
a presentation for the automorphism group of any right-angled Coxeter group.

The automorphism groups of infinite rank 3 Coxeter groups whose diagrams have
no edges with infinite labels are described in [9]; in this case the automorphism group
is the semi-direct product of InnðWÞ and the group of graph automorphisms. The
automorphism groups of rank 3 Coxeter groups with both finite and infinite edge
labels are described in [8].

1The closely related question of whether a Coxeter group may contain more than one class
of Coxeter generating sets is investigated in [5].



For the purposes of this paper, we say that an infinite Coxeter group is nearly finite

if it has finite rank n and has a finite parabolic subgroup of rank n� 1. It is shown
that if W is nearly finite and does not have an edge labelled y then the group of all
automorphisms of W that preserve reflections is the semi-direct product of InnðWÞ
and the group of graph automorphisms. In certain special cases we are able to show
that all automorphisms of W preserve reflections. In fact, if we restrict attention to
infinite irreducible Coxeter groups whose diagrams have no infinite edge labels, then
we know of no example having an automorphism that does not preserve reflections.

1 Preliminaries

Recall that a Coxeter group is a group with a presentation of the form

W ¼ gphfra j a A Pg j ðrarbÞmab ¼ 1 for all a; b A Pi ð1:1Þ

where P is some indexing set, whose cardinality is called the rank of W , and
the mab satisfy the following conditions: mab ¼ mba, each mab lies in the set
fm A Z jmd 1gU fyg, and mab ¼ 1 if and only if a ¼ b. When mab ¼y the relation
ðrarbÞmab ¼ 1 is interpreted as vacuous. We shall restrict attention to finite rank groups
with mab 0y for all a; b A P.

As is well known, the isomorphism type of W as an abstract group does not
determine either the parameters mab or the rank of W as a Coxeter group. Hence we
always assume that the presentation (1.1) is given; in particular, fra j a A Pg is a dis-
tinguished set of generators for the group W .

A reduced expression for an element w A W is a minimal length word expressing w

as a product of elements of the distinguished generating set. We define lðwÞ to be the
length of a reduced expression for w.

The Coxeter diagram of W is a graph with vertex set P and edge set consisting of
those pairs of vertices fa; bg for which mab d 3. The edge fa; bg is given the label mab.
We say that W is irreducible if its diagram is connected.

Let R be the real field, and V the vector space over R with basis P. Let B the
bilinear form on V such that for all a; b A P,

Bða; bÞ ¼ �cosðp=mabÞ:

To make our notation more compact we define u � v ¼ Bðu; vÞ for all u; v A V . Note
that a � a ¼ 1 for all a A P, since maa ¼ 1.

For each a A V such that a � a ¼ 1 the transformation of V given by v 7!
v� 2ða � vÞa is called the reflection along a. It is well known (see, for example, Cor-
ollary 5.4 of [11]) that W has a faithful representation on V such that, for all a A P,
the element ra acts as the reflection along a. We shall identify elements of W with
their images in this representation. We also use the notation ra for the reflection along
a whenever a A V satisfies a � a ¼ 1. It is straightforward to show that each reflection
ra preserves the form B; hence all elements of W preserve B. Furthermore, the
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equation grag
�1 ¼ rga holds for all a A V such that a � a ¼ 1 and all transformations

g that preserve B.
We write RefðWÞ for the set of all reflections in W . It is immediate from the above

comments that if F ¼ fwa jw A W ; a A Pg then frb j b A FgJRefðWÞ.
The set F is called the root system of W , and elements of F are called roots. Ele-

ments of the basis P are called simple roots, and the reflections ra for a A P are called
simple reflections. A root is said to be positive if it has the form

P
a AP laa with la d 0

for all a A P, and negative otherwise. We write Fþ for the set of all positive roots and
F� for the set of all negative roots.

Lemma 1. With the notation as above, the following statements hold.

(1) Every negative root has the form
P

a AP laa with la c 0 for all a A P. Furthermore,
F� ¼ f�b j b A Fþg.

(2) If w A W and a A P then

lðwraÞ ¼
lðwÞ þ 1 if wa A Fþ;

lðwÞ � 1 if wa A F�:

�
(3) If t A RefðWÞ then t ¼ rb for some b A F.

(4) The group W is finite if and only if the bilinear form B is positive definite.

(5) The root system F is finite if and only if the group W is finite.

Proof. Proofs of (1) and (2) can be found in [11, Section 5.4], Theorem 4.1 in [6]
includes both (4) and (5), and (3) is [10, Lemma 2.2]. r

For each w A W we define NðwÞ ¼ fb A Fþ jwb A F�g. By Part (2) of Lemma 1, if
w0 1 then NðwÞVP0q. An easy induction shows that NðwÞ has exactly lðwÞ ele-
ments. In particular, NðwÞ is a finite set. It is also easily shown that if F is finite then
there is a unique w A W such that NðwÞ ¼ Fþ. This element, which we denote by wP,
is also the unique element of maximal length in W (which is a finite group).

We need the following simple fact.

Lemma 2. Suppose that w A W is an involution, and let a A NðwÞVP. Then either

wa ¼ �a or lðrawraÞ ¼ lðwÞ � 2.

Proof. Observe that �wa A Fþ, since a A NðwÞ. Now NðraÞ ¼ fag, since a A P, and
so if �wa0 a it follows that rað�waÞ A Fþ. But this implies that ðrawÞa A F�, and so
by Lemma 1 combined with the obvious fact that each element has the same length
as its inverse,

lðrawraÞ ¼ lðrawÞ � 1 ¼ lðwraÞ � 1 ¼ lðwÞ � 2

as claimed. r
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The following lemma is one of the key ingredients in the proof of our main
theorem.

Lemma 3 (Brink [2]). Suppose that b is a positive root, and write b ¼
P

a AP laa. For
each a A P, if la > 0 then la d 1.

2 Parabolic subgroups and reflection preserving automorphisms

Let W be a Coxeter group, and continue with the notation introduced in the pre-
ceding section. For each I JP we define WI to be the subgroup of W generated by
fra j a A Ig. These subgroups are called the standard parabolic subgroups of W . A
parabolic subgroup of W is any subgroup of the form wWIw

�1 for some w A W and
I JP. We shall use the phrase ‘‘maximal parabolic subgroup’’ to mean ‘‘maximal
proper parabolic subgroup’’.

It is clear that if I JP then WI preserves the subspace VI of V spanned by I , and
acts on this subspace as a Coxeter group with I as its set of simple roots. We write FI

for the root system of WI in VI , and Fþ
I ;F

�
I for the sets of positive and negative roots

in FI .

Lemma 4. In the above situation, FI ¼ FVVI .

Proof. For each b ¼
P

a AP laa A F define suppðbÞ ¼ fa A P j la 0 0g. It is clear that
if b ¼ wa for some a A I and w A WI then suppðbÞJ I ; we must prove that the con-
verse also holds. Without loss of generality we may assume that b is positive.

Let b A Fþ with suppðbÞJ I . Since rb 0 1 we may choose a simple root c A
NðrbÞVP. Then c� 2ðb � cÞb ¼ rbc A F�, and so b � c > 0. Since a � cc 0 for all
a A Pnfcg it follows that c A suppðbÞ.

We proceed by induction on lðrbÞ. If lðrbÞ ¼ 1 then we must have b ¼ c, and
b ¼ wa holds with w ¼ 1 A WI and a ¼ c A I . Now suppose that lðrbÞ > 1, so that
b0 c, and put d ¼ rcb. Lemma 2 gives lðrdÞ ¼ lðrcrbrcÞ ¼ lðrbÞ � 2; moreover, since
d ¼ b� 2ðc � bÞc we see that suppðdÞJ suppðbÞ. By the inductive hypothesis d ¼ wa

for some w A WI and a A I , and since c A I it follows that rcw A WI , and b ¼ ðrcwÞa is
an equation of the desired form. r

The next proposition, classifying involutions in Coxeter groups, is a useful tool in
the analysis of automorphisms.

Proposition 5 (Richardson [15]). Suppose that w A W is an involution. Then there is an

I JP such that WI is finite, w is conjugate to wI (the maximal length element of WI )
and wI is central in WI .

Proof. Let L ¼ fa A P jwa ¼ �ag. First observe that Fþ
L HNðwÞ is finite, and so, by

Lemma 1, WL is finite. If a A L then wraw ¼ rwa ¼ r�a ¼ ra, and so it follows that w
centralizes WL.

If w ¼ wL then we are finished; so suppose that w0wL. Then wLw0 1, and so
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we may choose an a A NðwLwÞVP. If wa A Fþ, then, as wLwa A F�, we have
wa A NðwLÞ ¼ Fþ

L . But then

a ¼ wðwaÞ A wFþ
L ¼ F�

L ;

which is a contradiction. Hence a A NðwÞVP. Now wa0�a, since wa ¼ �a would
mean that a A L, and

wLwa ¼ wLð�aÞ A wLF
�
L ¼ Fþ

L ;

contradicting a A NðwLwÞ. Hence lðrawraÞ ¼ lðwÞ � 2 by Lemma 2, and we can use
induction on the length to complete the proof. r

Note that the above proof in fact shows that w ¼ t�1wI t for some t A W such that
lðwÞ ¼ 2lðtÞ þ lðwI Þ.

Our main tool in the analysis of automorphisms of infinite Coxeter groups is the
following lemma, which appears in [1, Exercise 2d, p. 130].

Lemma 6 (Tits). If W is a Coxeter group and HcW is finite, then H is contained in a

finite parabolic subgroup of W.

One immediate consequence of Lemma 6 is that every maximal finite subgroup of
a Coxeter group is parabolic.

Lemma 7 (Kilmoyer). Let I ; JJP. Then every ðWI ;WJÞ double coset in W contains

a unique element of minimal length; moreover, if d is the minimal length element of

WIdWJ then WI V dWJd
�1 ¼ WK , where K ¼ I V dJ.

Proof. See [4, Theorem 2.7.4]. r

Corollary 8. The intersection of a finite number of parabolic subgroups is a parabolic

subgroup.

Proof. If H and K are parabolic subgroups then H ¼ x�1WIx and K ¼ y�1WJy for
some I ; JJP and x; y A W . Let d be the minimal length element in WIxy

�1WJ , and
choose u A WI and t A WJ such that d ¼ uxy�1t. Then

H VK ¼ x�1u�1WIuxV y�1tWJt
�1y ¼ x�1u�1ðWI V dWJd

�1Þux;

which is a parabolic subgroup by Lemma 7. Induction completes the proof. r

Since the image under any automorphism of a maximal finite subgroup must be
another maximal finite subgroup, Corollary 8 immediately yields the following
result.
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Corollary 9. Let W be an infinite Coxeter group, and a A AutðWÞ. If H is a subgroup

of W that can be written as the intersection of a collection of maximal finite subgroups,
then aðHÞ is a parabolic subgroup of W.

A special case of Corollary 9 provides a possible method for proving that an auto-
morphism preserves reflections.

Corollary 10. If W is an infinite Coxeter group, a A AutðWÞ and r is a reflection such

that hri can be written as an intersection of maximal finite subgroups, then aðrÞ is a

reflection.

Suppose that I JP is such that WI is a maximal finite standard parabolic sub-
group of W (in the sense that WI is finite and WJ is infinite for all J with I Y JJP).
We shall show that WI is not properly contained in any finite subgroup of W .

Lemma 11. Let WI be a maximal finite standard parabolic subgroup. Then WI is not

conjugate to a subgroup of any other finite standard parabolic subgroup.

Proof. Suppose that WI J tWKt
�1 for some t A W and some KJP such that WK is

finite and K0 I . These assumptions are not altered by replacing t by another element
of the double coset WItWK ; so we may assume that t is the minimal length element of
WItWK . By Corollary 7 it follows that WI ¼ WIVtK , and so I J tK .

