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The Ricci tensor of an almost homogeneous Kéihler manifold
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Abstract. We determine an explicit expression for the Ricci tensor of a K-manifold, that is of
a compact Kéhler manifold M with vanishing first Betti number, on which a semisimple group
G of biholomorphic isometries acts with an orbit of codimension one. We also prove that, up
to few exceptions, the Kéhler form w and the Ricci form p of a K-manifold M are uniquely
determined by two special curves with values in g = Lie(G), say Z,,Z, : R — g, and we show
how Z, is determined by Z,,.

These results are used in another work with F. Podesta, where new examples of non-
homogeneous compact Kdhler—Einstein manifolds with positive first Chern class are constructed.
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1 Introduction

The objects of our study are the so-called K-manifolds, that is Kdhler manifolds
(M,J,g) with b;(M) =0 and which are acted on by a group G of biholomorphic
isometries, with regular orbits of codimension one. Note that since M is compact and
G has orbits of codimension one, the complexified group GT acts naturally on M as
a group of biholomorphic transformations, with an open and dense orbit. According
to a terminology introduced by A. Huckleberry and D. Snow in [15], M is almost-
homogeneous with respect to the G®-action. By the results in [15] and [1], the subset
S = M of singular points for the G%-action is either connected or has exactly two
connected components. If the first case occurs, we will say that M is a non-standard
K-manifold; we will call it a standard K-manifold in the other case.

The aim of this paper is to furnish an explicit expression for the Ricci curvature
tensor of a K-manifold, to be used for constructing (and possibly classifying) new
families of examples of non-homogeneous K-manifolds with special curvature con-
ditions. A successful application of our results is given in [21], where several new ex-
amples of non-homogeneous compact Kdhler—Einstein manifolds with positive first
Chern class are found.

Note that explicit expressions for the Ricci tensor of standard K-manifolds can be
found also in [22], [16], [20] and [11]. However our results can be applied to a wider
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class of K-manifolds and they turn out to be particularly useful for the non-standard
cases (at this regard, see also [14], [13]). They can be summarized in three facts.

Before stating them, we need to consider the following concept. We recall that,
by the results in [1] and [15], any K-manifold M, acted on by a compact semisimple
Lie group G, admits a canonical G-equivariant blow-up # : M — M along the com-
plex singular G-orbits, which has a holomorphic fibration 7 : M — GT/P over a flag
manifold G¥/P; here P = G is the smallest parabolic subgroup which contains the
isotropy (GT), at some regular point for the action of G®. The semisimple group G
acts transitively on the flag manifold G®/P and the compact subgroup K = GNP
acts on the standard fiber F = 7! (eP) = M in one of the following two ways: either
K acts on F with an isolated fixed point and, in this case, the K-regular orbits are
K-equivariantly diffeomorphic to the sphere S?~! = CP’, or F is K-equivariantly
diffeomorphic to a compactification of the tangent space TN of some compact
rank one symmetric space N = K/K’ and the regular K-orbits are sphere bundles
S(N) = TN. We will say that M is a K-manifold admitting a sphere-like fibering if it
is non-standard and if the blow up M admits a fibration 7 : M — G®/P = G/K over
a flag manifold so that the action of K on F = n~!(eP) has an isolated fixed point; in
case there exists a fibration 7 : M — G€/P = G/K over a flag manifold so that the
action of K on F = n~!(eP) has no fixed point, we will say that M admits a non-
sphere-like fibering. A characterization of K-manifolds with sphere-like fibering can
be extracted from the proof of Theorem 5 in [1] (see also Theorem 14 in [13]). Ob-
serve also that if the regular G-orbits of a K-manifold M are Levi non-degenerate,
then M has a non-sphere-like fibering (see [21]).

In all of this paper, we limit our attention to K-manifolds with non-sphere-like
fibering, leaving the discussion of the remaining cases to a forthcoming paper.

Now, let g be the Lie algebra of the compact group G acting on a K-manifold
(M,J,g) with at least one orbit of codimension one. By a result of [21], we may
always assume that G is semisimple. Let also 4 be the Cartan—Killing form of
g. Then for any x in the regular point set M., one can consider the following %-
orthogonal decomposition of g:

g=I1+RZ+m, (1.1)

where [ = g, is the isotropy subalgebra, RZ + mt is naturally identified with the tan-
gent space T,(G/L) ~ Ty(G - x) of the G-orbit G/L = G-x, and m is naturally
identified with the holomorphic subspace m ~ %,

2, ={veTy(G-x):Jve T\(G - x)}. (1.2)

Notice that for any point x € M., the %-orthogonal decomposition (1.1) is uniquely
given; on the other hand, two distinct points x, x" € My, may determine two distinct
decompositions of type (1.1).

Now, our first result consists in proving that any K-manifold with non-sphere-like
fibering admits a family @ of smooth curves 7 : R — M of the form
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n, =exp(itZ) - x,,
where Z € g, x, € M is a regular point for the GT-action and the following properties
are satisfied:

(1) n, intersects any regular G-orbit;

(2) for any point #, € M, the tangent vector #, is transversal to the regular orbit
G-ny

(3) any element g € G which belongs to a stabilizer G, , with 7, € M, fixes point-
wise the whole curve #; in particular, all regular orbits G - 7, are equivalent to the
same homogeneous space G/L;

(4) the decompositions (1.1) associated with the points #, € M., do not depend on

(5) there exists a basis {fi,...f,} for m such that for any 5, € My, the complex
structure J; : m — m, induced by the complex structure of 7, M, is of the fol-
lowing form:

thZj = A’j(t)f‘ZfHJ th2j+1 = _mﬁja (13)
J

where the function /;(¢) is either —tanh(/j¢) or —coth(¢¢), and 4 can be 1, 2, 3, or
it is identically equal to 1.

1
t

We call any such curve an optimal transversal curve; the basis for RZ + m < g given
by (Z, fi,..., fan—1), where the f;’s satisfy (1.3), is called optimal basis associated with
n. An explicit description of the optimal basis for any given semisimple Lie group G
is given in Section 3.

Notice that the family @ of optimal transversal curves depends only on the action
of the Lie group G. In particular it is totally independent of the choice of the G-
invariant Kédhler metric g. At the same time, the Killing fields, associated with the
elements of an optimal basis, determine a 1-parameter family of holomorphic frames
at the points 7, € Mieg, which are orthogonal with respect to at least one G-invariant
Kéhler metric g. It is also proved that, for all K-manifolds M which do not belong to
a special class of non-standard K-manifolds, those holomorphic frames are orthog-
onal with respect to any G-invariant Kéhler metric g on M (see Corollary 4.2 for
details). From these remarks and the fact that 7/ = JZ, , where Z is the first element
of any optimal basis, it may be inferred that any curve # € () is a reparameterization
of a normal geodesic of some (in most cases, any) G-invariant Kédhler metric on M.

Our second main result is the following. Let # be an optimal transversal curve of a
K-manifold with non-sphere-like fibering, let also g = [ + IRZ + m be the decomposi-
tion (1.1) associated with the regular points #, € M, and let w and p be the Kdhler
form and the Ricci form, respectively, associated with a given G-invariant Kéhler
metric g on (M, J).

By a slight modification of arguments used in [20], we show that there exist two
smooth curves
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ZwZy: R — Cy(I) =3() +a, a= Cy()N(RZ+m), (1.4)

satisfying the following properties (here 3(I) denotes the center of [ and C,(I) denotes
the centralizer of I in g): for any 5, € My, and any two element X, Y € g, with asso-
ciated Killing fields X and Y,

0, (X, Y) = B(Zo(1),[X, Y]), p, (X, Y)=B(Z,(0),[X, Y]). (1.5)

We call such curves Z,,(¢) and Z,(t) the algebraic representatives of w and p along n. It
is clear that the algebraic representatives determine uniquely the restrictions of w and
p to the tangent spaces of the regular orbits. But the following proposition establishes
a result which is somewhat stronger.

Before stating the proposition, we recall that in [20] the following fact was estab-
lished: if g =1+ IRZ + m is a decomposition of the form (1.1), then the subalgebra
a = C4(I) N (RZ + m) is either 1-dimensional or 3-dimensional and isomorphic with
sip. By virtue of this dichotomy, the two cases considered in the following proposi-
tion are all possible cases.

Proposition 1.1. Let 5, be an optimal transversal curve of a K-manifold (M, J, g) acted
on by the compact semisimple Lie group G and with non-sphere-like fibering. Let also
g=14+IRZ+m be the decomposition of the form (1.1) determined by the points
N, € Mg and Z : R — Cy(1) = 3(1) + a the algebraic representative of the Kihler form
w or of the Ricci form p. Then we have:

(1) If a is 1-dimensional, then it is of the form a = RZg and there exists an element
I € 3(1) and a smooth function f : R — R so that

Z(t) = f()Zs + 1. (1.6)

(2) If a is 3-dimensional, then it is of the form a = suy; = RZy + RX + RY, with
[Z3,X] =Y and [X,Y] = Zg and there exists an element I € 3(1), a real number
C and a smooth function f : R — R so that

Z(1) = f(1)Zo + Wi(r)x +1. (1.7)

Conversely, if Z : R — C4(1) is a curve in Cy(1) of the form (1.6) or (1.7), then there
exists a unique closed J-invariant, G-invariant 2-form w on the set of regular points
Meq, having Z(t) as algebraic representative.

In particular, the Kdihler form w and the Ricci form p are uniquely determined by
their algebraic representatives.