Since WI is a maximal finite standard parabolic subgroup, t0 1. So, by Lemma
1, we may choose a simple root c such that t�1c ¼ d is negative. As t has minimal
length in tWK , Lemma 1 guarantees that ta is positive for all a A K , and hence tb is
positive for all b A Fþ

K . But �d is positive while tð�dÞ ¼ �c is negative, and so we
conclude that d is not in FK . Thus when d ¼ t�1c is expressed as a linear combina-
tion of simple roots, some e B K appears with a negative coe‰cient. Now suppose
that b A Fþ

IUfcgnFI , so that b ¼ lcþ v for some l > 0 and some v A VI . Since t
�1I JK

it follows that t�1v A VK , and hence t�1b ¼ lðt�1cÞ þ t�1v involves e with negative
coe‰cient. So t�1b A F�. But FI Ufcg is infinite, while FI is not. So t�1 takes an infinite
number of positive roots to negative roots, and hence has infinite length. This is a
contradiction. r

Corollary 12. If W is any infinite Coxeter group, then all maximal finite standard par-

abolic subgroups of W are maximal finite subgroups of W.

Proof. If WI is a maximal finite standard parabolic subgroup but not a maximal finite
subgroup then WI c tWJt

�1 for some t A W and JJP with jWI j < jWJ j < y, by
Lemma 6. But this contradicts Lemma 11. r

If I and J are disjoint subsets of P such that mab ¼ 2 for all a A I and b A J, then VI

and VJ are orthogonal to each other, and it follows readily that WIUJ ¼ WI �WJ .
Moreover, FIUJ ¼ WIUJðI U JÞ ¼ WII UWJJ ¼ FI UFJ , since each w A WI fixes
each a A J and each w A WJ fixes each a A I . So we obtain the following result.
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Lemma 13. Let W be a Coxeter group of rank n and P the set of simple roots. If I and
J are disjoint subsets of P such that no edge of the Coxeter diagram joins a root in I

and a root in J, then

RefðWI _UUJÞ ¼ RefðWI Þ _UURefðWJÞ:

(where the symbol _UU signifies a disjoint union).

Corresponding to the connected components of the Coxeter diagram we obtain
a decomposition P ¼ L1

_UUL2
_UU � � � _UULm such a; b A P lie in the same subset Li if

and only if there exists a chain of simple roots a ¼ a1; a2; . . . ; ak ¼ b such that the
reflections along consecutive terms do not commute. We call the Li the irreducible
components of P, and the corresponding standard parabolic subgroups WLi

the irre-
ducible components of W . Note that W ¼ WL1

�WL2
� � � � �WLm

and RefðWÞ ¼
RefðWL1

Þ _UU � � � _UURefðWLm
Þ.

It is clear that reflections belonging to di¤erent irreducible components commute.
On the other hand if b A F is not simple then it is clear that there exists a simple root
a such that raðbÞ0 b, and so ra and rb do not commute. It follows that reflections r
and r 0 belong to the same component if and only if there is a chain of reflections
r ¼ r1; r2; . . . ; rk ¼ r 0 such that consecutive terms do not commute.

Lemma 14. Let a : W1 ! W2 be an isomorphism of Coxeter groups of finite rank with

aðRefðW1ÞÞJRefðW2Þ, and let r; r 0 A RefðW1Þ. If r and r 0 belong to the same com-

ponent of W1 then aðrÞ and aðr 0Þ belong to the same component of W2.

Proof. This follows from the discussion above, since the image of a non-commuting
chain from r to r 0 is a non-commuting chain from aðrÞ to aðr 0Þ. r

Clearly symmetries of the Coxeter diagram give rise to automorphisms that per-
mute the simple reflections; we call these graph automorphisms. We say that an auto-
morphism is inner by graph if it lies in the subgroup of AutðWÞ generated by the inner
automorphisms and the graph automorphisms.

Note that since every reflection in W is conjugate to a simple reflection, there are
only finitely many conjugacy classes of reflections. Moreover, it is clear that if a is an
automorphism and C;C 0 conjugacy classes such that aðCÞJC 0, then aðCÞ ¼ C 0. So
if a preserves reflections, in the sense that aðRefðWÞÞJRefðWÞ, then aðRefðWÞÞ ¼
RefðWÞ. In particular, a�1 also preserves reflections.

We denote by RðWÞ the set of all automorphisms of W that preserve reflections.
In view of the reasoning above we see that RðWÞ is a subgroup of AutðWÞ. Clearly
RðWÞ includes all automorphisms that are inner by graph.

Given a A RðWÞ there exists a function ja : P ! F such that a maps the reflec-
tion along a to the reflection along jaðaÞ, for all a A P. Note that ja is not uniquely
determined by a; indeed, since rb ¼ rc if and only if b ¼Gc (given that b; c A F), there
are exactly two choices for each jaðaÞ. Since the reflections frb j b A jaðPÞg generate
W , the roots in jaðPÞmust span V (by [10, Lemma 2.8]). Hence jaðPÞ is a basis of V .
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If a; b A P then rarb has order m ¼ mab and a � b ¼ �cosðp=mÞ. So if jaðaÞ ¼ c and
jaðbÞ ¼ d then rcrd ¼ aðrarbÞ has order m. Since rcrd acts as a rotation on the plane
spanned by c and d, we deduce that

jaðaÞ � jaðbÞ ¼ cosðlp=mabÞ ð2:1Þ

for some l coprime to mab. In particular, jaðaÞ � jaðbÞ ¼ 0 if m ¼ 2.

Lemma 15. Let a A RðWÞ, and suppose that G, the Coxeter diagram of W, is a forest.
Then the function ja above can be chosen so that jaðaÞ � jaðbÞc 0 for all distinct

a; b A P.

Proof.Observe that we can writeP ¼ fa1; a2; . . . ; ang, choosing the numbering so that
for each i the valency of ai in the diagram associated with the subset fa1; a2; . . . ; aig is
at most 1. If b1; b2; . . . ; bn are chosen arbitrarily subject to aðraiÞ ¼ rbi , then for each i

there is at most one j < i such that bi � bj 0 0, and we can successively choose signs
e1; e2; . . . ; en so that ðeibiÞ � ðejbjÞc 0 whenever i0 j. r

It is not necessarily true that jaðaÞ � jaðbÞ ¼ a � b, even if they agree in sign. How-
ever, if m ¼ 2, 3, 4 or 6, then the only numbers l A f1; 2; . . . ;m� 1g coprime to m are
l ¼ 1 and l ¼ m� 1, and cosððm� 1Þp=mÞ and cosðp=mÞ have opposite signs. Hence
we deduce the following result.

Corollary 16. Suppose that a A RðWÞ and G is a forest with edge labels in the set

f3; 4; 6g. Then we can choose ja so that jaðaÞ � jaðbÞ ¼ a � b for all a; b A P.

The next result is an unpublished theorem of J.-Y. Hée. It follows immediately
from [10, Theorem 4.1].

Theorem 17. Suppose that W1;W2 are irreducible Coxeter groups, with root systems

F1;F2 and sets of simple roots P1;P2 in the spaces V1;V2. Suppose that g : V1 ! V2

is linear, maps F1 to F2 bijectively, and satisfies ðguÞ � ðgvÞ ¼ u � v for all u; v A V1.
Then there exists w A W2 and e ¼G1 such that gP1 ¼ ewP2.

Clearly gP1 ¼ ewP2 implies that the Coxeter diagrams of W1 and W2 are iso-
morphic. In the case W1 ¼ W2 we see that the automorphism x 7! g�1xg is inner by
graph.

Theorem 18. Suppose that a A RðWÞ and suppose that the function ja can be chosen so

that jaðaÞ � jaðbÞ ¼ a � b for all a; b A P. Then a is inner by graph.

Proof. The function ja : P ! F extends uniquely to a linear map g : V ! V . The
hypothesis that jaðaÞ � jaðbÞ ¼ a � b for all a; b A P ensures that ðguÞ � ðgvÞ ¼ u � v for
all u; v A V .

Let W1;W2; . . . ;Wm be the irreducible components of W , and L1;L2; . . . ;Lm the
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corresponding subsets of P. Write Vj for the subspace of V spanned by Lj. By
Lemma 14 the sets RefðW1Þ;RefðW2Þ; . . . ;RefðWmÞ are permuted by a. Now if
i; j A f1; 2; . . . ;mg satisfy aðRefðWiÞÞ ¼ RefðWjÞ then jaðaÞ A Vj for all a A Li, and
so g restricts to a linear map Vi ! Vj . Moreover, g maps the root system of Wi

bijectively onto the root system of Wj, since a is bijective. Hence Theorem 17 applies,
and we conclude that there exists wj A Wj and ej ¼G1 such that ejw

�1
j jaðaÞ A Lj for

all a A Li. Repeating this construction for all values of j yields a bijective map
y : P ! P such that ejw

�1
j yðaÞ ¼ jaðaÞ when yðaÞ A Lj .

If a; b A P belong to di¤erent components then so do yðaÞ and yðbÞ, while if they
belong to the same Li then

yðaÞ � yðbÞ ¼ wjyðaÞ � wjyðbÞ ¼ ejwjyðaÞ � ejwjyðbÞ ¼ jaðaÞ � jaðbÞ ¼ a � b:

So in all cases we must have that myðaÞyðbÞ ¼ mab, whence y gives rise to a graph auto-
morphism of W . We denote this graph automorphism by g.

Let a A P, and define b A F and j A f1; 2; . . . ;mg by b ¼ jaðaÞ and yðaÞ A Lj. Then
b ¼ ejw

�1
j yðaÞ A RefðWjÞ, and we have

gðraÞ ¼ ryðaÞ ¼ rejwjb ¼ rwjb ¼ wjrbw
�1
j ¼ ðw1w2 � � �wmÞrbðw1w2 � � �wmÞ�1

since w1;w2; . . . ;wm centralize each other, and wi centralizes rb when i0 j. But
rb ¼ aðraÞ (since b ¼ jaðaÞ), and so, writing w ¼ w1w2 � � �wm, we deduce that gðraÞ ¼
waðraÞw�1 for all a A P. Since the ra generate W it follows that aðxÞ ¼ w�1gðxÞw for
all x A W , whence a is inner by graph. r

Corollary 19. If the Coxeter diagram is a forest whose edge labels all belong to the set

f3; 4; 6g, then all automorphisms of W that preserve reflections are inner by graph.

Proof. This follows immediately from Theorem 18 and Corollary 16. r

3 Nearly finite Coxeter groups

Recall our definition of ‘‘nearly finite’’: a Coxeter group of rank n is nearly finite if it
is infinite and has a finite parabolic subgroup of rank n� 1. In this section we begin
our investigation of nearly finite Coxeter groups and their automorphisms. We show,
in particular, that if W is irreducible and nearly finite, and a is an automorphism of
W whose restriction to a finite subgroup of rank n� 1 is inner by graph, then a itself
is inner by graph.

If W is a Coxeter group and P its set of simple roots, then we shall say that a
subset J of P is of finite type if the corresponding standard parabolic subgroup WJ is
finite.

The n� n symmetric matrix M is reducible if there are non-empty sets I and J such
that I U J ¼ f1; . . . ; ng and the ði; jÞ-entry of M is zero for all i A I and j A J. Other-
wise M is irreducible. We define the Gram matrix of the Coxeter group W to be
the n� n matrix whose ði; jÞ-entry is ai � aj, where P ¼ fa1; a2; . . . ; ang. Clearly, the
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Gram matrix of W is irreducible if and only if W is irreducible. We say that W is
nondegenerate if the Gram matrix is nonsingular. Note that if W is finite then it is
nondegenerate, since the Gram matrix is positive definite (by Lemma 1).

Lemma 20. Suppose that M is a positive definite real symmetric matrix such that the

o¤-diagonal entries of M are non-positive, and let Q ¼ M�1. Then all entries of Q are

nonnegative. Moreover, if M is irreducible then all entries of Q are strictly positive.

Proof. Let n be the degree ofM, and write mij and qij for the ði; jÞ-entries ofM and Q,
for all i; j A f1; 2; . . . ; ng. Let ei be the i-th vector in the standard basis of Rn, written
as a column vector, and let vi be the i-th column of Q. Note that since M is sym-
metric, so too is Q. Hence v ti is the i-th row of Q (where the ‘‘t’’ means ‘‘transpose’’).

The principal minors of M are all positive, since M is positive definite, and qii
equals the ði; iÞ-th cofactor of M divided by the determinant of M. So it follows that
qii > 0 for all i.

Fix k A f1; 2; . . . ; ng, and define

I ¼ fi j 1c ic n and qik d 0g;

J ¼ fi j 1c ic n and qik < 0g:

Let x ¼
P

i A I qikei and y ¼
P

i A J qikei, and observe that xþ y ¼ vk. Now v tkM ¼ e tk,
since Q ¼ M�1, and so v tkMy is the k-th entry of y. But all the entries of y are non-
positive; so

0d v tkMy ¼ y tMyþ x tMy ¼ y tMyþ
X
i A I
j A J

qikqjke
t
iMej ¼ y tMyþ

X
i A I
j A J

qikqjkmij:

Each term in this last sum is nonnegative, since i A I gives qik d 0 and j A J gives
qjk < 0, while mij c 0 since i0 j. Hence

0d y tMyþ
X
I ;J

qikqjkmij d y tMy;

and since M is positive definite it follows that y ¼ 0. Hence vk ¼ x, and so all entries
of vk are nonnegative. This applies for all k; so the entries of Q are all nonnegative.

Suppose that Q has at least one zero entry; say qhk ¼ 0. Let I ¼ fi j qhi > 0g and
J ¼ f j j qhj ¼ 0g. Then I U J ¼ f1; 2; . . . ; ng, since qij d 0 for all i and j. Our hypoth-
esis says that k A J, whereas h A I , since we proved above that qhh > 0. Hence both I

and J are nonempty. Furthermore, if j A J then j0 h, and we have

0 ¼ e thej ¼ v thMej ¼
X
i A I

qhie
t
iMej ¼

X
i A I

qhimij :
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Note that mij < 0 for all i A I , since j B I , and since qhi > 0 for all i A I we see that all
the terms qhimij in the above sum are non-positive. So they must all be zero. Since
qhi > 0 for all i A I , we deduce that mij ¼ 0 for all i A I . Thus mij ¼ 0 for all i A I and
j A J, and hence M is reducible. r

Corollary 21. Suppose that W is a finite Coxeter group, and let ðxaÞa AP be a family of

nonnegative real numbers indexed by the set P of simple roots. Then there exist non-

negative numbers ðmaÞa AP such that x ¼
P

a AP maa satisfies x � a ¼ xa for all a A P. If
xa > 0 for some a A P then mb > 0 for all b in the same component of P as a.

In particular, if W is irreducible and xa > 0 for some a, then mb > 0 for all b.

Proof. Let L be an irreducible component of P, and let M be the Gram matrix of
WL. Then M is positive definite, by Lemma 1, and the o¤-diagonal entries of M are
non-positive since a � b ¼ �cosðp=mabÞc 0 whenever a; b A P with a0 b. Further-
more, M is irreducible since WL is irreducible. By Lemma 20 the entries of M�1 are
all positive.

Writing qbc for the ðb; cÞ-entry of M�1, define mc ¼
P

b AL qbcxb for each c A L.
Then mc d 0, and mc > 0 if any xb is nonzero. Furthermore, if xL ¼

P
c AL mcc, then

xL � a ¼ xa for all a A L. Repeating this construction for all components L, and defin-
ing x ¼

P
L xL, we see that x � a ¼ xa for all a A P, since distinct components are

orthogonal to each other; moreover, x ¼
P

a AP maa with coe‰cients ma that are non-
negative, and positive when xc 0 0 for some c in the same component as a. r

We shall make use of the following triviality.

Lemma 22. Suppose that W is a Coxeter group, a an automorphism of W, and a, b, c
and d simple roots such that aðraÞ ¼ rc and aðrbÞ ¼ rd . Then a � b ¼ c � d.

Proof. We have a � b ¼ �cosðp=mabÞ and c � d ¼ �cosðp=mcdÞ, where mab and mcd are
the orders of rarb and rcrd . But these orders are equal since aðrarbÞ ¼ rcrd . r

We now come to the main result of this section.

Theorem 23. Suppose that W is irreducible, non-degenerate and nearly finite, and the

Coxeter diagram of has no infinite edge labels. Let S be the set of simple reflections.
Suppose that a is an automorphism of W that preserves reflections, and suppose that

there exist a; b A P ( possibly equal ) such that Pnfag and Pnfbg are of finite type and

aðSnfragÞ ¼ Snfrbg. Then a is inner by graph.

Proof. Let Va and Vb be the subspaces of V spanned by Pnfag and Pnfbg. Let x A Va

be such that the vector u ¼ xþ a lies in the orthogonal complement of Va (which
exists since W is nondegenerate), and, similarly, let y A Vb be such that the vector
v ¼ yþ b lies in the orthogonal complement of Vb. We shall show that y � yc x � x.
Since the same argument with a and b interchanged and a replaced by a�1 will show
that x � xc y � y, it will follow that x � x ¼ y � y.
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Write Pnfag ¼ J1 _UU J2 _UU � � � _UU Jk, where the Jj are the irreducible components of
Pnfag. For each c A Pnfag define

xc ¼ cosðp=mcaÞ ¼ �c � a;

and observe that, since W is irreducible, each Jj contains at least one c such that
xc 0 0. Now x is the orthogonal projection of �a onto Va, and since the sets Jj are
mutually orthogonal it follows that

x ¼ x1 þ x2 þ � � � þ xk

where xj is the orthogonal projection of �a onto the subspace spanned by Jj. For all
c A Jj we have

c � xj ¼ �c � a ¼ xc d 0;

with strict inequality for at least one c A Jj, and so if we write xj ¼
P

c A Jj
mcc then it

follows from Corollary 21 that mc > 0 for all c A Jj . Thus x ¼
P

c APnfag mcc with all
coe‰cients mc positive.

Since aðSnfragÞ ¼ Snfrbg there is a bijection s : Pnfag ! Pnfbg with aðrcÞ ¼ rsðcÞ
for all c A Pnfag. By Lemma 22 we have c � d ¼ sðcÞ � sðdÞ for all c; d A Pnfag, and
extending s linearly gives an isomorphism ~ss : Va ! Vb.

Let f A Fþ be such that aðraÞ ¼ rf . Since rsðcÞrf has the same order as rcra, namely
mca, we have that

f � sðcÞ ¼ cosðlcp=mcaÞ

for some lc coprime to mca. Write yc ¼ cosðlcp=mcaÞ, and note that xc d jycj for all
c A Pnfag, with yc ¼ 0 if and only if xc ¼ 0.

Let z ¼
P

c APnfbg lcc be the orthogonal projection of f onto Vb, so that

sðcÞ � z ¼ sðcÞ � f ¼ yc

for all c A Pnfag. Since v ¼ bþ y is a nonzero element of the orthogonal complement
of Vb we have that f ¼ zþ ov for some scalar o. Now since f ¼ obþ ðzþ oyÞ and
zþ oy A Vb, it follows from Lemma 3 that od 1. Note also that

z ¼ z1 þ z2 þ � � � þ zk

where zj ¼
P

c A Jj
lsðcÞsðcÞ is the projection of f onto the space spanned by sðJjÞ.

Fix an arbitrary j A f1; 2; . . . ; kg. Since xc d jycj for all c A Jj, we have

0c xc � yc ¼ c � x� sðcÞ � z ¼ c �
�X

d A Jj

mdd

�
� sðcÞ �

�X
d A Jj

lsðdÞsðdÞ
�

¼
X
d A Jj

ðc � dÞmd �
X
d A Jj

ðc � dÞlsðdÞ ¼
X
d A Jj

ðc � dÞðmd � lsðdÞÞ;

W. N. Franzsen and R. B. Howlett312



since sðcÞ � sðdÞ ¼ c � d for all c; d A Jj. Now by Corollary 21 it follows that
md � lsðdÞ d 0 for all d A Jj, and, moreover, if md � lsðdÞ ¼ 0 for some d A Jj then we
must have xc � yc ¼ 0 for all c A Jj . Similarly,

0c xc þ yc ¼
X
d A Jj

ðc � dÞðmd þ lsðdÞÞ

for all c A Jj; so md þ lsðdÞ d 0 for all d A Jj, equality occurring for some d only if
xc þ yc ¼ 0 for all c A Jj. Note in particular that, since j is arbitrary in the above
argument, md d jlsðdÞj for all d A Pnfag.

Each t A V can be written in the form t ¼ t0 þ nu with t0 A Va and n A R. If u � u > 0
this gives

t � t ¼ t0 � t0 þ n2u � u;

which is positive if t0 0 0 or if n0 0. Since W is infinite this contradicts Part (3) of
Lemma 1. If u � u ¼ 0 then t � u ¼ 0 for all t A V , contrary to the assumption that W
is nondegenerate. So u � u < 0, and, by the same reasoning, v � v < 0.

Since f A F

1 ¼ f � f ¼ ðzþ ovÞ � ðzþ ovÞ ¼ z � zþ o2v � v;

and we also have that

z � z ¼
X

c APnfag
lsðcÞsðcÞ � z ¼

X
c APnfag

lsðcÞyc:

Similarly,

1 ¼ a � a ¼ ð�xþ uÞ � ð�xþ uÞ ¼ x � xþ u � u;

and also

x � x ¼
X

c APnfag
mcc � x ¼

X
c APnfag

mcxc:

Thus

u � uþ
X

c APnfag
mcxc ¼ o2v � vþ

X
c APnfag

lsðcÞyc;

and so

X
c APnfag

ðmcxc � lsðcÞycÞ ¼ o2v � v� u � u:

Automorphisms of nearly finite Coxeter groups 313



Since mc d jlsðcÞj and xc d jycj for all c, we see that
P

c APnfagðmcxc � lsðcÞycÞd 0, and
so o2v � vd u � u. But o2 d 1, and since v � v < 0 it follows that v � vdo2v � v, and
hence v � vd u � u. Since 1 ¼ x � xþ u � u (shown above) and 1 ¼ y � yþ v � v (simi-
larly), it follows that y � yc x � x, as desired.

In view of our earlier remarks, we must have v � v ¼ u � u, and

0c
X

c APnfag
ðmcxc � lsðcÞycÞ ¼ ðo2 � 1Þu � uc 0

since od 1 and u � u < 0. Thus ðo2 � 1Þu � u ¼ 0, giving o ¼ 1, and

X
c APnfag

ðmcxc � lsðcÞycÞ ¼ 0;

giving mcxc ¼ lsðcÞyc ¼ jlsðcÞycj for all c A Pnfag. Furthermore, we have

0c ðmc � jlsðcÞjÞxc c mcxc � jlsðcÞj jycj ¼ 0;

and it follows that, for all c A Pnfag, either xc ¼ 0 or jlsðcÞj ¼ mc. As noted above, for
each j A f1; 2; . . . ; kg there exists at least one d A Jj with xd > 0, so that lsðdÞ ¼Gmd .
But as we have shown, if lsðdÞ ¼ md then yc ¼ xc for all c A Jj, and if lsðdÞ ¼ �md then
yc ¼ �xc for all c A Jj. In the former case we have

zj � sðcÞ ¼ yc ¼ xc ¼ xj � c

for all c A Jj, and it follows that zj ¼ ~ssðxjÞ. In the latter case,

zj � sðcÞ ¼ yc ¼ �xc ¼ �xj � c

for all c A Jj, giving zj ¼ �~ssðxjÞ.
Let w be the the longest element of the parabolic subgroup corresponding to the

union of the sets sðJjÞ for which zj ¼ ~ssðxjÞ, let b be the inner automorphism of W
given by conjugation by w, and let a 0 ¼ ba. Since b permutes Snfrbg we see that a 0

satisfies the same hypotheses as a. Now a 0ðraÞ ¼ wrf w
�1 ¼ rwf , and

wf ¼ wzþ v ¼ ðwz1 þ wz2 þ � � � þ wzkÞ þ v;

and here wzj is the projection of wf onto the span of sðJjÞ. Applying to a 0 the argu-
ments used above for a enables us to deduce that for each j

wzj ¼Ges 0s 0ðxjÞ ¼G
X
c A Jj

mcs
0ðcÞ;

where a 0ðrcÞ ¼ rs 0ðcÞ for all c A Pnfag. But w was chosen so that for each j the ele-
ment wzj is a negative linear combination simple roots, and so wzj ¼ �es 0s 0ðxjÞ. Thus
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wf ¼ ð�es 0s 0ðx1Þ � es 0s 0ðx2Þ � � � � � es 0s 0ðxkÞÞ þ v ¼ �es 0s 0ðxÞ þ v;

showing that wf � s 0ðcÞ ¼ �xc ¼ a � c for all c A Pnfag. Since also s 0ðdÞ � s 0ðcÞ ¼ d � c
for all c; d A Pnfag, Theorem 18 shows that a 0 is inner by graph. (Indeed, Theorem
17 yields that there exists a w 0 A W and e ¼G1 such that ew 0ðPÞ ¼ wf UPnfbg. But
wf is easily shown to be positive, and it follows readily that e ¼ 1 and Nðw 0Þ ¼ q.
Hence wf ¼ b, and a 0 is in fact a graph automorphism.) r

Our main objective is to prove that Theorem 23 holds without the hypothesis that
aðSnfragÞ ¼ Snfrbg. Our basic strategy is to show that if the given automorphism a

is replaced by ab for some suitably chosen b that is inner by graph, then the hypoth-
eses of Theorem 23 are satisfied. Our next theorem accomplishes this in the case that
a preserves some maximal finite subgroup. We need to use a modification of the
argument used in the proof of Theorem 23 to deal with some of the cases.