Using (1.5), Proposition 1.1 and some basic properties of the decomposition
g =1+ RZ+ m (see Section 5), it can be shown that the algebraic representatives
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Z,(t) and Z,(t) are uniquely determined by the values w,, (X,JX) = B(Z,(1),
[X,J.X]) and pm(X’, JX)=B(Z,(1),[X,J;X]), where X e m and J, is the complex
structure on m induced by the complex structure of the tangent space 7, M.

Here comes our third main result. It consists in Theorem 5.1 and Proposition 5.2,
where we give the explicit expression for the value r, (X, X) = pm(X’ JX ) for any
X em, only in terms of the algebraic representative Z,,(¢) and of the Lie brackets
between X and the elements of the optimal basis in g. By the previous discussion, this
result furnishes a way to write down explicitly the Ricci tensor of the Kéhler metric
associated with Z,, (7).

Acknowledgement. Many crucial ideas for this paper are the natural fruit of the
uncountable discussions that Fabio Podesta and the author had since they began
working on cohomogeneity one Kdhler—Einstein manifolds. It is fair to say that most
of the credits should be shared with Fabio. We also are indebted to D. Guan for
checking and pointing out to us some serious mistakes in a previous version of this

paper.

Notation. Throughout the paper, if G is a Lie group acting isometrically on a Rie-
mannian manifold M and if X € g = Lie(G), we will adopt the symbol X to denote
the Killing vector field on M corresponding to X.

The Lie algebra of a Lie group will be always denoted by the corresponding Gothic
letter. For a group G and a Lie algebra g, Z(G) and 3(g) denote the center of G and
of g, respectively. For any subset 4 of a group G or of a Lie algebra g, C5(4) and
C,(A) are the centralizer of 4 in G and g, respectively.

Finally, for any subspace n = g of a semisimple Lie algebra g, the symbol n*
denotes the orthogonal complement of n in g with respect to the Cartan—Killing
form 4.

2 Fundamentals of K-manifolds

2.1 K-manifolds, KO-manifolds and KE-manifolds. A K-manifold is a pair formed by
a compact Kdhler manifold (M, J,g) and a compact semisimple Lie group G acting
almost effectively and isometrically (hence biholomorphically) on M, such that:

i) by(M) = 0;

il) M has cohomogeneity one with respect to the action of G, i.e. the regular G-orbits
are of codimension one in M.

In this paper, (M, J, g) will always denote a K-manifold of dimension 2n, acted on by
the compact semisimple Lie group G. We will denote by w(-,-) = g(-,J-) the Kéhler
fundamental form and by p = r(-,J) the Ricci form of M.

For the general properties of cohomogeneity one manifolds and of K-manifolds,
see e.g. [2], [3], [10], [15], [20]. Here we only recall some properties, which will be used
in the paper.
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If pe M is a regular point, let us denote by L = G, the corresponding isotropy
subgroup. Since M is orientable, every regular orbit G - p is orientable. Hence we
may consider a unit normal vector field &, defined on the subset of regular points
Mg, which is orthogonal to any regular orbit. It is known (see [3]) that any integral
curve of ¢ is a geodesic. Any such geodesic is usually called a normal geodesic.

A normal geodesic y through a point p satisfies the following properties: it inter-
sects any G-orbit orthogonally; the isotropy subalgebra G, at a regular point p, is
always G, = L (see e.g. [2], [3]). We formalize these two facts in the following
definition.

We call nice transversal curve through a point p € Mz any curve 7 : R — M with
p € n(R) and such that:

i) it intersects any regular orbit;

ii) for any 7, € My,
ni ¢ Ty, (G 1,); 2.1)

iii) for any 7, € My, G, = L = G,,.
The following property of K-manifolds has been proved in [20].

Proposition 2.1. Let (M,J,g) be a K-manifold acted on by the compact semisimple
Lie group G. Let also p € My, and L = G, be the isotropy subgroup at p. Then we
have:

(1) There exists an element Z (determined up to scaling) so that
RZe C,(HNTH, Cy(1+RZ) = 3(I) + RZ. (2.2)

In particular, the connected subgroup K — G with subalgebra T =1+ RZ is the
isotropy subgroup of a flag manifold F = G/K.

(2) The dimension of a = Cy(1) 1" is either 1 or 3; if dimg a = 3, then a is a sub-
algebra isomorphic to sw, and there exists a Cartan subalgebra t€ < 1€ + o€ < g€
so that a© = CH, + CE, + CE_, for some root « of the root system of (g%, 1%).

Note that if for some regular point p we have that dimg a = 1 (resp. dimp a = 3),
then the same occurs at any other regular point. Therefore we may consider the fol-
lowing definition.

Definition 2.2. Let (M, J, g) be a K-manifold and L = G, the isotropy subgroup of a
regular point p. We say that M is a K-manifold with ordinary action (or shortly, KO-
manifold) if dimg a = dimg (C,() N1*) = 1.

In all other cases, we say that M is with extra-ordinary action (or, shortly, KE-
manifold).
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Another useful property of K-manifolds is the following. It can be proved that any
K-manifold admits exactly two singular orbits, at least one of which is complex (see
[21]). By the results in [15], it also follows that if M is a K-manifold whose singular
orbits are both complex, then M admits a G-equivariant blow-up M along the com-
plex singular orbits, which is still a K-manifold and admits a holomorphic fibration
over a flag manifold G/K = G%/P, with standard fiber equal to CP'.

Several other important facts are related to the existence (or non-existence) of two
singular complex orbits (see [21] for a review of these properties). For this reason, it is
convenient to introduce the following definition.

Definition 2.3. We say that a K-manifold M, acted on by a compact semisimple
group G with cohomogeneity one, is standard if the action of G has two singular
complex orbits. We call it non-standard in all other cases.

2.2 The CR structure of the regular orbits of a K-manifold. A CR structure of codi-
mension r on a manifold N is a pair (Z,J) formed by a distribution 2 < TN of co-
dimension r and a smooth family J of complex structures J, : &, — Z, on the spaces
of the distribution.

A CR structure (Z,J) is called integrable if the distribution 2'° = TCN, given by
the J-eigenspaces & ;0 c 93,: corresponding to the eigenvalue +i, satisfies

[@10 910} c 910.

Note that a complex structure J on a manifold N may be always considered as an
integrable CR structure of codimension zero.

A smooth map ¢ : N — N’ between two CR manifolds (N, 2,J) and (N',2',J")
is called CR map (or holomorphic map) if:

a) $.(2) = 7",
b) forany xe N, ¢, oJ =Jj 0 .|, .

A CR transformation of (N, %,J) is a diffeomorphism ¢ : N — N which is also a CR
map.

Any codimension one submanifold N < M of a complex manifold (M, J) is natu-
rally endowed with an integrable CR structure of codimension one (2,J), which is
called the induced CR structure; it is defined by

Ie={veTN:Jve T\N} J.=J|,.

It is clear that any regular orbit G/L = G - x € M of a K-manifold (M, J, g) has an
induced CR structure (2, J), which is invariant under the transitive action of G. For
this reason, several facts on the global structure of the regular orbits of a K-manifolds
can be detected using what is known on compact homogeneous CR manifolds (see
e.g. [7] and [6]).
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Here, we recall some of those facts, which will turn out to be crucial in the next
sections.

Let (G/L,2,J) be a homogeneous CR manifold of a compact semisimple Lie
group G, with an integrable CR structure (2, J) of codimension one. If we consider
the #-orthogonal decomposition g =1+ n, where [ = Lie(L), then the orthogonal
complement 1 is naturally identifiable with the tangent space T,(G/L), o = eL, by
means of the map

¢Zn—>Ta(G/L)7 ¢(X):X|

o
If we denote by m the subspace
m=¢"'(2,) =n,
we get the following orthogonal decomposition of g:
g=l+n=14+RZs +m. (2.3)

where Zg € (1+ m)L. Since the decomposition is ad;-invariant, it follows that
Using again the identification map ¢ : 1 — T,(G/L), we may consider the complex
structure

Jim—m, JE g (2.4)

Note that J is uniquely determined by the direct sum decomposition

mC =m!% 4+ m% m® = mio, (2.5)

where m!'? and m®' are the J-eigenspaces with eigenvalues +i and —i, respectively.
In the following, (2.3) will be called the structural decomposition of g associated
with 9; the subspace m'® = m® (respectively, m®' = m!0) given (2.5) will be called
the holomorphic (resp. anti-holomorphic) subspace associated with (2,J).
We recall that a G-invariant CR structure (2, J) on G/L is integrable if and only if
the associated holomorphic subspace m'? = m® is so that

[T + m'" is a subalgebra of g°. (2.6)

We now need to introduce a few concepts which are quite helpful in describing the
structure of a generic compact homogeneous CR manifold.
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Definition 2.4. Let N = G/L be a homogeneous manifold of a compact semisimple
Lie group G and (2,J) a G-invariant, integrable CR structure of codimension one
on N.

We say that a CR manifold (N = G/L,2,J) is a Morimoto—Nagano space if either
G/L = S*"!, n> 1, endowed with the standard CR structure of $?"~! = CP", or
there exists a subgroup H < G so that:

a) G/H is a compact rank one symmetric space (i.e. RP" = SO,,4/SO,, - Z,, S" =
SO,+1/SO,, CP" = SU,;1/SU,, HP" = Sp,., /Sp, or OP? = F,4/Spin,);

b) G/L is a sphere bundle S(G/H) = T(G/H) in the tangent space of G/H,

¢) (2,J) is the CR structure induced on G/L = S(G/H) by the G-invariant complex
structure of T(G/H) =~ G®/H®.