Theorem 24. Suppose that W is irreducible, non-degenerate and nearly finite, and the

Coxeter diagram has no infinite edge labels. Suppose that a is an automorphism of W

that preserves reflections, and suppose that there exists a A P such that aðWPnfagÞ ¼
WPnfag. Then a is inner by graph.

Proof. Write J ¼ Pnfag. Since WJ is finite, the classification of finite Coxeter groups
(see [11, Section 2.7]) tells us that each irreducible component of J is of one of the
types in the following list. As is customary, labels equal to 3 are suppressed.

An: � � � � � � � � Bn: � 4 � � � � � � �
��

Dn: � � � � � � � E6: � � � � �
� � �

E7: � � � � � � E8: � � � � � � �

F4: � � 4 � � H3: � 5 � �

H4: � 5 � � � I2ðmÞ: � m �

Thus the Coxeter diagram of WJ is a forest, and so by Lemma 15 there is a function
ja : J ! F such that aðrbÞ ¼ rjaðbÞ for all b A J and jaðbÞ � jaðcÞc 0 for all b; c A J

with b0 c. As in Corollary 16 it follows that

jaðbÞ � jaðcÞ ¼ b � c ð3:1Þ

unless mbc ¼ 5 or mbc d 7. Furthermore, these values for mbc can only occur if b and
c lie in an irreducible component of J of type H3, H4 or I2ðmÞ, and then only for one
pair of simple roots in the component.

If Equation (3.1) does hold for all b; c A J then by Theorem 17 there exists w A WJ

and e ¼G1 such that ewjaðbÞ A J for all b A J, and if b is the inner automorphism of
W given by x 7! wxw�1 then we see that ba permutes the simple reflections of WJ .
Theorem 23 can then be applied, and it follows that ba is inner by graph, whence a

is also inner by graph.
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It remains to deal with those cases in which J has at least one irreducible compo-
nent of type H3, H4 or I2ðmÞ (where m ¼ 5 or md 7) on which Equation (3.1) does
not hold. Accordingly, assume that J has such a component. We use an argument
similar to that used in the proof of Theorem 23 to derive a contradiction.

In our calculations below we use the abbreviations cðyÞ and sðyÞ for cosðyÞ and
sinðyÞ, and we also write pm for p=m.

If b; c A J are such that Equation (3.1) fails, then b � c ¼ �cðpmÞ, where m ¼ mbc,
and jaðbÞ � jaðcÞ ¼ �cð jpmÞ for some j coprime to m. Since jaðbÞ � jaðcÞc 0 we have
that 1 < j < m=2. If the component of J containing b and c is of type H3 or H4 then
m ¼ 5 and j ¼ 2.

Let M and M 0 be matrices with rows and columns indexed by J, such that, for all
b; c A J, the ðb; cÞ-entry of M is b � c and the ðb; cÞ-entry of M 0 is jaðbÞ � jaðcÞ. We
assume that J is ordered so thatM is a diagonal sum of matrices corresponding to the
various irreducible components of J. Since jaðbÞ � jaðcÞ ¼ 0 if and only if b � c ¼ 0,
we see that M 0 is also a diagonal sum, with blocks of the same sizes as those of M.

The blocks of M corresponding to components of types I2ðmÞ, H3 and H4 are as
follows (assuming the ordering is chosen appropriately).

MI ¼
1 �cðpmÞ

�cðpmÞ 1

� �

M3 ¼

264 1 �cðp5Þ 0

�cðp5Þ 1 �1=2

0 �1=2 1

375

M4 ¼

1 �cðp5Þ 0 0

�cðp5Þ 1 �1=2 0

0 �1=2 1 �1=2

0 0 �1=2 1

26664
37775

The following matrices T3, T4 and TI are the inverses of M3, M4 and MI .

TI ¼
"

1=s2ðpmÞ cðpmÞ=s2ðpmÞ
cðpmÞ=s2ðpmÞ 1=s2ðpmÞ

#

T3 ¼

2664
9þ3

ffiffi
5

p

2
4þ 2

ffiffiffi
5

p
2þ

ffiffiffi
5

p

4þ 2
ffiffiffi
5

p
6þ 2

ffiffiffi
5

p
3þ

ffiffiffi
5

p

2þ
ffiffiffi
5

p
3þ

ffiffiffi
5

p
5þ

ffiffi
5

p

2

3775

T4 ¼

28þ 12
ffiffiffi
5

p
33þ 15

ffiffiffi
5

p
22þ 10

ffiffiffi
5

p
11þ 5

ffiffiffi
5

p

33þ 15
ffiffiffi
5

p
42þ 18

ffiffiffi
5

p
28þ 12

ffiffiffi
5

p
14þ 6

ffiffiffi
5

p

22þ 10
ffiffiffi
5

p
28þ 12

ffiffiffi
5

p
20þ 8

ffiffiffi
5

p
10þ 4

ffiffiffi
5

p

11þ 5
ffiffiffi
5

p
14þ 6

ffiffiffi
5

p
10þ 4

ffiffiffi
5

p
6þ 2

ffiffiffi
5

p

26664
37775
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For components on which Equation (3.1) fails, the corresponding blocks of M 0 are as
follows.

M 0
I ¼

1 �cð jpmÞ
�cð jpmÞ 1

� �

M 0
3 ¼

264 1 �cð2p5Þ 0

�cð2p5Þ 1 �1=2

0 �1=2 1

375

M 0
4 ¼

1 �cð2p5Þ 0 0

�cð2p5Þ 1 �1=2 0

0 �1=2 1 �1=2

0 0 �1=2 1

26664
37775

The corresponding inverses are as follows.

T 0
I ¼

"
1=s2ð jpmÞ cð jpmÞ=s2ð jpmÞ

cð jpmÞ=s2ð jpmÞ 1=s2ð jpmÞ

#

T 0
3 ¼

2664
9�3

ffiffi
5

p

2
�4þ 2

ffiffiffi
5

p
�2þ

ffiffiffi
5

p

�4þ 2
ffiffiffi
5

p
6� 2

ffiffiffi
5

p
3�

ffiffiffi
5

p

�2þ
ffiffiffi
5

p
3�

ffiffiffi
5

p
5�

ffiffi
5

p

2

3775

T 0
4 ¼

28� 12
ffiffiffi
5

p
�33þ 15

ffiffiffi
5

p
�22þ 10

ffiffiffi
5

p
�11þ 5

ffiffiffi
5

p

�33þ 15
ffiffiffi
5

p
42� 18

ffiffiffi
5

p
28� 12

ffiffiffi
5

p
14� 6

ffiffiffi
5

p

�22þ 10
ffiffiffi
5

p
28� 12

ffiffiffi
5

p
20� 8

ffiffiffi
5

p
10� 4

ffiffiffi
5

p

�11þ 5
ffiffiffi
5

p
14� 6

ffiffiffi
5

p
10� 4

ffiffiffi
5

p
6� 2

ffiffiffi
5

p

26664
37775

It can be checked that all the entries of T 0
I , T

0
3 and T 0

4 are positive and strictly less
than the corresponding entries of TI , T3 and T4. Hence if we write tbc and t 0bc for the
ðb; cÞ-entries of M�1 and ðM 0Þ�1, then we have tbc d t 0bc for all b; c A J. Since there is
a component for which Equation (3.1) fails, there is a block in which tbc > t 0bc for all
b and c.

As in the proof of Theorem 23, we suppose that aðraÞ ¼ rf , where f A Fþ, and let z
be the projection of f onto VJ . Let x be the projection of �a onto VJ . Then u ¼ xþ a

spans the orthogonal complement of VJ in V , and u � u < 0 since W is non-degenerate
and infinite. Moreover, f ¼ zþ ou for some scalar o, and by Lemma 3 we have
od 1.

For each c A J let c � a ¼ �cðpmca
Þ ¼ �xc. Write x ¼

P
c A J mcc. For all c A J,

c � x ¼ �c � a ¼ xc;

so that xc ¼
P

d A Jðc � dÞmd , and
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mc ¼
X
d A J

tcdxd :

Now for each c A J there is an integer jc such that

jaðcÞ � z ¼ jaðcÞ � f ¼ cð jcpmca
Þ ¼ yc;

where jycjc xc and yc ¼ 0 if and only if xc ¼ 0. Writing z ¼
P

c A J lcjaðcÞ, we have

lc ¼
X
d A J

t 0cdyd

for all c A J. Now observe that

z � z ¼
X
c A J

lcðjaðcÞ � zÞ ¼
X
c A J

lcyc ¼
X
c A J

X
d A J

t 0cdycyd

and

x � a ¼
X
c A J

mcðc � aÞ ¼ �
X
c A J

mcxc ¼ �
X
c A J

X
d A J

tcdxcxd :

Since xcxd d jycyd jd ycyd and tcd d t 0cd d 0 for all c; d A J,

X
c

X
d

tcdxcxd d
X
c

X
d

t 0cdycyd :

But there is an irreducible component of WJ for which tcd > t 0cd . As W is irreducible
there is an edge joining a to this component, and hence there is a c in this component
for which xc > 0. Then tccx

2
c d tccy

2
k > t 0ccy

2
c , and so

�x � a ¼
X
c

X
d

tcdxcxd >
X
c

X
d

t 0cdycyd ¼ z � z:

Therefore 1þ x � a < 1� z � z. Now

u � u ¼ ðxþ aÞ � u ¼ a � u ¼ a � aþ a � x ¼ 1þ a � x:

Thus u � u < 1� z � z, and, since u � u < 0,

1 >
1� z � z
u � u :
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Since x A F,

1 ¼ x � x ¼ ðzþ ouÞ � ðzþ ouÞ ¼ z � zþ o2u � u:

Hence

o2 ¼ 1� z � z
u � u < 1:

But od 1, and so we have obtained the desired contradiction. r

4 Groups with two finite maximal parabolic subgroups

If a A AutðWÞ and F is a maximal finite subgroup of W , then clearly aðFÞ is also a
maximal finite subgroup of W . Theorem 24 was concerned with the case aðFÞ ¼ F ;
in this section we dispense with this assumption.

Proposition 25. Suppose that a : W ! W 0 is an isomorphism of finite Coxeter groups

that maps reflections to reflections. Then W and W 0 have the same type.

Proof. Since the irreducible components ofW and W 0 are generated by the reflections
they contain, it follows from Lemma 14 that a maps the components of W to the
components ofW 0. Hence it is su‰cient to prove the result for irreducibleW and W 0.

If W is of type I2ðmÞ then exactly half the elements of W are reflections, and since
a maps reflections to reflections it follows that half the elements of W 0 are reflections.
Since I2ðmÞ is the only type of Coxeter group with this property, it follows that W 0 is
of the same type as W . Of course a similar argument applies whenever W 0 is of type
I2ðmÞ; so we may assume that neither W nor W 0 is of type I2ðmÞ.