If a Morimoto—Nagano space is G-equivalent to a sphere S?*~! we call it trivial; we
call it non-trivial in all other cases.
A G-equivariant holomorphic fibering

n:N=G/L—-F =G/Q

of (N, 2,J) onto a non-trivial flag manifold (# = G/Q, J#) with invariant complex
structure J# is called CRF fibration. A CRF fibration n : G/L — G/Q is called nice if
the standard fiber is a non-trivial Morimoto—Nagano space; it is called very nice if it
is nice and there exists no other nice CRF fibration n' : G/L — G/Q with standard
fibers of smaller dimension.

The following proposition gives necessary and sufficient conditions for the exis-
tence of a CRF fibration. The proof can be found in [6].

Proposition 2.5. Let G/L be a homogeneous CR manifold of a compact semisimple Lie
group G, with an integrable, codimension one G-invariant CR structure (2,J). Let also
g =1+ RZy +m be the structural decomposition of g and m'® the holomorphic sub-
space, associated with (2,J).

Then G/L admits a non-trivial CRF fibration if and only if there exists a proper
parabolic subalgebra p =t +n < g€ (here t is a reductive part and n the nilradical of
p) such that:

a)r=(pNg)% BIT+mlcp ol®cr

In this case, G/L admits a CRF fibration with basis G/Q = GT/P, where Q is the
connected subgroup generated by q = N g and P is the parabolic subgroup of G€ with
Lie algebra p.

Let us go back to the regular orbits of a K-manifold (M,J,g) acted on by the
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compact semisimple group G. First of all, we recall that by Theorem 4.3 in [15], any
non-standard K-manifold M admits a canonical G-equivariant blow-up M, along
the singular complex G-orbit. Moreover, M is a K-manifold acted on by G and it
has the following important property: there exists a G-equivariant holomorphic
fibration 7 : M — G®/P, where G/P is a flag manifold and the standard fiber
F =n~!(eP) is biholomorphic to CP", Q" = {[z] e CP""' : z'z = 0}, the Grass-
manian manifold G, ,,(C) or EIIl = E¢/Spin,, x SOx.

On the other hand, we already pointed out that each regular orbit (G/L = G - x,
2,J) in M, endowed with the induced CR structure (2,J), is a compact homoge-
neous CR manifold. Moreover, G is a maximal compact subgroup of G® and hence
it acts transitively on G®/P. Now, since each regular G-orbit of M is G-equivalent to
a regular orbit of M, the holomorphic fibration 7 : M — G®/P = G/K, K = GNP,
induces a CRF fibration n: G/L=G-x — G/K on any regular G-orbit, whose
standard fiber K/L is a regular K-orbit in F = 7' (eP) = M. By the proof of Theo-
rem 4.3 in [15] (see also [1]), the standard fiber of 7 : G/L = G- x — G/K is always
CR equivalent to a Morimoto—Nagano space and it is CR equivalent to the standard
sphere S~! if and only if K acts on F with an isolated fixed point (in this case,
F=CP".

We are interested mainly in the cases in which M is either standard or non-
standard with fiber of the CRF fibration n: G/L = G-x — G/K that is a non-
trivial Morimoto—Nagano space. For this reason, we consider the following
definition.

Definition 2.6. Let (M, J, g) be a K-manifold acted on by the compact semisimple Lie
group G and let 7: M — G%/P = G/K be a holomorphic fibration as described
above, with typical fiber F = n~!(eP). We say that =« is a sphere-like fibering if M is
non-standard and K acts on F with an isolated fixed point. We say 7 is a non-sphere-
like fibering in all other cases.

In the statement of the following theorem we collect some basic results on the regular
orbits of K-manifolds. It is a direct consequence of Theorem 3.1 in [21] (see also [15],
[1] and [20] Theorem 2.4).

Theorem 2.7. Let (M, J,g) be a K-manifold acted on by the compact semisimple Lie
group G.

(1) If M is standard, then there exists a flag manifold (G/K,J,) with a G-invariant
complex structure J,, such that any regular orbit (G- x = G/L,2,J) of M admits
a CRF-fibrationn : (G/L,2,J) — (G/K,J,) onto (G/K,J,) with typical fiber S'.

(2) If M is non-standard and admitting a non-sphere-like fibering, then there exists
a flag manifold (G/K,J,) with a G-invariant complex structure J, such that any
regular orbit (G/L = G -x,2,J) admits a nice CRF fibration n: (G/L,2,J) —
(G/K,J,) where the typical fiber K/L is a non-trivial Morimoto—Nagano space of
dimension dim K /L > 3.
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Furthermore, if the last case occurs, then the fiber K/L of the CRF fibration
n:(G/L,2,J) — (G/K,J,) has dimension 3 only if K/L is either S(RP?) <
T(RP?) = CP>\{[z] : 'z-z =0} or S(CP') = T(CP') = CP' x CP"\{[z] = [w]}.

3 The optimal transversal curves of a K-manifold
3.1 Notation and preliminary facts. If G is a compact semisimple Lie group and
t® = g is a given Cartan subalgebra, we will use the following notation:

+ 4 is the Cartan—Killing form of g and for any subspace 4 = g, A+ is the %-
orthogonal complement to A;

* R s the root system of (g€, t%);
« H, €t is the #-dual element to the root «;
+ for any o, ff € R, the scalar product (o, f) is set to be equal to (o, f) = B(H,, Hp);

« E, is the root vector with root o in the Chevalley normalization; in particular
,@(E“,E_/j) = 51/;, [Ea,E_a] = H%, [H%,E/f] = (ﬂ, O()E/; and [Hg{,E_’[)’] = —(ﬂ, oc)E_/;;
« for any root o, F, = % (E,— E_,)and G, = \/LE(EQC + E_,); note that for o, f € R
B(Fy, Fp) = —0,p = B(Gy, G),  B(F,, Gp) = B(F,, Hp) = B(G,, Hp) = 0;

+ the notation for the roots of a simple Lie algebra is the same of [12] and [6].
Recall that for any two roots «, f, with f # —o, if [E,, Eg] is non-trivial then
[E,, Eg] = Ny pE, 3 where the coefficients N, 4 satisfy the following conditions:
Nup=—Nps Nup=—N_, 5. (3.1)

From (3.1) and the properties of root vectors in the Chevalley normalization, the
following well known properties can be derived:
(1) for any o, € R with o # 8

[Fu, F3], |Gy, Gg] € span{F,,y € R}, [F,, Gs] e span{G,,y e R}; (3.2)
(2) for any H €t and any o, € R, B(H, [F,, F5)) = B(H, [G,, G]) = 0 and

BH, [Fy, Gyl) = id.5B(H, H,) = S50(iH); (3.3)

Finally, concerning the Lie algebra of flag manifolds and of CR manifolds, we
adopt the following notation.
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Assume that G/K is a flag manifold with invariant complex structure J (for defi-
nitions and basic facts, we refer to [4], [5], [9], [19]) and let z: G/L — G/K be a G-
equivariant S'-bundle over G/K. In particular, let us assume that [ is a codimension
one subalgebra of f. Recall that t = £* + 3(f), with I* the semisimple part of f. Hence
the semisimple part [ of [ is equal to ¥ and t =14+ RZ = (¥ + 3(f) NI) + RZ for
some Z € 3(f).

Let t€ = £€ be a Cartan subalgebra for g€ contained in € and R the root system
of (g€, t%). Then we will use the following notation:

* R,={0eRE, € f‘r};

* Ry, ={0eR E,em®};

« for any o € R, we let g(o)® = spang{E.,, H,} and g(z) = g(«)* Ng;

+ m(a) denotes the irreducible tC_submodule of m®, with highest weight o € R,y;

« if m(e) and m(p) are equivalent as [*-modules, we denote by m(a) + Am(p) the
irreducible [€-module with highest weight vector E, + AEp, o, € Ry, A e C.

3.2 The structural decomposition g = [ + RZ4 + m determined by the CR structure
of a regular orbit. The main results of this subsection are given by the following two
theorems on the structural decomposition of the regular orbits of a K-manifolds. The
first one is a straightforward consequence of definitions, Theorem 2.7 and the results
in [20].

Theorem 3.1. Let (M,J,g) be a standard K-manifold acted on by the compact semi-
simple group G and let g = 14+ RZ5 + mt and m'° be the structural decomposition and
the holomorphic subspace, respectively, associated with the CR structure (2,J) of a
regular orbit G/L = G - p. Let also J : m — m be the unique complex structure on m,
which determines the decomposition m® = m'® 4 m10,

Then, T =1+ RZy is the isotropy subalgebra of a flag manifold K, and the complex
structure J : m — m is ad¢-invariant and corresponds to a G-invariant complex struc-
ture J on G/K.

In particular, there exists a Cartan subalgebra t€ < ¥€ and an ordering of the asso-
ciated root system R, so that m'° is generated by the corresponding positive root vec-
tors in m€ = (14)T.

The following theorem describes the structural decomposition and the holomor-
phic subspace of a regular orbit of a non-standard K-manifold with non-sphere-like
fibering. Also this theorem can be considered as a consequence of Theorem 2.7, but
the proof is a little bit more involved.

Theorem 3.2. Let (M,J,g) be a non-standard K-manifold acted on by the compact
semisimple group G and with non-sphere-like fibering. Let also ¢ =1+ RZ4 + m and
m!® be the structural decomposition and the holomorphic subspace, respectively, asso-
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ciated with the CR structure (2,J) of a regular orbit G/L = G - p. Then there exists a
simple subalgebra g = g with the following properties:

a) Let lr =1Ngp, [, =1NgF, mp =mNgp and m’ = mNg§; then the pair (gz,IF)
is one of those listed in Table 1 and g and g admit the following %-orthogonal
decompositions:

g:IoJr(IFJrIRZ@)Jr(anLm’), Sr =1+ RZg + mpg;

Surthermore [l,,gr] = {0} and the connected subgroup K < G with Lie algebra
t =1, + g is the isotropy subalgebra of a flag manifold G/K.

b) Let m}° = mENm!'; then there exists a Cartan subalgebra t¥ < Ig + CZy and
a complex number A with 0 < |A| <1 so that the element Zg, determined up to
scaling, and the subspace m}°, determined up to an element of the Weyl group and
up to complex conjugation, are as listed i m Table 1 (see Section 3.1 for notation—in

& & HC 3
case g = sy + suy let ¢ = W, where A is the Cartan—Killing form of
g > ap):

Table 1
ar Ir Zy m)?
Sl {0} _£H81 —& C(ESI -t /IE*CHrCz)

(E(Eﬁlfﬂz + j'2E*81+82)
Sl s, » ®R | —iH, @ (m(e —&3) + Am(ez — &3))
@ (m(e3 — &) + Am(es — &1))

Q:(Eslfsz + j-Ef(sl’fez’))
@ C(Ey oy + 2E (5 sy))

siy +suy | R

_1;4;6 (H51—62 + CHSI’—SZ’)

(m(e; + &) + Am(—e3))

_2ZH .+ H,
07 S 3 (Hoyier + He,) ® (m(—e3) + Am(es + &2))

(m(er + &) + /12111(—81 +&))
T4 S07 —i2Hgl &) (m(1/2(81 + & +e+ 84))
+Im(1/2(—e; + & + &3+ &4)))

C(E, +)*E_,)

+ C(E_,, + AE;,)
0 Sl —i3H,, C(E_, + /IEL})
( &1 —& +) E“'?s r“])
(Eﬁl —&3 +) E62 é»l)
S02+1 $02,—1 —iH, m(sl -+ 82) + /1]11(781 + 82)
509, $D2,_2 —iH, m(e; + &) + Am(—e + &)
. m(2e;) + A2m(=2e
Py Py + P2 _ZHEHrEz ( ( 1) ( 2))

@ (m(e1 + &3) + Am(—&x + &3))
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¢) The holomorphic subspace m'° admits the following orthogonal decomposition

ml0 =m0 4 m10,

where m'10 = m'CNm1o,

d) The complex structure J': m' — m' associated with the eigenspace decomposi-
tion m'C = m'1 + m'% ywhere m'! = m’/10 js Adg-invariant and determines a
G-invariant complex structure on the flag manifold G/K; in particular the J'-

eigenspaces are adgz,,-invariant:

[]RZ@,TTI,IO] P m/lO [IRZ@,m,OI] P m/Ol'

The proof of Theorem 3.2 needs the following lemma.

Lemma 3.3. Let G/L=G-p be a regular orbit of a non-standard K-manifold
(M,J,q). Let also n: (G/L,2,J) — (G/K,J,) be the CRF fibration given in Theo-
rem 2.7 and (2%, JX) the CR structure of the typical fiber K /L. Then we have:

i) The isotropy subalgebra b = Lie((GC)p) is equal to Bh=1%4+m", where
m® =m0 js the anti-holomorphic subspace associated with the CR structure of

G/L=G-p.

Let g =1+ m' be the #-orthogonal decomposition of g associated with the flag
manifold G/K and let m'C = m"1% + m/°! pe the decomposition into (+i)- and (—i)-
eigenspaces determined by the complex structure J, : m' — m' given by the com-
plex structure of G/K; then the isotropy subalgebra p = Lie((GY),x) at eK €
G/K = GC/P is p = ¥ + m'"'; moreover, if M has non-sphere-like fibering then

m/Ol c "101 .

i

=

If we assume that M has non-sphere-like fibering, then the following are also true:

iti) The holomorphic subspace m'° of (G/L,%,J) admits the #-orthogonal decompo-
sition m10 =m0 + m'% where m1" = m''Nm'C and m)® is the holomorphic
subspace of (K/L, 2%, J%).

iv) Denote by L, the kernel of effectivity of the action of K on K/L. Then the 1-
dimensional subspaces RZ,x and RZy of the structural decompositions of T and
g at the point p are both in TN Ce(1) ﬂlj; moreover, in case TN (I(,)L is simple,
RZ,x and RZg are the same and we have that t =14+ RZgy + mg and g =
[+ RZy + m=14+RZy + (mg +m’).

V) [RZg, m"1% ¢ m"" and [RZ5, m""] < m'0L,

Proof. First of all, let =14+ RZ, x +mg and g =1+ RZy5 + m be the structural
decompositions of f and g at the point p, associated with the CR structures (2%, JX)
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and (2, J), respectively. Denote also by JX and J the induced complex structures on
mg and m.

To prove (i), consider an element V' = X +iY € g%, with X, Y € g. Then V" belongs
to f if and only if X + lY| = X + JY = 0. This means that JX = Y is tangent
to the orbit G - p. In partlcular X Ye I +mand V=X+iJX e Ic + mo1

Following the same argument, one gets also the identity p = £€ + m’°!. Moreover,
from standard facts on flag manifolds (see e.g. [5], [9]) it can be checked that m'"!
coincides with the nilradical of p. Now, by (i) and the proof of Theorem 5 in [1], we
have that if 7 is non-sphere-like then m’®' = b = [T + m®". Since m’®! is orthogonal
to € 5 1%, we conclude that m’*' = m®" and (ii) is proved.

To check (iii), consider the subspace mg = {X e m : n*(X},L) =0} = mN{t Note
that mg is J- and Ad-invariant. Furthermore, if it contains no trivial adi-module, it is
orthogonal to [ with respect to any [-invariant inner product, and hence with respect
to the Cartan—Killing form of f. The cases in which mg contains a trivial ad;-module
may occur only when the subalgebra g, = N (I(,)L is simple (here we denote by I, the
Lie algebra of the kernel of effectivity on K/L); to check this, look at Table 1 and the
proof of Theorem 3.2 below. On the other hand we have that mgx < g, and hence
also in this case mg is not only #-orthogonal to I, but also orthogonal to I with
respect to the Cartan—Killing form of g (and hence of f). So, my is always the JX-
invariant subspace which occurs in the structural decomposition of f given by
(2%, JK), namely t =1+ ]RZJK +mg.

Now, since m’” = m® and m"® = m/01 =« m% = m!°, we may conclude that
m’ < m and that J,|,,, = J|,,,. In particular, m’ is J-invariant. So, we have the fol-
lowing #-orthogonal and J-invariant decomposition

m=m'+ (M) Nm)=m'+ (FNm) =m’ + mg.

It follows also that m!® = m/"% + m}? and that m'% = m!'Nm® as we needed to
prove.

From the ,%-orthogonal decomposition m=m'+mg we get also that RZgy =
(I+m)" = (14 mg +m')" = ([+mg)" NE. It follows that, if [, = [ denotes the Lie
algebra of the kernel of effectivity of K on K/L, then RZ, < [ Nt and it is also
in Cy(l), since (+mg)" Nt is Ad-invariant and 1-dimensional. By definition, also
RZ,x €[ N Cy(1) N and this proves the first claim of (iv). For the second claim,
recall that the restriction of 4 to each simple ideal of f coincides, up to a multiple,
with the restriction to that ideal of the Cartan—Killing form of f. Therefore, in case
ENL- is simple, we get that RZg (i.e. the #-orthogonal complement in £N IL to the
subspace (14 mg) N (1°)1)) coincides with RZ,,x, which is the orthogonal comple—
ment in EN1 to (I+mg) N (I %)+ by means of the Cartan—Killing form of f.

To prove v) recall that m’%" is the nilradical of p = f€ + m’°! and that Z, e f. It

follows that [RZg, m'"] < [{, m’*] « m'"' and [RZ5, m'"?] = [RZy5, m'01] c m/0l =
111/10.

Proof of Theorem 3.2. Let K = G be a subgroup so that any regular orbit G/L admits
a very nice CRF fibration = : (G/L,2,J) — (G/K,J,) as prescribed by Theorem
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2.7. Then, for any regular point p, the K-orbit K/L =K -p = G/L = G - p (which is
the fiber of the CRF fibration 7) is a non-trivial Morimoto—Nagano space. In par-
ticular, K/L is Levi non-degenerate, it is simply connected and the CR structure is
non-standard (for the definition of non-standard CR structures and the properties of
the CR structures of the Morimoto—Nagano spaces, see [6]).

Let L, = L be the normal subgroup of the elements which act trivially on K/L. Let
also Gp = K/L, and |, = Lie(L,), g = IN (I,)" = Lie(Gp).

Note that Theorem 1.3, 1.4 and 1.5 of [6] apply immediately to the homogeneous
CR manifold Gr/Lp, with Lr = L mod L,. In particular, since the CRF fibration
n: G/L — G/K isnice and K/L = Gr/LF is a non-trivial Morimoto—Nagano space,
it follows that g is su,, suy + suy, $07, f4, 8,, 50, (n = 5) or sp, (n = 2).

From Theorem 1.4, Proposition 6.3 and Proposition 6.4 in [6] and from Lemma
3.3 iii)-v), it follows that the subalgebras g, [ and the holomorphic subspace ),
associated with the CR structure of the fiber K/L = Gr/Lp, satisty a), b), ¢) and d).
Concerning the subspace RZg, for all cases in which g is simple, it is equal to the
corresponding subspace RZ4 described in [6], because of the second claim of Lemma
3.3 iv); for the case g = sutp + su, it is enough to observe that, according to the nota-
tion and the results in [6], [p = C(H,,—, — H,/ ;) and Cq, (Ir) = CH,,—, + CH,y 1
hence RZ coincides with the 1-dimensional orthogonal complement to [r in Cy, (Ir)
with respect to the Cartan—Killing form % of g o g.