The only coincidences of order for finite irreducible Coxeter groups, excluding
groups of type I2ðmÞ, occurs for types A4 and H3, which both have order 120. They
are not isomorphic, since, for example, A4 has trivial centre while H3 does not. Since
W and W 0 have the same order and are isomorphic, we conclude that they are of the
same type. r

Proposition 26. Suppose that W is an irreducible nearly finite Coxeter group, and let

a A P be such that Pnfag is of finite type. Suppose that there exists b A P with b0 a

and Pnfbg of the same type as Pnfag. If Pnfag and Pnfbg have at least one compo-

nent of type H3, H4 or I2ðmÞ for m > 4, then the Coxeter diagram associated with W

either has a symmetry of order two that interchanges a and b, or is of type X ðqÞ for

some qd 2, where these diagrams are as follows:

�b � �b �
XðqÞ: � q

5

X ð2Þ: c �
5

�
a 5

� �
a 5

�:
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Proof. Let G be the Coxeter diagram of W , and Ga;Gb the diagrams obtained by
deleting a; b respectively. For each c A P let valðcÞ be the valency of c as a vertex of
G. Observe that the valency of c0 a as a vertex of Ga is valðcÞ � 1 or valðcÞ if c
is adjacent to a or not adjacent to a in G; so the sum of the valencies in Ga isP

c AP valðcÞ
� �

� 2 valðaÞ. Applying the same reasoning also to Gb we deduce that
valðaÞ ¼ valðbÞ, since Ga and Gb are isomorphic.

Suppose first that Ga and Gb are reducible, and b does not lie in a component of
Ga of type H3, H4 or I2ðmÞ for m > 4. Note that valðaÞd 2 since there must be edges
from a to all components of Ga.

By hypothesis Ga has a component D of type H3, H4 or I2ðmÞ that does not contain
b. Observe that D lies in a component D 0 of Gb that also contains a, since a is con-
nected to D. Since H4 and I2ðmÞ for m > 5 are not contained in any larger diagrams
of finite type, it follows that D is of type H3 or I2ð5Þ. Furthermore, the valency of a in
D 0 is at most 2, since no diagram of finite type has a vertex of valency greater than 2
as well as an edge label greater than 3. So valðaÞc 3.

If D is of type H3 then D 0 must be of type H4, and the valency of a in D 0 is 1. So a is
adjacent to b in G, and valðaÞ ¼ 2. Hence Ga has exactly two components (given that
it is reducible). One of these is D 0, of type H4, and the other must be of type H3 since
Gb has a component of type H3. Thus G is

�
5
� � �a

q
�b � �

5
�

and we see that there is a symmetry interchanging a and b.
If D is of type I2ð5Þ then D 0 is of type H3 or H4. In the former case a has valency 1

in D 0; so a is adjacent to b and valðaÞ ¼ 2. Thus Ga and Gb are of type I2ð5Þ �H3,
whence G is

�
5
� �a

q
�b �

5
�

and there is a symmetry interchanging a and b. Turning to the other case, observe
that the valency of a in D 0 (of type H4) is 2, since deleting a gives a component of type
I2ð5Þ. If a and b are not adjacent then valðaÞ ¼ 2, and Ga has two components, which
must be of types I2ð5Þ and H4. So G is

�
5
� �a � �b �

5
�

which has a symmetry swapping a and b. So suppose that a and b are adjacent, so that
valðaÞ ¼ valðbÞ ¼ 3. Let c be the end vertex of D 0 adjacent to a. If c is also adjacent to
b then Ga has only two components, and they are of types I2ð5Þ and H4. Furthermore,
the valency of c in Gb is 1; so valðcÞ ¼ 2, and G must be

c �

� 5 � �
a q

�
b

� 5 �
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which has a symmetry swapping a and b. Finally, suppose that c is not adjacent to b.
Then Ga and Gb are of type I2ð5Þ � A1 �H4, and there is a c 0 adjacent to b that is not
adjacent to a. In this case G is

c � � c 0

� 5 � �
a q

�
b

� 5 �

and again there is a symmetry swapping a and b.
Next we consider those cases for which Ga and Gb are reducible, and b lies in a

component D of Ga of type H3, H4 or I2ðmÞ for m > 4.
Suppose that D has type H3. Then the valency of b in Ga is at most 2, and conse-

quently 2c valðaÞ ¼ valðbÞc 3. Suppose valðaÞ ¼ valðbÞ ¼ 3. Then a and b must be
adjacent. The two end vertices of D cannot both be adjacent to a, since Gb is re-
ducible. If neither of them are adjacent to a then Gb has three components, and is thus
of type A1 � A1 �H3. We see that in this case G is

� 5 �b �
q

�
5
�
a

�

and has a symmetry interchanging a and b. If one of the end vertices of D is adjacent
to a, then Gb has two components and is of type A1 �H3. There are four possibilities:
two choices for the vertex of D that is adjacent to a, and then two choices for the edge
incident with a that has the label 5.

� 5 �b � � 5 �b � � 5 �b � � 5 �b �
5

q q q q
5�

a
� �

a 5
� �

5
�
a

� �
a

The first and third of these have symmetries interchanging a and b, while the other
two are both of type X ðqÞ.

Now suppose that valðaÞ ¼ valðbÞ ¼ 2, still in the case that D is of type H3. Note
that Ga and Gb must have two components. If b is adjacent to a then it must be an end
vertex of D, and Gb must be of type I2ð5Þ �H3 or of type A2 �H3. The two possi-
bilities for G are as follows.

�b 5 � � � 5 � �b
q q

�
a 5

� � �
5
� �

a

In both cases there is a symmetry interchanging a and b. If b is not adjacent to a then
it is the middle vertex of D, and, since only one of the end vertices can be adjacent to
a (given that Gb is not irreducible), we see that the one that is not adjacent to a con-
stitutes a component of Gb of type A1. So Ga and Gb are of type A1 �H3. The four
possibilities for G are as follows.
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� 5 �b � � 5 �b � � 5 �b � � 5 �b �
5 5�

a
� �

a 5
� �

5
�
a

� �
a

The first and third of these have symmetries interchanging a and b, while the other
two are both of type X ð2Þ.

We have dealt with all possible cases for which D is of type H3. Suppose now that
D is of type H4. As in the H3 case we have 2c valðaÞ ¼ valðbÞc 3.

Suppose first that valðaÞ ¼ valðbÞ ¼ 3. Then a and b are adjacent, and b is not an
end vertex of D. If no other vertex of D is adjacent to a, then Gb has three components
and is of type A1 � A2 �H4 or A1 � I2ð5Þ �H4. Since a may be either of the inner
vertices of the H4 there are potentially four possibilities, but only two of these give Ga

isomorphic to Gb. The two possibilities for G are

� 5 �b � � � 5 � �b �
q q

�
5
�
a

� � �
5
� �

a
�

and there is a symmetry interchanging a and b. If there were two vertices of Dnfbg
adjacent to a then these vertices could not be adjacent to each other, since if they
were then Gb would contain a triangle, contradicting the fact that it is of finite type.
So the two components of Dnfbg would have to each contain one of these vertices,
and this is also impossible since then Gb would be irreducible. So it remains to con-
sider the cases in which a is adjacent to exactly one of the vertices in Dnfbg. In each
case Gb must have exactly two components, one of which is a component Dnfbg and
the other of which has type H4. Now b may be either of the two inner vertices of D,
and a may be joined to any of the three vertices of Dnfbg. Each of the six choices
gives a unique possibility for G.

� 5 �b � � � 5 �b � � � 5 �b � �
5

q q q

�
a

� � �
5
�
a

�
5
�
a

� 5 � �b � � 5 � �b � � 5 � �b �
q q q

�
a

� �
a

� �
5
� �

a

In each case there is a symmetry of G interchanging a and b.
Now suppose that valðaÞ ¼ valðbÞ ¼ 2, still in that case that D is of type H4.

Observe that Ga and Gb have two components. If b is an end vertex of D then it must
be adjacent to a, and Gb must be either of type A3 �H4 or of type H3 �H4. The
corresponding two possibilities for G are

�b 5 � � � � 5 � � �b
q q

�
a 5

� � � �
5
� � �

a
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and in both cases there is a symmetry interchanging a and b. If b is not adjacent to a

then it is an inner vertex of D, and, since only one of the other vertices can be adja-
cent to a (given that Gb is not irreducible and does not contain a triangle), we again
obtain six possibilities: b can be either inner vertex of D and a can be adjacent to any
of the three vertices of Dnfbg.

� 5 �b � � � 5 �b � � � 5 �b � �
5 �

a
� � �

5
�
a

�
5
�
a

� 5 � �b � � 5 � �b � � 5 � �b �

�
a

� �
a

� �
5
� �

a

In each case there is a symmetry interchanging a and b.
Having dealt with all possible cases for which D is of type H3 or H4, we assume

now that D is of type I2ðmÞ. In this case b has valency 1 in in Ga, and hence has
valency 2 in G. We see that a and b are adjacent, and a is not adjacent to the other
vertex of D since Gb is reducible. So Ga and Gb are of type A1 � I2ðmÞ. Thus G is

�
m
�a

q
�b

m
�

and there is a symmetry swapping a and b.
We have now dealt with all cases in which Ga and Gb are reducible, and it remains

to deal with the possibility that they are irreducible of type I2ðmÞ, H3 or H4. Observe
that G has three vertices in the first case, four in the second and five in the third.

If Ga is of type I2ðmÞ, with vertices b and c, then Gb has vertices a and c, which must
be joined by an edge labelled m. So G is

b � m �
q m
�
a

where q ¼ 2 is allowed. There is a symmetry of the desired kind.
If Ga is of type H3 and b is the middle vertex, then a must also be adjacent to the

other two vertices, since valðaÞ ¼ valðbÞ. One of these edges must be labelled 5 and
the other 3, since Gb is of type H3. So there are two possibilities for G,

� 5 �b � � 5 �b �
5

q q
5�

a
�
a

again allowing q ¼ 2. In each case there is a symmetry swapping a and b. If b is an
end vertex of Ga then a must be adjacent to exactly one of the remaining two vertices,
and since there are two choices for b there are four possibilities for G.
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�b 5 � � �b 5 � � � 5 � �b � 5 � �b
q 5 q 5 q q�

a
�
a

�
a

�
a

Here again we allow q ¼ 2, and again each of the diagrams has a symmetry swapping
a and b.

Finally suppose that Ga is of type H4. If b is an inner vertex of Ga then a must be
adjacent to exactly two of the other vertices of Ga to ensure that valðaÞ ¼ valðbÞ. Fur-
thermore, these two must not belong to the same component of Ganfbg since Gb must
not contain a triangle. There are two possibilities for b, and then two possibilities for
the vertices of Ganfbg adjacent to a. The four possibilities for G are

� 5 �b � � � 5 �b � � � 5 � �b � � 5 � �b �
5

q
5

q q q

�
a

�
a

�
a

�
a

allowing q ¼ 2. In each case there is a symmetry swapping a and b. We are left to
consider the cases when b is an end vertex of Ga. Suppose first that b at the end with
the edge labelled 5. Since valðaÞ ¼ valðbÞ we see that a, like b, is adjacent to exactly
one of the the other three vertices of Ga. It cannot be the middle one, or this would
have valency 3 in Gb, contrary to the requirement that Gb is of type H4. The other two
are both possible. If b is at the end of Ga that does not have the edge labelled 5, we
again deduce that a must be adjacent to exactly one of the other three vertices of Ga.
However, only one of these three choices satisfies the requirement that Gb is of type
H4. So altogether we have three more possibilities for G. They are

�b 5 � � � �b 5 � � � � 5 � � �b
q 5 q 5 q�

a
�
a

�
a

allowing q ¼ 2. In each case there is a symmetry swapping a and b. r

5 Completion of the proof of the main theorem

Recall first the following trivial fact.

Lemma 27. Let W be a Coxeter group, and a; b A P. If mab is odd then ra and rb are

conjugate in W.

Proof. If mab ¼ 2k þ 1 then rb ¼ ðrarbÞkraðrarbÞ�k. r

Our main theorem is as follows.

Theorem 28. If W is an irreducible non-degenerate nearly finite Coxeter group with

finite edge labels, then any automorphism of W that preserves reflections is inner by

graph.
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Proof. Let a A RðWÞ, and let a A P be such that J ¼ Pnfag is of finite type. Then
aðWJÞ is a maximal finite subgroup of W , and so equals tWKt

�1 for some t A W and
some KJP. Replacing a by w 7! taðwÞt�1 permits us to assume that aðWJÞ ¼ WK .
By Proposition 25 and the fact that a preserves reflections, WJ and WK are of the
same type. Thus K ¼ Pnfbg for some b A P (possibly equal to a).