In the following, we will call the subalgebra g, the Morimoto—Nagano subalgebra
of the K-manifold M. We will soon prove that the Morimoto—Nagano subalgebra is
independent (up to conjugation) from the choice of the regular orbit G- p = G/L.

We will also call (g, [r) and the subspace m}’ the Morimoto—Nagano pair and
the Morimoto—Nagano holomorphic subspace, respectively, of the regular orbit
G/L=G-p.

3.3 Optimal transversal curves. We prove now the existence of a special family of
nice transversal curves called optimal transversal curves (see Section 1). We first show
the existence of such curves for a non-standard K-manifold with non-sphere-like
fibering.

Theorem 3.4. Let (M,J,g) be a non-standard K-manifold acted on by the compact
semisimple group G and with non-sphere-like fibering. Then there exists a point p, in
the non-complex singular orbit and an element Z € g such that the curve

n:R— M, n,=exp(tiZ)- p,

satisfies the following properties:

(1) It is a nice transversal curve; in particular the isotropy subalgebra g, Jor any
1, € Myeg is a fixed subalgebra 1.

(2) There exists a subspace m such that, for any n, € Meg, the structural decompo-
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sition g =1+ RZg(t) + m(t) of the orbit G/L = G - 5, is given by m(t) = m and
RZy(t) = RZ.

(3) The Morimoto—Nagano pairs (gz(t),1r(t)) of the regular orbits G-n, do not
depend on t.

(4) For any 5, € Myeg, the holomorphic subspace m'°(t) admits the orthogonal decom-
position

m(0) =m0 () + m0),

where m''(f) = m"'% = m® is independent of t and m}°(¢) is a Morimoto—Nagano
holomorphic subspace which is listed in Table 1, determined by the parameter A
equal to . = A(t) = e*.
Moreover, if 5, = exp(tiZ) - p, is any of such curves and if (§p,1r) is (up to conju-
gation) the Morimoto—Nagano pair of a regular orbit G/L = G -#,, then (up to con-
Jugation) Z is the element in the column “Zg” of Table 1, associated with the Lie al-

gebra gp.
For the proof of Theorem 3.4, we first need two lemmas.

Lemma 3.5. Let (M,J,g) be a K-manifold acted on by the compact semisimple Lie
group G. Let also p be a regular point and G/L = G- p and G®/H = GT - p the G-
and the G®-orbit of p, respectively. Then we have:

(1) For any g € G, the isotropy subalgebra ' = g, at p' =g - pis equal to
I'=Ad, (1 + m")Ng.

(2) Let g € G and suppose that p' = g - p is a regular point. If we denote by g =
'+ Rz, +m' and by m'""" the structural decomposition and the holomorphic
subspace, respectively, given by the CR structure of G- p' = G/L’, then

m'1 = Ad, (1% + m10),
m’ = (Ad,(IF +m10) + Ad, (I + m%)) NgN1™*.
Proof. (1) Clearly, L' = GN Gp“; =GN (gHg™") and I' = gN Ad,(bh). The claim is

then an immediate consequence of Lemma 3.3 (i).
(2) From Lemma 3.3 (i), it follows that

m10 = mO =’ N ()" = Ad, (1T + m) N (1'C)".

From this, the conclusion follows.
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Lemma 3.6. Let (M,J,g) be a K-manifold acted on by the compact semisimple Lie
group G. Let also p be a regular point and ¢ =1+ RZ4 + m the structural decompo-
sition associated with the CR structure of G/L = G - p. Then we have:

(1) For any g eexp(C*Zy), the isotropy subalgebra g, at the point p'=g- p is
orthogonal to RZ4; moreover, 1 < g, and, if p’ is regular, | = g,

(2) The curve
n:R—>M, n,=expl(itZsy) p
is a nice transversal curve through p.

Proof. (1) From Lemma 3.5 (1), for any point p’ = exp(1Zg) - p, with 1 € C*,

#(8,,RZy) = B(Ad exp(32,) (1T +m*) N g, RZy)
- ‘%(([C + mOI) N 9, Adexp(—)vZ(,)(IRZQ))
=21 +m)Ng,RZy) = 0.

Moreover, since Zg € C, a:(I ), we get that
= (Adexp(iz,) (1T + M) Ng = [+ Adexprz,) (M) Ng o L

This implies that [ = g, if p’ is regular.

(2) From (1), we have that condition (2.1) and the equality G-#, = G- p = G/L
are satisfied for any point 77, € M. It remains to show that # intersects any regular
orbit.

Let Q = M\G be the orbit space and 7 : M — Q = M\G the natural projection
map. It is known (see e.g. [10]) that Q is homeomorphic to Q = [0, 1], with M., =

~1(]0, 1]). Hence 7 intersects any regular orbit if and only if (z o 7)(IR) = ]0,1].

Let x; = inf(7 o 77)(IR) and let {z,} < ]0, 1] be a sequence such that (z o 7), tends
to x;. If we assume that x; > 0, we may select a subsequence ¢,, so that lim,, M,
exists and it is equal to a regular point p,. From (1) and a continuity argument(
we could conclude that [ is equal to the isotropy subalgebra 95,5 that Z =,/| # 0 and
that JZ. 4| is not tangent to the orbit G - p,. In particular, it would follow that the
curve exp(z]Rch) po has non-empty intersection with #(R) = exp(/IIRZy) - p and
that p, € #(R); moreover we would have that # is transversal to G- p, and that
x1 = n(p,) is an inner point of 7 o #(IR), which is a contradiction.

A similar contradiction arises if we assume that x; = supzoz(R) < 1.

Proof of Theorem 3.4. Pick a regular point p. Let g = [ 4+ IRZ45 + m be the structural
decomposition of the orbit G - p and let 5, = exp(itZ5) - p. From Lemmas 3.5 and
3.6 and Theorem 3.2, the structural decompositions g =1+ RZ4(¢) + m(¢) of all
regular orbits G - 7, are independent of 7. Moreover, from Lemma 3.5 and Theorem
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3.2, it follows that the Morimoto—Nagano pair (g, [r) is the same for all regular
orbits G - 5, and the holomorphic subspace m)? of the orbit G - 5, is of the form

= Adexp(itZ( (nIO ) Adexp( itZy )(mF ( )) + Adexp —itZ; )(mIIO(O)) (3'4)
where m{? = m}(0) + m1°(0) is the decomposition of the holomorphic subspace of
G - 5, given in Theorem 3.2 ¢). Since Zy € gp, from (3.4) and Theorem 3.2 d), it fol-
lows that

= Adexp(fitZ(, )(mF (0)) + m/lO(O).

This proves that the Morimoto—Nagano holomorphic subspace m}() of the orbit
G-n,is

M (1) = Adexp(-iz,) (7 (0)) (3.5)

and that the #-orthogonal complement m’!% = m’1%(0) is independent of ¢ and ad, -
invariant.

A simple computation shows that if g, and m}°(¢) = Adeyp(—irz,)(m}’(0)) appear
in a row of Table 1 and if Zy is equal to Zy = AZ,, where Z, is the corresponding
element listed in the column “Z;”, then m}°(¢) is determined by a complex parame-
ter A = A(¢), which satisfies the differential equation

dJ.
= =241).
7 (1)

In particular, if we assume 4 = 1, then A(¢) = e**5> where B, is a complex number
which depends only on the regular point p.

Let us replace p with the point p, = exp( —i %Z) - p: it is immediate to realize
that the new function /A(¢) is equal to

i(l) eZt+B -B, _ 62

This proves that the curve , = e . p, satisfies (1), (2), (3) and (4).

It remains to prove that for any choice of the regular point p, the point p, =
exp(—i%Z) - p 1s a point of the non-complex singular orbit of M.

Observe that, since #(IR) is the orbit of a real 1-parameter subgroup of GT, the
complex isotropy subalgebra b, = g€ is (up to conjugation) independent of the point
1,- Indeed, if #, is a regular point with complex isotropy subalgebra ), = 1©+ m
m’%! then for any other point #,, we have that

by = Adexp(i(r—1,)2,) (1T +mP +m0h).

On the other hand, the real isotropy subalgebra g, < g is equal to
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8y, = N8 = Adexp(i(—1,)z,) 1T +mp' +m*) Ng. (3.6)
From (3.6), Table 1 and (4), one can check that in all cases
g, 21+ RZ,

and hence that 5, = p, is a singular point for the G-action. On the other hand
po cannot be in the complex singular G-orbit, because otherwise this orbit would
coincide with GT - p, = GT - p and it would contradict the assumption that p is a
regular point for the G-action.

The following is the analogous result for standard K-manifolds.

Theorem 3.7. Let (M,J,g) be a standard K-manifold acted on by the compact semi-
simple group G and let p, be any regular point for the G-action. Let also g =1+ RZ +
m and m'° be the structural decomposition and the holomorphic subspace associated
with the CR structure of the orbit G/L = G - p,. Then the curve

n:R— M, 5 =exp(tiZ)- p,

satisfies the following properties:

(1) It is a nice transversal curve; in particular the stabilizer in g of any regular point n,
is equal to the isotropy subalgebral= g, .

(2) For any regular point n,, the structural decomposition § =1+ RZ4(t) + m(t) and
the holomorphic subspace m'°(¢) of the CR structure of G/L = G -1, is given by
the subspaces m(t) = m, RZ4(t) = RZ and m'°(¢) = m!°,

Proof. (1) is immediate from Lemma 3.6.

(2) It is sufficient to prove that [Z, m'?] = m!?. In fact, from this the claim follows
as an immediate corollary of Lemmas 3.5 and 3.6.

Let (G/K,Jr) be the flag manifold with invariant complex structure Jr, given by
Theorem 2.7, so that any regular orbit G - x admits a CRF fibration onto G/K, with
fiber S'. Let also P be the parabolic subalgebra of G such that G/K is biholomor-
phic to G¢/P.

From Proposition 2.5, if we denote by p = € + 1 the decomposition of the para-
bolic subalgebra p « g€ into nilradical n plus reductive part t€, we have that

t=png, 1<t 1T+m"ctC4n (3.7)

Since the CRF fibration has fiber S', it follows that f =1+ IRZ’ for some Z'e
3() ca= G(HNT-.

In case dima = 1, we have that a = RZ = RZ’ and hence m'® = (I° + €2)" =
(t%)*. From (3.7) we get that m®' = 1 and that [Z, m"] < [f€, n] = n = m"".
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In case a is 3-dimensional, let us denote by at =aNm= aN(RZ)" and by
al® = a€Nm! o = qa€Nm = al0 5o that (a*)® = a!® + a°'. Consider also the
orthogonal decompositions

g=I+RZ4+m=1+RZ+at+m/, m®=a®+m"
where m/1% = m!®Nm’C. Let I* be the semisimple part of [ and note that [** = f*.
By classical properties of flag manifolds (see e.g. [4], [5], [19]) the ad;s-module m’

contains no trivial adgs-module and hence m'!? = [£* m/1%] = [£, m’!?]. In particular,
m'%' = m’10 is orthogonal to % and hence it is included in n. So,

Z,m'" < [Z,nn (1% 4+ a0 e nn (A€ 4 %)t = m/L

10 one has only to show

From this, it follows that in order to prove that [Z, m!°] = m
that [Z,a'%] < a!® = m!0.

By dimension counting, a'® = CE for some element E € a® ~ sl,(C). In case E
is a nilpotent element for the Lie algebra a® ~ sl,(C), we may choose a Cartan sub-

algebra CH, for a = sl(IR), so that E € CE,. In this case, we have that
Ze (@ + ")t = (CE, + CE_,)" = CH,

and hence [Z,a!’] = [CH,, CE,] = CE, = a'” and we are done.

In case E is a regular element for a®, with no loss of generality, we may consider
a Cartan subalgebra CH,, for a® so that CE = C(E, + tE_,) for some ¢ # 0. In this
case, a”' = al0 = C(E_, + IE,) = (E(Ea +%E,a) and, since a'®Na® = {0}, it fol-
lows that 7 # 1/7. In particular, we get that CZ = (a'® 4+ o°')* = CH,. Now, by
Lemma 3.5 (1), for any 4 € C”, the isotropy subalgebra I,,., , with g; = exp(1Z), is
equal to

lpo = Adexpizy (1€ + 0 + M) Ng =1+ M + C(E, + te @ E_,)Ng.

Therefore, if / is such that te=2*%) = —1, we have that l,,.,, = [+ R(E, — E_,) 2|
and hence that p = g, - p, is a singular point for the G-action. On the other hand, p is
in the G¥-orbit of p, and hence the singular orbit G - p is not a complex orbit. But
this is in contradiction with the hypothesis that M is standard and hence that it has
two singular G-orbits, which are both complex.

Any curve 1, = exp(itZ) - p,, which satisfies the claim of Theorems 3.4 or 3.7, will
be called an optimal transversal curve.

3.4 The optimal bases along the optimal transversal curves. In the following, # is
an optimal transversal curve. In case M is a non-standard K-manifold with non-
sphere-like fibering, we denote by g =1+ RZs; +m, (g, 1), m°(7) and m'® =
mP2 (1) + m''% the structural decomposition, the Morimoto-Nagano pair, the

Morimoto—Nagano subspace and the holomorphic subspace, respectively, at the
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regular points 7, € M;. The same notation will be adopted in case M is a standard
K-manifold, with the convention that, in this case, the Morimoto—Nagano pair
(g, IF) is the trivial pair ({0}, {0}) and that the Morimoto—Nagano holomorphic
subspace is m}? = {0}.

We will also assume that [ = [, + [, where [, = 1N Iﬁ. By t€ = tf: + t}j cl®c q%,
with t, = [, and ty < [, we denote a Cartan subalgebra of g* with the property that
the expressions of m}’(f) and Zy in terms of the root vectors of (g%, tf) are exactly
as those listed in Table 1, corresponding to the parameter 4, = e*.

Let R be the root system of (gc,tc). Then R is union of the following disjoint
subsets of roots:

R=R°UR = (RCURy)U(R,UR, UR"),
where
RS ={w,E, el%}, RS ={o,E elf},
Rp={0,E,em§}, R, ={a,E,em"}, R ={oE,em}.
Note that
“R{=R!, —Rg=Rj -R.=Rj -R,=R.

Moreover, RS is orthogonal to Ry and R{, R} and R2 U R} are closed subsystems.
Clearly, in case M is standard, we will assume that R} = Ry = (.
We claim that for any « € R}, there exists exactly one root o € R}, and two in-
tegers €, = +1 and /, = +1, +2, +3 such that, for any 7 € IR,

E, +e*e,E_i e mp(1). (3.8)

The proof of this claim is the following. By direct inspection of Table 1, the reader
can check that any maximal [<-isotopic subspace of m&(¢) (i.e. any maximal sub-
space which is sum of equivalent irreducible Ig—modules) is a direct sum of exactly
two irreducible [F-modules (see also [6]). Let us denote by (o, —a?) (i = 1,2,...) all
pairs of roots in Rr with the property that the associated root vectors E,, and E_,
are maximal weight vectors of equlvalent I -modules in m% (7). Using Table 1, one
can check that in all cases m}’(z) decomposes into non-equivalent 1rredu01ble I -
modules, with maximal weight vectors of the form

E, +\E

where 2\ = ()»(t))/' e*i' where /; is an 1nteger wh1ch is either +1, +2 or +3.
Hence m[°(z) is spanned by the vectors E,, + /1 'E_ »¢ and by vectors of the form

[Eg, E,, + A0 E_a] = Np.oEsip + 20 Ny, gt By ps (3.9)

for some Eg € 1€, Since the 1-modules containing E,, and E_,. are equivalent, the
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lengths of the sequences of roots o; + 1 and —a¢ + rf8 are both equal to some given

integer, say p. This implies that for any root ff € R},
2

Ni,=@+1)"=N;_.

—0o
i

and hence that Ng, /Ny _,« = £1. From this remark and (3.9), we conclude that

m}’(7) is generated by elements of the form

E, + emet/“’E_ad,

where fe Rf, a =i+ f, o = o;+ f, o’ = o + f and e, = Ny, /N, _ya- This con-
cludes the proof of the claim.

For any root o€ Rp, we call CR-dual root of o the root a so that E,+
exe™E_,a e m0(f).

We fix a positive root subsystem R* < R so that R, = R* N (R\(R°*UR}URYy)).
Moreover, we decompose the set of roots Ry, into

R, =R URY
where
g {ae R} : Ey, + e, E_,s e m'°, with £, = +1,42,43}
R ={aeR,:E, + e E_ s em', with £, = —1,-2, -3}
Using Table 1, one can check that in all cases
— spang{E, + ex¢™'E_,i : n e R}

and that if oceRF , then also the CR dual root o eR( We will denote by
{08 o, af, ... oy, 0¢} the set of roots in R\ and by {ﬁl,...,ﬁx} the roots in
R’ =R"NR.

Observe that the number of roots in R( ) is equal to 1 1(dimg Gp/Lp — 1), where
Gr/Lr is the Morimoto—Nagano space assocmted with the pair (g, [F).

Finally, we consider the following basis for RZy +m ~ T, G - 5,. We set

and, for any 1 <i < r, we define the vectors F;*, F; G+ and G;, as follows: in case
{08} = RY b is a pair of CR dual roots with % # ocl we set

1 B 1
Fi+ 75 (FOC, + &, x‘/) F1 = ﬁ (foi - EOCiF“;I)a
1 _ 1
G =5 (Gt e Gy), G = —5(Gy — 0 Gy) (3.10)
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where €, = +1 is the integer defined in (3.8); in case {o;, o} < R}H is a pair of CR

dual roots with o; = af, we set

Ff=F, = By m By , G =G, = iiE“" t+ By, (3.10")
V2 V2
and we do not define the corresponding vectors F;~ or G . Finally, forany 1 <i<s =
n—1-—2r we set
F/=Fy, G/ =Gyg. (3.11)
Note that in case r is odd, there is only one root o; € R} )
gp = slip, this root is also the unigue root in R;

In case g, = {0}, we set Fy = Zy and F/ = Fy, G/ = G and we do not define the
vector Fi(i) or G,A(J—r>

The basis (FO,Fki F, G,:—r7 G;) for RZ; + m, which we just defined, will be called
an optimal basis associated with the optimal transversal curve n. Notice that this basis
is #-orthonormal.

For simplicity of notation, we will often use the symbol Fj (resp. Gi) to denote
any vector in the set {Fy, F;- * F/} (resp. in {G+ G;}). We will also denote by Ny the
number of elements of the form F*. Note that Np 1s equal to half the real dimension
of the holomorphic distribution of the Morimoto—Nagano space Gr/Lp.

For any odd integer 1 < 2k — 1 < Np, we will assume that Fop | = F,j; for any
even integer 2 < 2k < N, we will assume For = F_. If N is odd, we denote by Fy,
the unique vector defined by (3.10). We will also assume that F; = F/' \ for any
Np+l1<j<n—1.

In case M is a standard K-manifold, we assume that Ny = 0.