Suppose that J does not contain any component of type H3, H4 or I2ðmÞ for
m > 4. As WJ and WK are of the same type there is an isomorphism b : WJ ! WK

taking simple reflections to simple reflections. Applying Corollary 19 to the auto-
morphism ofWJ given by w 7! b�1ðaðwÞÞ, we deduce that there exists t A WJ such that
g : w 7! tðb�1ðaðwÞÞÞt�1 is a graph automorphism of WJ . Thus bg is an isomorphism
WJ ! WK that takes simple reflections to simple reflections. But bg is the restriction
to WJ of the automorphism w 7! bðtÞaðwÞbðtÞ�1, and it follows from Theorem 23
that this automorphism is inner by graph. Hence a is inner by graph.

Suppose, on the other hand, that J has a component of type H3, H4 or I2ðmÞ for
m > 4. IfW is not of type XðqÞ then by Proposition 26 there is a graph automorphism
g of W that takes WK to WJ . Now ga preserves WJ , and so Theorem 24 tells us that
ga is inner by graph. Hence a is inner by graph.

It remains to consider that possibility that W is of type XðqÞ for some qd 2 and
J0K. Let P ¼ fa; b; c; d; eg, the Coxeter diagram being as follows.

�b �d
c � q

5

�
a 5

�e

Note that q ¼ 2 is allowed. The simple reflection re is central in WJ ; therefore

aðreÞ A ZðWKÞ ¼ hrd ;wKi;

where wK is the longest element in WK . As aðreÞ is a reflection and rd is the only
reflection in ZðWKÞ we deduce that aðreÞ ¼ rd . Now by Lemma 13

RefðWJÞ ¼ RefðWfc;b;dgÞU freg

RefðWKÞ ¼ RefðWfc;a; egÞU frdg;

and it follows that aðRefðWfc;b;dgÞÞ ¼ RefðWfc;a; egÞ. So aðWfc;b;dgÞ ¼ Wfc;a; eg.
Since the group Wfc;a; eg has only one conjugacy class of reflections (by Lemma 27),

replacing a by w 7! tðaðwÞÞt�1 for a suitably chosen t A Wfc;a; eg allows us to assume
that aðrdÞ ¼ rc. Now r ¼ aðrbÞ has the property that the order of rrc is three (since rbrd
has order three), and of the fifteen reflections in Wfc;a; eg only four satisfy this require-
ment. Furthermore, these four are permuted transitively by the groupWfa; cg; so again
replacing replacing a by w 7! tðaðwÞÞt�1 for a suitably chosen t permits us to assume
that r ¼ ra.

Since rc commutes with rd we deduce that aðrcÞ is a reflection that commutes with rc.
There are just two possibilities for this: the reflection along e and the reflection along
g ¼ �ðlþ 1Þe� 2la� lc, where l ¼ 2 cosðp=5Þ (the positive solution of l2 ¼ lþ 1).
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If aðrcÞ ¼ re then Theorem 24 tells us that a is inner by graph. So assume that
aðrcÞ ¼ rg, and let aðraÞ ¼ rf , where f A F. We now have

aðraÞ ¼ rf ; aðrbÞ ¼ ra; aðrcÞ ¼ rg; aðrdÞ ¼ rc; aðreÞ ¼ rd :

Since rf rg has order three, f � g ¼G1=2. Replacing f by �f if necessary, we may
assume that f � g ¼ �1=2. Since rf rc has order two, f � c ¼ 0. Since rf ra has order q
and rf rd has order five, f � a ¼ cosð jp=qÞ for some j coprime to q and f � d ¼
�cosðkp=5Þ for some k coprime to 5. Let us write ya ¼ cosð jp=qÞ ¼ f � a and
xa ¼ cosðp=qÞ; note that jyajc xa. Let us also write yd ¼ cosðkp=5Þ ¼ �f � d; note
that jyd jc cosðp=5Þ ¼ l=2.

For later reference, note that a � g ¼ 1
2
ð1� lÞ, while c � g ¼ e � g ¼ d � g ¼ 0.

Define x ¼ laþ 1
2
lc� ydd þ 3

2
þ ð2� 2lÞya

� �
e. Note that x A VK . We compute

x � v for each v in the basis fa; c; d; gg of VK .

x � a ¼ l� 1
4
lþ 0þ 3

2
þ ð2� 2lÞya

� �
� 1

2
l

� �
¼ 3

4
l� 3

4
lþ ðl2 � lÞya ¼ ya ¼ f � a;

x � c ¼ � 1
2
lþ 1

2
lþ 0þ 0 ¼ 0 ¼ f � c;

x � d ¼ 0þ 0� yd þ 0 ¼ f � d;

x � g ¼ 1
2
lð1� lÞ þ 0þ 0þ 0 ¼ � 1

2
¼ f � g:

Thus x is the orthogonal projection of f onto VK .
Now define

y ¼ ðð1þ 2lÞ þ ð4þ 4lÞxaÞaþ 1
2
þ 3

2
l

� �
þ ð2þ 2lÞxa

� �
c

þ 1
2
d þ 1þ 3

2
l

� �
þ ð2þ 4lÞxa

� �
e:

We find that

y � a ¼ ð1þ 2lÞ þ ð4þ 4lÞxa � 1
2

1
2
þ 3

2
l

� �
þ ð2þ 2lÞxa

� �
þ 0

� 1
2
l 1þ 3

2
l

� �
þ ð2þ 4lÞxa

� �
¼ 3

4
þ 3

4
l� 3

4
l2 þ ð3þ 2l� 2l2Þxa ¼ xa ¼ �b � a;

y � c ¼ � 1
2
ðð1þ 2lÞ þ ð4þ 4lÞxaÞ þ 1

2
þ 3

2
l

� �
þ ð2þ 2lÞxa

� �
þ 0þ 0

¼ 1
2
l ¼ �b � c;

y � d ¼ 1
2
¼ �b � d;

y � e ¼ � 1
2
lðð1þ 2lÞ þ ð4þ 4lÞxaÞ þ 0þ 0þ 1þ 3

2
l

� �
þ ð2þ 4lÞxa

� �
¼ 1þ l� l2 þ ð2þ 2l� 2l2Þxa ¼ 0 ¼ �b � e:
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Thus y is the projection of �b onto VK . Put u ¼ bþ y, a nonzero element of the
orthogonal complement of VK . We can confirm that W is nondegenerate by checking
that u � u < 0. Indeed,

u � u ¼ ðyþ bÞ � u ¼ b � u ¼ 1þ b � y

¼ 1� xaðð1þ 2lÞ þ ð4þ 4lÞxaÞ � 1
2
l 1

2
þ 3

2
l

� �
þ ð2þ 2lÞxa

� �
� 1

4

¼ �l� 2ð1þ 2lÞxa � ð4þ 4lÞx2a < 0;

as expected. Now we find that

x � e ¼ � 1
2
l2 þ 0þ 0þ 3

2
þ ð2� 2lÞya ¼ 1� 1

2
lþ ð2� 2lÞya;

and thus

x � x ¼ la � xþ 1
2
lc � x� ydd � xþ 3

2
þ ð2� 2lÞya

� �
e � x

¼ lya þ 0þ y2d þ 3
2
þ ð2� 2lÞya

� �
1� 1

2
lþ ð2� 2lÞya

� �
¼ y2d þ 3

2
� 3

4
lþ ðlþ 3ð1� lÞ þ ð3� 3lþ l2ÞÞya þ 4ð1� lÞ2y2a

¼ y2d þ 3
2
� 3

4
lþ 2ð3� 2lÞya þ 4ð2� lÞy2a :

Note that y2d c
1
4
l2 ¼ 1

4
ð1þ lÞ. Furthermore, since we also have that jyajc xa,

x � xc 7
4
� 1

2
lþ 2j3� 2lj jyaj þ 4j2� lj jyaj2

c 7
4
� 1

2
lþ 2ð2l� 3Þxa þ 4ð2� lÞx2a ;

and therefore

1� x � x� u � ud 1� 7
4
þ 1

2
l� 2ð2l� 3Þxa � 4ð2� lÞx2a

þ lþ 2ð1þ 2lÞxa þ ð4þ 4lÞx2a
¼ 3

2
l� 3

4

� �
þ 8xa þ ð8l� 4Þx2a ;

which is clearly positive since all the terms are positive. Therefore

1� x � x
u � u < 1;

as u � u < 0.
As in our earlier proofs we write f ¼ xþ ou, and use Lemma 3 to deduce that

either od 1 (if x A Fþ) or oc�1 (if x A F�), and hence that o2 d 1. Since f is a
root,

Automorphisms of nearly finite Coxeter groups 327



1 ¼ f � f ¼ ðxþ ouÞ � ðxþ ouÞ ¼ x � xþ o2u � u;

and hence

o2 ¼ 1� x � x
u � u < 1;

and this is a contradiction. So this case cannot arise, and we conclude that a is inner
by graph. r

The next result provides a strengthening of our main theorem.

Theorem 29. Theorem 28 remains valid if the assumption that W is nondegenerate is

omitted.

Proof. Let n be the rank of W . Since W is nearly finite there is a subspace of V of
dimension n� 1 on which the bilinear form B associated with W is positive definite.
If B is degenerate then its radical must be complementary to this positive definite
subspace, and so B is positive semidefinite with a 1-dimensional radical. The classifi-
cation of irreducible positive semidefinite Coxeter groups is given in [11, Section 2.7];
the groups concerned are isomorphic to the a‰ne Weyl groups, and correspond to
the following list of Coxeter diagrams.

�
~AAn: � � � � � � � � ~CCn: � 4 � � � � � � 4 �

� � �
~BBn: � � � � � � 4 � ~DDn: � � � � � � �

� � ��
�

~FF4: � � � 4 � � ~EE6: � � �
�

�� �
~EE7: � � � � � � � ~EE8: � � � � � � � �
~GG2: � 6 � �

In each case the rank is one greater than the name might suggest: for example, ~AAn has
rank nþ 1. For types ~CCn and ~AAn we require nd 2; type ~AA1 is not covered by the
present theorem since its diagram has y as an edge label (although the conclusion
of the theorem in fact remains valid). For ~BBn and ~DDn we require nd 3 and nd 4
respectively.

For all cases except ~AAn the desired conclusion that every reflection-preserving
automorphism is inner by graph follows immediately from Corollary 19. So suppose
that W is of type ~AAn, and let a A RðWÞ. Choose a function ja : P ! F such that
aðraÞ ¼ rjaðaÞ for all a A P. Write P ¼ fa0; a1; . . . ; ang, where a0 is adjacent to an
and ai is adjacent to ai�1 for 1c ic n. Then jaðaiÞ � jaðajÞ is G1=2 if ai and aj are
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adjacent, and zero otherwise. We can successively choose signs e1; e2; . . . ; en so that
when jaðaiÞ is replaced by eijaðaiÞ we have jaðai�1Þ � jaðaiÞ ¼ �1=2 for 1c ic n.
Now if jaða0Þ � jaðanÞ ¼ �1=2 then Theorem 18 guarantees that a is inner by graph.
But if jaða0Þ � jaðanÞ ¼ 1=2 then it is readily checked that the matrix whose ði; jÞ entry
is jaðaiÞ � jaðajÞ is positive definite, contradicting the fact that B is degenerate. r

6 Groups with a finite irreducible maximal parabolic subgroup

In this section we shall not assume that the automorphism a preserves reflections;
instead we shall prove that it must preserve reflections, given appropriate extra
hypotheses. Specifically, we shall investigate nearly finite Coxeter groups with a finite
irreducible maximal parabolic subgroup.

Our analysis depends upon some facts concerning automorphism groups of finite
irreducible Coxeter groups. We proceed to give a brief discussion of this topic.

Let W be a finite irreducible Coxeter group. The centre of W is either trivial or of
order two. We denote the non-identity element of the centre by z, when it exists. In all
of these cases, z is equal to wP, the longest element of W . The group of all homo-
morphisms from W to the cyclic group of order two is isomorphic to the abelianiza-
tion of W , and has order four if the Coxeter diagram has an even edge label, and
order two otherwise. Let H denote the group of all homomorphisms from W to its
centre. It is clear that for all f A H the mapping af : w 7! wf ðwÞ is a homomorphism
fromW to itself, and is an automorphism precisely when z is in the kernel of f (so that
zf ðzÞ0 1). These automorphisms are reflection preserving if and only if W is of rank
2. Moreover, afg ¼ af ag whenever f ðzÞ ¼ gðzÞ ¼ 1; hence AðWÞ ¼ faf j z A ker f g is
a subgroup of AutðWÞ. Clearly all elements of AðWÞ are self-inverse.