In the following lemma, we describe the action of the complex structure J; in terms
of an optimal basis.

such that o; = oc . When

Lemma 3.8. Assume that 1, is an optimal transversal curve and let

(F07Fk+7F},7 G+ G,)

be an associated optimal basis of RZq4 + m. Let also J; be the complex structure of m
corresponding to the CR structure of a regular orbit G - y,.

Then J,F! = G/ for any 1 <i<s=n—1— Ng. Furthermore, if M is non-standard
(i.e. Np > 0) then the following holds:

(1) If 1 <i< Npand {o, 08} is a pair of CR-dual roots in RE,:H with o; # of then
JF" = —coth(40)G;", J,F; = —tanh(41)G;, (3.12)

where ¢; is equal to 2 if F;* € [mp, mp](r' NmSE and is equal to 1 otherwise.
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(2) If 1 <i< Npand {o;,0¢} is a pair of CR-dual roots in R;H with o; = af, so that
= F,, then

+_ +
Fr=— )G, .
J/F, coth(4t)G; (3.13)

where ; is equal to 2 or 3 if F7* € [mp, mF](E NmSE and is equal to 1 otherwise. Note
that the cases ¢; = 2,3 may occur only if gy = 4,0, or sp,—see Table 1.

Proof. The first claim is an immediate consequence of Theorem 3.2 d) and the prop-
erty of invariant complex structures on flag manifolds.

In order to prove (3.12), let us consider a pair {a;,2¢} of CR dual roots in R} with
o # oc;j ; by the previous remarks, there exist two integers /;, /id , which are either +1,
+2 or +3, and two integers ,,, €t = +1, so that

24t 2091 10
E, + e, e”” Efaid, Eac;’ + €y E_, emp (1)

for any ¢ # 0.

By direct inspection of Table 1, one can check that the integers /id, ¢; are always

equal. We claim that also ¢; = ¢/ for any CR dual pair {o;, o/} = RS,”.

In fact, by conjugation, it follows that the following two vectors are in m¥ (¢) for
any t # 0:

1 01
sz, + E_m‘d, E“:I +WE7% S mF (l) (314)

61’462/"'/‘

At this point, we recall that 7, is a singular point for the G-action and that, by the
structure theorems in [15] (see also [6]), the isotropy subalgebra g, contains the
isotropy subalgebra (gF)% of the non-complex singular Gg-orbit in M, which is a
c.r.o.s.s. In particular, one can check that dimg (g F)% = dimp [f + dim¢ m%l.

On the other hand, by Lemma 3.5 (1), we have that (g,), = Ir +gNmp'(0) and

hence that
dimg (gNmy (0)) = dime my (0). (3.15)

Here, by m%!(0) we denote the subspace which is obtained from Table 1, by setting
the value of the parameter 4 equal to 4(0) = ¢” = 1. Note that this subspace is not a
Morimoto—Nagano subspace.

From (3.14), one can check that (3.15) occurs if and only if

€, = €, (3.16)

d
i

for any pair of CR dual roots ¢;, af. This proves the claim.

In the following, we will use the notation ¢; = €,, = € 4.
By some straightforward computations, it follows that, for any 7 # 0, the elements



412 Andrea Spiro

Fy,, F,a, Gy, and G,qs are equal to the following linear combinations of holomorphic
and anti-holomorphic elements:

_ 1 24t 24t 2/t
Fy = V) { [(Es + €ie”E_,a) + €ie”(E o + ;™" E_y,)]
+ w T == 02l —ad | — €€ ol + o2 ,
1 _ . .
Fo(;{ - m{[eiezm(E%‘ + eiesz*&,vd) + (Eoci" + €ie2mE*dz)]
_ | p2tt,. E, + LE + Al E .+ LE
€ G\ B T Pt | T w2t ;
_ i 2 2 2
Glli - \/‘2‘(1 - e4/it) {[(E% +e€ie E—O(I.") €€ (Eal." + €e E*Cli)]

1 1
4 24
+ [—e t(E“’Jr—eieZ/ﬂE >+ee t(EdJr e2/’fE°"')]}’

= —€e*M(Ey 4 €¢*"E_a) + (Eya + €*"E_,)]

1 1
24t 4t
—1—[68 (Ex,—i— esz d>—€ (Eu—i—e 2/rE ,>]}

We then obtain that

o 1 4 g%t 26,-62/”
JiFy = 1 — 4t 7% 7] — et
26[62/[1 1+e4/i[
IFyg = G+ oz (3.17)

So, using the fact that €} =1, we get J,F," = l“z:i G;" = —coth(41)G;" and
JF~ 1+;:; G; = —tanh(4;t)G; . The proof of (3.13) is similar. It suffices to observe

that for any ¢ # 0

1
+ 2/t 2/t
F' = 7\/5(1 S {(1+ e (E, +e"E_y,)
2/[(1+62/t)(E Lo Z/tE )}
+ _; _ L2t 24t
G = V2(1 — e#it) =D e

+ (1= (B, + e HE),

and hence that J,F;" = 1“2” G" = —coth(41)G;".

2/1
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4 The algebraic representatives of the Kihler and Ricci form of a K-manifold

In this section we give a rigorous definition of the algebraic representatives of the
Kaihler form w and the Ricci form p of a K-manifold. We will also prove Proposition
1.1.

Indeed, we will give the concept of ‘algebraic representative’ for any bounded,
closed 2-form @, which is defined on M., and which is G-invariant and J-invariant.
Clearly, o M., and ] u,, belong to this class of 2-forms.

Let #: R — M be an optimal transversal curve. Since g is semisimple, for any
G-invariant 2-form w on M, there exists a unique adi-invariant element F , €
Hom(g, g) such that:

B(Fp(X),Y)=w,(X,Y), X,Yegt#0. (4.1)

If w is also closed, we have that for any X, Y, W e g

0=3dw(X,Y,W)=w(X,[Y,W])+w(Y,[W,X]) +=(W,[X,Y]).
This implies that
Fou([X, Y]) = [Fo (X)), Y] + [X, Fz o (Y)]
1.e. F ; is a derivation of g. Therefore, F ; is of the form
Fo . =ad(Z,(1)) (4.2)

for some Z,(¢) eg and w,,l()f’ Y)=%(Z,(t),X],Y) =B(Z,(t ) [X, Y]). Note
that since F , is ad-invariant, Z, = 3() + a, where a = G4(I) N 1.
We call the curve

Zs: R — Cy(l) = 3(1) +a, (4.3)

the algebraic representative of the 2-form w along the optimal transversal curve 7.

By definition, if the algebraic representative Z(¢) is given, it is possible to
reconstruct the values of w on any pair of vectors which are tangent to the regular
orbits G - 7,. Actually, since for any point #, € Mreg we have that J(T, G) = T, M,
it follows that one can evaluate @ on any pair of vectors in 7, M if the Value
@y, (Z3,JZ4) is also given. However, in case w is a closed form the following
proposition shows that this last value can be recovered from the first derivative of the
function Z ().

Proposition 4.1. Let (M, J, g) be a K-manifold acted on by the compact semisimple Lie
group G and assume that, if it is non-standard, it has a non-sphere-like fibering. Let also
n, = exp(tiZg) - p, be an optimal transversal curve and Z : R — 3(I) + a the alge-
braic representative of a bounded, G-invariant, J-invariant closed 2-form w along 7.
Then we have:



414 Andrea Spiro

(1) If M is a standard K-manifold or a non-standard KO-manifold (i.e. if either
a=RZy or a = suy and M is standard), then there exists an element I, € 3(1) and
a smooth function f, : IR — IR so that

Z5(t) = fo(t)Zg + 1. (4.4)

(2) If M is non-standard KE-manifold, then there exists a Cartan subalgebra t€ c
1€ +a® and a root o of the corresponding root system, such that Zg € R(iH,)
and a = RZ4 + RF, + RG,; furthermore there exists an element I, € 3(1), a real
number C, and a smooth function f, : IR — IR so that

Zoll) = Sol)Z0 + i

Gy + I (4.4')

Conversely, if Z, : R — Cy(1) is a curve in Cy(l) of the form (4.4) or (4.4"), then
there exists a unique closed J-invariant, G-invariant 2-form w on My, having Z () as
algebraic representative. Such a 2-form is the unique J- and G-invariant form which
satisfies

@, (V. W)= B(Z(t), [V, W)), @, (JZs,25)=—~f.()B(Z3,Z5). (4.5)
SJorany V. W e mand any 1, € Mye,.

Proof. Let w be a closed 2-form which is G-invariant and J-invariant and let Z(¢)
be the associated algebraic representative along #. Recall that Z () € 3(I) + a. So, if
the action is ordinary (i.e. a = RZg), Z(¢) is of the form

Zw(t) :fw(Z)ZEZ +Iw(t>a (46)

where the vector I(¢) € 3(I) may depend on .

In case the action of G is extraordinary (that is a = su,), by Lemma 2.2 in [20]
there exists a Cartan subalgebra t€ = [ 4 a® such that a® = CH, + CE, + CE_,
for some root o of the corresponding root system. By the arguments in the proof
of Theorem 3.7, this Cartan subalgebra can be always chosen in such a way that
Z4 € R(iH,) and hence that a = RZ4 + RF, + RG,.

Then the function Z(¢) can be written as

Z(t) = fo(DZo + () Fy + () Gy + 1 (1) (4.6')

for some smooth real valued functions f, g and /. and some element I,(z) € 3(I).
We now want to show that, in case M is a non-standard KE-manifold, then
g (1) = 0 and that 1, (1) = Cofhx([) for some constant C.