If W is of type Bn, with the following diagram,

�
a

4 � � � � � � �

we let z : W ! ZðWÞ be the homomorphism that maps ra 7! 1 and all other simple
reflections to z. It is easily checked that zðzÞ ¼ 1, and so az A AutðWÞ. Similarly, for
type F4 there are two conjugacy classes of reflections, and we let z : W ! ZðWÞ map
the reflections in one of these to z and those in the other to 1. Again az A AutðWÞ. In
all cases where wP ¼ z A ZðWÞ, let x : W ! ZðWÞ be the homomorphism that maps
each simple reflection to z. Then xðwÞ ¼ zlðwÞ for all w A W , and so xðzÞ ¼ 1 precisely
when lðzÞ is even. In particular, ax A AutðWÞ when W is of type B2k, D2k, E8, F4 or
H4. A straightforward calculation shows that ax commutes with all reflection preserv-
ing automorphisms.

Proposition 30. The group AðWÞ defined above is trivial if W is of type An, D2kþ1, E6,
E7 or H3, has order two if W is of type B2kþ1, D2k, E8 or H4, and has order four if W is

of type B2k or F4.

Indeed, AðWÞ ¼ haxi for types D2k, E8 and H4, while AðWÞ ¼ hazi for B2kþ1,
and AðWÞ ¼ hax; azi for B2k and F4.
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When W is of type I2ðmÞ it is obvious that AutðWÞ ¼ RðWÞ, and in all other cases
AðWÞVRðWÞ is trivial. So in these cases AutðWÞ has a subgroup isomorphic to
the semidirect product RðWÞzAðWÞ (since it is obvious that RðWÞ is normal in
AutðWÞ). Let GrðWÞ be the group of all graph automorphisms of W . By Theorem
18 we know that RðWÞ ¼ InnðWÞGrðWÞ unless W is of type H3 or H4. In these
cases there are at most two possibilities for the function ja in Lemma 15, and so
½RðWÞ : InnðWÞGrðWÞ�c 2. In fact, as we shall see in the proof of Proposition 32,
types H3 and H4 do possess reflection preserving automorphisms that are not inner
by graph; so ½RðWÞ : InnðWÞGrðWÞ� ¼ 2 in each case. For W of type I2ðmÞ it can
be checked that RðWÞ=InnðWÞGrðWÞ is isomorphic to the group of units of the ring
of integers modulo m.

As is well known, the groups of type An are isomorphic to the finite sym-
metric groups, and all automorphisms are inner except when n ¼ 5, in which case
InnðWÞ ¼ RðWÞ has index two in AutðWÞ. The main assertion of Theorem 31 below
is that there are no other finite irreducible Coxeter groups W such that AutðWÞ0
RðWÞAðWÞ.

Whenever the group of symmetries of the Coxeter diagram has order 2, we let g be
the corresponding nontrivial graph automorphism of W . If W is of type H3 or H4

we let r be the non-inner reflection preserving automorphism constructed in the proof
of Proposition 32 below. The following theorem then describes the classification of
automorphisms of finite irreducible Coxeter groups.

Theorem 31. If W is a Coxeter group of type Bn, Dn, E6, E7, E8, F4, H3 or H4 then

AutðWÞ ¼ RðWÞAðWÞ. Specifically:

(1) If W is of type Bn, n odd, then AutðWÞGW=hwPiz hazi.

(2) If W is of type Bn, n even, then AutðWÞG ððW=hwPiÞz haziÞ � haxi.

(3) If W is of type Dn, n odd, then AutðWÞ ¼ RðWÞGW .

(4) If W is of type Dn, n even and n > 4, then AutðWÞG ððW=hwPiÞz hgiÞ � haxi.

(5) If W is of type D4 then AutðWÞG ððW=hwPiÞz Sym3Þ � haxi.

(6) If W is of type E6 then AutðWÞ ¼ RðWÞGW .

(7) If W is of type E7 then AutðWÞ ¼ RðWÞGW=hwPi.

(8) If W is of type E8 then AutðWÞG ðW=hwPiÞ � haxi.

(9) If W is of type F4 then AutðWÞG ðW=hwPiÞz hg; awi.

(10) If W is of type H3 then AutðWÞG ðW=hwPiÞz hri.

(11) If W is of type H4 then AutðWÞG ððW=hwPiÞz hriÞ � haxi.

Proof. (Outline) In all cases we consider the sizes of the conjugacy classes of
involutions; see [3]. We consider the simpler cases first.

For type E6 there are 4 classes of involutions, of sizes 270, 540, 45 and 36, the
class of reflections being the one of size 36. Clearly all automorphisms must preserve
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reflections and hence are inner by Corollary 19. In this case the graph automorphism
g is inner, being conjugation by wP. Thus we have:

AutðWÞ ¼ RðWÞGW :

For type E7 there are 63 reflections, and the other classes of involutions have sizes
945, 3 780, 315, 3 780, 316, 945, 63 and 1. In this case wP is central and so if r is a
simple reflection then rwP is an involution. Thus the other class of involutions that
has size 63 must be the class of rwP. But lðrwPÞ ¼ 62 is even, and so this class does
not generate W . In the absence of graph automorphisms we therefore have:

AutðWÞ ¼ RðWÞGW=hwPi:

For type E8 there are 120 reflections, and the other classes of involutions have sizes
3 780, 37 800, 113 400, 3 150, 37 800, 3 780, 120 and 1. Again the second class of size
120 is the class of rwP, where r is a reflection. But ax is an automorphism that inter-
changes these two classes. Thus, up to ax, automorphisms preserve reflections and
hence are inner. We have:

AutðWÞG ðW=hwPiÞ � haxi:

For type H3 the class of reflections has size 15 while the other classes have sizes 15
and 1. By an argument similar to that used for type E7, the second class of size 15 does
not generate W . Thus AutðWÞ ¼ RðWÞ. Since wP is central, InnðWÞGW=hwPi.
But, as explained above, InnðWÞ has index two in RðWÞ in this case. So we have:

AutðWÞG ðW=hwPiÞz hri:

For type H4 the class of reflections has size 60 while the other classes have sizes
450, 60 and 1. In this case ax is an automorphism that swaps the two classes of size
60, and so AutðWÞ is the product of RðWÞ and haxi. So we have:

AutðWÞG ððW=hwPiÞz hriÞ � haxi:

For type F4 there are two classes of reflections, each of size 12, and they are inter-
changed by the graph automorphism g. The remaining classes have sizes 18, 77, 12,
12 and 1. If r and s are representatives of the classes of reflections then rwP and swP

are representatives of the other classes of size 12. We can take the homomorphism
z : W ! ZðWÞ defined above to satisfy zðrÞ ¼ wP and zðsÞ ¼ 1. The reflection sub-
group generated by the reflections conjugate to r is of type D4, and contains wP.
Thus classes of r and rwP together do not generate W , and the same applies for the
classes of s and swP. This leaves 8 possible targets for the images of the two classes of
reflections under the action of an automorphism. Since g and az generate a copy of
the dihedral group of order eight, we have:

AutðWÞG ðW=hwPiÞz hg; azi:
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For types Bn and Dn we use the well known fact that groups of these types are
isomorphic to En z Symn and E 0

n z Symn, where En ¼ hx1; x2; . . . ; xni is an elemen-
tary abelian 2-group of order 2n, and E 0

n is the subgroup of En generated by elements
of the form xixj . Thus involutions have the form bipj where bi is a product of i dis-
tinct transpositions and pj is a product of j distinct xk’s, with the proviso that if xh
appears in pj and the transposition ðhkÞ appears in bi then xk also appears in pj . It
can be shown that if W is of type Bn then bipj is conjugate to an element bip

0
l where

no term xk in p 0
l is moved by bi. The same is true in type Dn provided that 2i < n,

although j (and l) must be even in this case. The number of elements in the class is

n!

i!j!ðn� j � 2iÞ!

If n ¼ 2t then the involutions in Dn of the form btpj are conjugate either to bt or to
btxkxl , where ðklÞ is some transposition in bt. We obtain two classes of size

ð2iÞ!
2i!

In type Bn the classes of reflections have representatives b1p0 and b0p1, with sizes
nðn� 1Þ and n respectively. The latter class does not occur in type Dn. The only
coincidences of class sizes that involve classes of reflections are as follows.

� In type B4 the class of ð1 2Þð3 4Þ has the same size as that of ð1 2Þ.
� In type D4 the class of ð1 2Þð3 4Þx1x2 has the same size as that of ð1 2Þ.
� In type B8 the classes of x1x2x3 and x1x2x3x4x5 have the same size as that of ð1 2Þ.
� In type Bn the class of x1wP has the same size as that of x1.

� In types Bn and D2t the class of ð1 2ÞwP has the same size as that of ð1 2Þ.

The first three cannot give rise to automorphisms as the classes that would contain
the images of the reflections do not generate W . The same applies in the fourth case
when n is odd, while when n is even the automorphism ax interchanges the two classes
in question. In the fifth case the two classes are interchanged by the automorphism az
of Bn or the automorphism ax of D2t. Thus in all cases AutðWÞ is generated byAðWÞ
and RðWÞ. Finally, observing that for n odd the graph automorphism of groups of
type Dn is induced by conjugation by wP and that the group of graph automorphisms
of type D4 is isomorphic to Sym3, we have the following conclusions.

If W is of type Bn, n odd, then AutðWÞGW=hwPiz hazi.

If W is of type Bn, n even, then AutðWÞG ððW=hwPiÞz haziÞ � haxi.

If W is of type Dn, n odd, then AutðWÞ ¼ RðWÞGW .

If W is of type Dn, n > 4 even, then AutðWÞG ððW=hwPiÞz hgiÞ � haxi.

If W is of type D4 then AutðWÞG ððW=hwPiÞz Sym3Þ � haxi. r
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We now use the above discussion to prove the results that we actually need.

Proposition 32. Let W be a finite Coxeter group, and let a be an automorphism of W

that preserves reflections. Then a preserves the set of parabolic subgroups of W.

Proof. By Lemma 14 we know that a permutes the irreducible components of W ,
and by Proposition 25 it maps each component to a component of the same type. So
replacing a by ga for a suitable graph automorphism g, we can assume that a pre-
serves each component. So it is su‰cient to prove the result for irreducible Coxeter
groups. Since the group of all automorphisms that preserve parabolic subgroups con-
tains the inner and graph automorphisms we have only to consider types H3 and H4,
and it is su‰cient to prove that one element of RðWÞ that is not inner by graph pre-
serves the set of parabolic subgroups.

Let W be of type H4 and let P ¼ fa; b; c; dg, with the following diagram:

�a
5
�b �c �d :

Let l ¼ 1
2
ð1þ

ffiffiffi
5

p
Þ, and define a 0 ¼ ð3lþ 2Þaþ ð3lþ 3Þbþ 2ðlþ 1Þcþ ðlþ 1Þd. It

can be checked that a 0 A F and a 0 � c ¼ a 0 � d ¼ 0; furthermore, a 0 � b ¼ 1
2
ðl� 1Þ ¼

�cosð2p=5Þ. So there is an automorphism r A RðWÞ that fixes rb, rc and rd and takes
ra to ra 0 . If we define

w1 ¼ rbrarcrbrarbrdrcrbrarbrarcrbrardrcrbra;

w2 ¼ rcrbrarbrardrcrbrarbrarcrbrarbrdrcrbrarbra;

w3 ¼ rbrarbrardrcrbrarbrarcrbrarbrdrcrbrarbrarcrbra;

then a straightforward calculation reveals that

fw1a
0;w1c;w1dg ¼ fa; d; cg;

fw2a
0;w2b;w2dg ¼ faþ lb; a; dg;

fw3a
0;w3b;w3cg ¼ fc; laþ ðlþ 1Þbþ c; ag;

and therefore

rðWfa; c;dgÞ ¼ w�1
1 Wfw1a 0;w1c;w1dgw1 ¼ w�1

1 Wfa;d; cgw1;

rðWfa;b;dgÞ ¼ w�1
2 Wfw2a 0;w2b;w2dgw2 ¼ w�1

2 Wfa;b;dgw2;

rðWfa;b; cgÞ ¼ w�1
3 Wfw3a 0;w3b;w3cgw3 ¼ w�1

3 Wfa;b; cgw3:

In particular, these are all parabolic subgroups. It is obvious that rðWfb; c;dgÞ is par-
abolic, and so r preserves maximal parabolic subgroups. Since the result is known for
groups of lower rank apart from H3, the proof for H3 is all that remains to be done.

Automorphisms of nearly finite Coxeter groups 333



So now let W be a group of type H3, and let P ¼ fa; b; cg, arranged as for H4. Let
a 0 ¼ ðlþ 1Þaþ ðlþ 1Þbþ c. It is readily checked that a 0 A F, and also that a 0 � c ¼
1
2
ðl� 1Þ and a 0 � b ¼ 0. So there is an automorphism r that interchanges rb and rc and

takes ra to ra 0 . If w ¼ rbrarbra then fwa 0;wbg ¼ fc; ag, and so rðWfa; cgÞ is a parabolic
subgroup. If w ¼ rcrbra then fwa 0;wcg ¼ flaþ b; bg, and so rðWfa;bgÞ is a parabolic
subgroup. So r preserves maximal parabolic subgroups, and hence all parabolic sub-
groups, since the result is already known for smaller rank. r

Proposition 33. Suppose that W is a finite irreducible Coxeter group of rank at least

three, and suppose that a is a non-identity automorphism in AðWÞ. If W 0 is a maximal

parabolic subgroup of W such that aðW 0Þ is also a parabolic subgroup then aðwÞ ¼ w

for all w A W 0.

Proof. Let a ¼ af where f A H, and let z be the element of W of maximal length.
Suppose that W 0 is a maximal parabolic subgroup such that aðwÞ0w for at least
one element w A W 0, and suppose, for a contradiction, that aðW 0Þ is a parabolic sub-
group. It is trivial to check that inner automorphisms commute with all elements of
AðWÞ; so without loss of generality we may assume that W 0 ¼ WJ for some JJP.

Let V 0 be the subspace of V spanned by the root system of aðWJÞ, and let v be
a nonzero element of the orthogonal complement of V 0 in V . Then wv ¼ v for all
w A aðWJÞ, and in particular aðraÞv ¼ v for all roots a A Fþ

J . There is at least one
a A Fþ

J such that aðraÞ0 ra, since otherwise we would have aðwÞ ¼ w for all w A WJ .
Moreover, aðraÞ0 ra implies that aðraÞ ¼ raz. Now since z acts on V as multiplica-
tion by �1, if aðraÞ ¼ raz then rav ¼ �v, which implies that v is a scalar multiple of a.
Since there is at least one such a A Fþ

J , it is unique. Fix this root a, and note that it is
orthogonal to V 0.

If b A Fþ
J and b0 a then rba ¼ aðrbÞa ¼ a. Hence a is orthogonal to Fþ

J nfag. Thus
ra generates a component of WJ of type A1, and every other component of WJ is
contained in aðWJÞ. Furthermore, ra is not conjugate in W to any other reflection
rb AWJ , since f ðraÞ ¼ z0 f ðrbÞ. SoW is of type Bn or F4 andWJ is of type A1 � An�2,
where n is the rank of W . Let K ¼ Jnfag, and note that WK is a parabolic subgroup
of aðWJÞ. Thus aðWJÞ is also of type A1 � An�2. If n > 3 then the centre of aðWJÞ has
order two and is generated by a reflection; however, this contradicts the fact that raz
is not a reflection, since it acts as multiplication by �1 on the space V 0, which has
dimension greater than 1. So n ¼ 3, and W is of type B3. Writing b for the unique
element of Jnfag we find that the two reflections in aðWJÞ are rb and rbraz. But these
are conjugate in W , whereas in type B3 the parabolic subgroups of type A1 � A1 are
generated by a pair of non-conjugate reflections. r

Proposition 34. Let W be a finite irreducible Coxeter group of rank n, and suppose that

W is not of type A5. Let a A AutðWÞ, and suppose that for every reflection r A W the

element aðrÞ lies in a parabolic subgroup of W of rank less than n� 1. Then a A RðWÞ.

Proof. Suppose that a B RðWÞ. The image of a proper parabolic subgroup under the
action of an element of RðWÞ is clearly always a proper parabolic subgroup. So

W. N. Franzsen and R. B. Howlett334



we may replace a by ab for any b A RðWÞ without a¤ecting either the hypotheses of
the proposition or the assumption that a B RðWÞ. Since W is not of type A5 we may
assume that a A AðWÞ. Let a ¼ af , where f A H. Now f 0 1 since a0 1, and so
there exists a simple reflection ra such that f ðraÞ ¼ z. It follows that raz ¼ aðraÞ lies in a
parabolic subgroup W 0 of rank less than n� 1. If V 0 is the subspace of V spanned by
the root system ofW 0 then all elements ofW 0 act trivially on the quotient space V=V 0,
which has dimension at least 2. So raz has 1 as a repeated eigenvalue, contradicting
the fact that it acts as �1 on the ðn� 1Þ-dimensional space fv A V j v � a ¼ 0g. r

Note that if W is of type A5 then the automorphisms that do not preserve re-
flections take them to conjugates of the central element of a parabolic subgroup of
type A3

1 . However, to deal with type A5 we have the following fact.

Proposition 35. Let W be a Coxeter group of type A5, and let a A AutðWÞ. If there
exists a nontrivial proper parabolic subgroup W 0 of W such that aðW 0Þ is also a para-

bolic subgroup of W then a is inner.

Proof. We can identify W with the symmetric group of degree 6, and, modifying a by
an appropriate inner automorphism, we may assume that the action of a on the gen-
erators ri ¼ ði; i þ 1Þ (for 1c ic 5) is as follows:

ð1 2Þ 7! ð1 3Þð2 4Þð5 6Þ

ð2 3Þ 7! ð1 6Þð2 5Þð3 4Þ

ð3 4Þ 7! ð1 4Þð2 3Þð5 6Þ

ð4 5Þ 7! ð1 6Þð2 4Þð3 5Þ

ð5 6Þ 7! ð1 2Þð3 4Þð5 6Þ:

If W 0 is a nontrivial proper parabolic subgroup such that aðW 0Þ is also parabolic
then aðW 0Þ certainly contains an element from the conjugacy class of W containing
the element ð1 2Þð3 4Þð5 6Þ. Hence aðW 0Þ is of type A3

1 or A1 � A3. Since a
2 is inner,

it su‰ces now to check that neither aðhr1; r3; r5iÞ nor aðhr1; r2; r3; r5iÞ is a parabolic
subgroup. We leave this straightforward task to the reader. r

Suppose that W is a nearly finite Coxeter group of rank n with no infinite edge
labels. Suppose that a A P is such that J ¼ Pnfag is irreducible and of finite type,
and let a be an automorphism of W . From Corollary 12 we know that aðWJÞ is a
maximal finite parabolic subgroup. Replacing a by its composite with an inner auto-
morphism permits us to assume that aðWJÞ ¼ WK for some KJP. Clearly the rank
of WK is at most n� 1.

We claim that WK is of the same type as WJ . This depends on the following fact,
whose proof we omit.
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Proposition 36. Suppose that W is an irreducible finite Coxeter group that is abstractly

isomorphic to a direct product of two nontrivial Coxeter groups. Then W is either of

type Bk for some odd k > 1 or I2ð2mÞ for some odd m > 1. The factors are of types A1

and Dk in the former case (or A1 and A3 if k ¼ 3), and of types A1 and I2ðmÞ in the

latter case.

This can be proved, for example, by an examination of the list of normal subgroups
of finite irreducible Coxeter groups given by Maxwell [13]. The proposition tells us
that if an irreducible finite Coxeter group is abstractly isomorphic to a reducible
Coxeter group, then the rank of the reducible group is one greater than the rank of
the irreducible group.

Hence in our situation above, WK must be irreducible. As we noted in the proof of
Proposition 25, if two irreducible finite Coxeter groups are abstractly isomorphic
then they are of the same type. So WJ and WK are of the same type. Thus we have
proved the following result.

Theorem 37. If W is a nearly finite Coxeter group of rank n, and WJ a standard para-

bolic subgroup of W that is irreducible and of rank n� 1, then any automorphism of

W will map WJ to a conjugate of a standard parabolic subgroup WK of the same type

as WJ .

The following is Lemma 9 in [9].

Lemma 38. If W is any infinite irreducible Coxeter group then the only graph auto-

morphism that is inner is the identity.

Our objective is to prove the following result.

Theorem 39. Suppose that W is a nearly finite Coxeter group with finite edge labels,
and suppose that J ¼ Pnfag is irreducible and of finite type. Suppose also that mab is

odd for at least one b A J. Then all automorphisms of W are inner by graph, and indeed

AutðWÞ ¼ InnðWÞzGrðWÞ;

where GrðWÞ is the group of all graph automorphisms of W.

Proof. Since Lemma 38 above tells us that InnðWÞVGrðWÞ ¼ f1g, the assertion
that AutðWÞ ¼ InnðWÞzGrðWÞ will follow once it has been shown that all auto-
morphisms are inner by graph. By Theorem 29 it su‰ces to prove that all auto-
morphisms preserve reflections.

Suppose, for a contradiction, that a A AutðWÞ does not preserve reflections. By
Theorem 37 we may assume that aðWJÞ ¼ WK for some KJP of the same type as J.
Let b : WK ! WJ be an isomorphism that takes simple reflections to simple reflec-
tions. Since ra is conjugate to an element of WJ there exists at least one reflection
r A WJ such that aðrÞ is not a reflection; hence the automorphism g of WJ given by
w 7! bðaðwÞÞ is not in RðWJÞ.
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Let us first assume that J and K are not of type A5. By Proposition 34 there is a
b A J such that gðbÞ does not lie in any parabolic subgroup of WJ of rank less than
n� 2, where n is the rank of W . So aðrbÞ does not lie in any parabolic subgroup of
WK of rank less than n� 2. Since mab 0y there exists at least one maximal finite
parabolic subgroup W 0 containing both ra and rb. Suppose there are more than one
of these, say W 0 and W 00. Then aðW 0Þ and aðW 00Þ are distinct proper parabolic
subgroups of W , and so aðW 0ÞV aðW 00Þ is a parabolic subgroup of W of rank at
most n� 2 (by Lemma 7). Furthermore, aðW 0ÞV aðW 00Þ is not contained in WK ,
since W 0 VW 00 is not contained in WJ . So aðW 0ÞV aðW 00ÞVWK has rank at most
n� 3 and is a parabolic subgroup of WK containing aðrbÞ. This contradiction shows
that there is a unique maximal finite parabolic subgroup W 0 containing ra and rb.
Since there is obviously a maximal finite standard parabolic subgroup containing ra
and rb, it follows from Lemma 12 that W 0 ¼ WL for some LJP. If WL has rank
n� 2 or less then aðWLÞVWK has rank n� 3 or less and is a parabolic subgroup of
WK containing rb; as before, this is a contradiction. So L ¼ Pnfcg for some c A J;
moreover, aðWLÞVWK has rank n� 2.

Since WJ is not of type A5, there is a reflection preserving automorphism d of WJ

such that dg A AðWJÞ. Now

ðdgÞðWLVJÞ ¼ dðbðaðWL VWJÞÞÞ ¼ dðbðaðWLÞVWKÞÞ

is a maximal parabolic subgroup of WJ , by Proposition 32. So by Proposition 33 it
follows that ðdgÞðwÞ ¼ w for all w A WLVJ . Since rb A WJVL and d preserve reflections,
it follows that gðrbÞ is a reflection, and hence aðrbÞ is a reflection. This is a contradic-
tion, and completes the proof in the case that J and K are not of type A5.

So suppose that J and K are of type A5. Let WL be a maximal finite standard para-
bolic subgroup ofW containing ra and rb. Then aðWLÞVWK is the intersection of two
maximal finite subgroups of W , and hence is a nontrivial proper parabolic subgroup
of WK . So bðaðWLÞVWKÞ ¼ gðWLVJÞ is a proper parabolic subgroup of WJ . By
Proposition 35 it follows that g is inner, contradicting the fact that g B RðWJÞ. r
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