In fact, observe that if Z,(7) is of the form (4.6") and if Zy is as listed in Table 1
for g, = su,, then
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w'],(zv@ Gl) = QW(I)‘@(FM [Z‘JU G%D = _gw([)v
) = hm(t)@(Gm [297 ]) h ( )

5'_|>

w”’ (Zg

ansider now the facts that w is closed, (A?[x and Z, are holomorphic vector fields and
JZ4| . = n,. It follows that g, satisfies the following ordinary differential equation

dg d . 4 . L s
2| =2 @(Zs, G, = —IZ5(w(25, )|

n
dr |, dr ,

= Gy(@(JZ9,2Z3))l,, + Zo(w(Go, T Z3))l,, — @, (V2. Z5), G,)
wm([GAa,JZg],ZAg) - w”,([Zg, Ga], JZQ)

—

= wn,([297 G¢]7JZQ) = _wn,([297 Ga]7JZQ)

= —w, (Z4,JF,) = coth(t)w, (24, G,) = —coth(1)g(t). (4.7)
We claim that this implies

9o(1) = 0. (4.8)

In fact, if we assume that g (7) does not vanish identically, integrating the above
equation, we have that g (¢) = |5mh for some C # 0 and hence with a singularity at
t = 0. But this contradicts the fact that w 1s a bounded 2-form.

With a similar argument, we have that /i, (¢) satisfies the differential equation

dhe

| = —tanh(#)h(1);
;e
by integration this gives
C
__ @ 4.
has (1) cosh(1) (49)

for some constant C.

We show now that, in case M is a standard KE-manifold, then Z(¢) is of the form
(4.4). In fact, even if a priori Z,(7) is of the form (4.6'), from Lemma 3.8 and the
same arguments for proving (4.7), we obtain that

dg.. o o
2 = (20,0 E,) = ~,(Z5, G) = ga(0). (4.10)
ny

This implies that g (f) = Ae’ for some constant 4. On the other hand, if 4 # 0, it
would follow that lim,_. .|, (Z2, G,)| = lim,_, |g-(#)| = +c0, which is impossible
since @y, (Z2,G,) is bounded. Hence ¢..(f) = 0.
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A similar argument proves that /() = 0.

In order to conclude the proof, it remains to show that in all cases the element
I(t) is independent of ¢ and that w,, (JZy,Zo) = —f.()B(Zy,Z) for any t. We
will prove these two facts only for the case a ~ su, and M non-standard, since the
proof in all other cases is similar.

Consider two elements V', W € g. Since w is closed we have that

0 = 3dw,, (JZ3, V, W)
= JZAg(wm(V, w)) — I}(w,ﬁ (JZg, W)) + W(wn,(JZg, 7))
— @ (I 20, V), W) + @, ((J 20, W, V) = @, ([V, W), T Z2)
= JZa\, (w(V, W)) — w,,(JZa, [V, W))
:%(g(zw’[’/v WD), + w3, (JZo, [V, W) (4.11)

On the other hand, we have the following orthogonal decomposition of the element
v, wi:

B(Zy,Zg)

+ [Va VV](IJra)L + [Vv W]I’

[Va W] = Zy — Q(Fm [Vv W])FO! - @(Gm [Vv WDGI

where [V, W] and [V, W] (Lta)- are the orthogonal projections of [V, W] into | and
(I+ a)*, respectively. Then

S~ B(Zy [V, W . .
@, (JZg, [V, W]) = %wmu@,z@) — B(F,, [V, W)@y, (J 20, Ey)

—

- g(Gom [Va W])wm(JZCfv éoc) + w’?,(ngv [Vv W}(I—Q—Q)L)

B(Zg, [V, W) . .
= mwm(JZg,Z@) + Q(Fa, [V, W})’wm (ZQ,JF“)

+ B(G, [V, W])“m(Z%JGAa) - wm( A%J[VT?V](HG)L)

_ B(Zy, [V, W]) C,, tanh(¢)
B(Zg,Z3) cosh(z)

- @(Zw(t), [fov‘]m([Vv W](I+a)i)])

@y, (JZ9,2Z3) + B(Gy, [V, W)
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Therefore (4.11) becomes

74 ! S N g+ —2 [V, W] | =0.

Since V', W are arbitrary and dde e3(l) < (Z,@)L, it implies f () = 7% and
=7 =0, as we needed to prove.

We conclude this section with the following corollary which gives a geometric
interpretation of the optimal bases (see also Section 1).

Corollary 4.2. Let (M, J,g) be a K-manifold, which is standard or non-standard with
non-sphere-like fibering, and let (F;, G;) be an optimal basis along an optimal trans-
versal curve n, = exp(tiZ) - p,. For any n, € My, denote by F; = (eg,e1,...,e,), the
following holomorphic frame in T”(]EM :

e =k, — ik, = 2|, —iJZ|,, e=Fl|, —iJF|, i>1

Then we have:

(1) If M is a KO-manifold or a standard KE-manifold, then the holomorphic frames Z,
are orthogonal with respect to any G-invariant Kdihler metric g on M.

(2) If M is a non-standard KE-manifold, then the holomorphic frames 7, are orthogo-
nal with respect to any G-invariant Kdhler metric g on M, whose associated alge-

braic representative Z,(t) has vanishing coefficient C,, = 0 (see Proposition 4.1 for
the definition of Cy,).

Proof. It is a direct consequence of definitions and Proposition 4.1.

5 The Ricci tensor of a K-manifold

From the results of Section 4, the Ricci form p can be completely recovered from
the algebraic representative Z,(¢) along an optimal transversal curve #,. On the other
hand, using a few known properties of flag manifolds, the reader can check that the
curve Z,(1) € 3(I) + a is uniquely determined by the 1-parameter family of quadratic
forms Q" on m given by

O/ :m—R, Q/(E)=r,(EE) (=—p,(E,E) = ~B(Z,(1), [E, . E])).

Since m corresponds to the subspace &, < T, G - n,, this means that for any Kdhler
metric w, the corresponding the Ricci tensor r is uniquely determined by its restrictions
7|9, %o, to the holomorphic tangent spaces 9, of the regular orbits G - 1,.

The expression for the restrictions |, ., in terms of the algebraic representative
Z (1) of the Kéhler form w is given in the following theorem.
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Theorem 5.1. Let (M, J,g) be a K-manifold, which is standard or non-standard with
non-sphere-like fibering, and let n, = exp(tiZy) - p, be an optimal transversal curve.
Using the same notation of Section 3, let also (F;, G;) = (Fo,Fk+, G,:“,F/’, Gj) be an
optimal basis for RZq +m. Finally, for any 1 < j < Np let ¢; be the integer which
appears in (3.12) for the expression of J,F;, and for any Np +1 < k <n—1 let 5, be
the root so that Fy = Fy, .

Then, for any 3, € My, and for any element E € m

Np - n—1
po(EJE) = AM{% W(6) =Y tanh ™ (g + ﬁj(iZ@)} +Bp(r) (5.1)
i=1

Jj=Nr+1
where

h(t) = log(w" (Fo, JFo, i, JF, ..., JF,_1)], ), (5.2)

M
B(E,J,E|,Zg)

Ag(t) = B(Zy,Z3)

Ztanh ,@([E Jt ]H—m’ [E’G]l+ln)
+,Z B(iHy, [E,JiE)q), (5.4)

and Where for any X € g, we denote by Xiim (resp. X)) the projection parallel to
(I+m)" =RZy (resp. to 3(1)") of X into 1+ m (resp. lnlo 3(1).

Proof. Let J, be the complex structure on m induced by the complex structure J
of M. For any E'em and any point 7,, we may clearly write that p, (E,JE) =
(E J,E) and hence, by Koszul’s formula (see [17], [8]),

R (g - wn)”’(ﬁo,.]ﬁo,ﬁl,]ﬁl,...,JFn,l)
py,(E,JE) =

1 \ZE0E)
2 w;;[(ﬁ07JF07ﬁl7Jﬁ]7...,JFn_l)

(5.5)

(note that the definition we adopt here for the Ricci form p is opposite in sign to the
definition used in [§]).
Recall that for any Y € g, we may write

=D ZiFilyy + DI Fil

i=0 i=1

A(Y,F) BY,JF;
where ;\,j = BF.F) and Wi = W

Hence, for any i
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J[E.J.E), F, :fJ[[E,J,E],Fi]
(£ Jr } F) - A((E,J.E], ], F) .
- = JF; + iy
JZO ]|17(r) /; e@(JzF},JrF_}) ]|:7(t)
B(E,J.E], [F;, F}))
= - JF|
]_; B(F;, F)) JIn()
= BUE,JE) st

U[E J:E),JE], = [E,J.E],F],

(£, Jz I, [Fi, F]) -
- Z B(F; F F}|,7(,)
]>O VAl )

B(J.F, J Fy)

o (5.7)

j=1

Therefore, if we denote A(r) :log(w"(FO,JFO,Fl,Jﬁl,...,JFn,l)\m), then, after
some straightforward computations, (5.5) becomes

1

N 1 EJ[ E7Jl ])
Py (E.JiE) = 3 J|E, J.E] Z BOEIE) (5.8)

We claim that

JIE, JE](h)|, = Ap(D)h. (5.9)
In fact, for any X € g
X(w(ﬁo,.]ﬁo, - ,Jﬁn,l)lm
= —ay (X, R, JFo, ..., JF—1) — o(Fo, J (X, Fo), ..., JE,) —--- = 0. (5.10)

On the other hand,

B(E,JE), Zs)

J[E,J.E]|, = B(Z3,Z5)

JZQL,{ -I-JX,?, =Ag(t )JZJ| +J; (5.11)

for some some X € m. From (5.11) and (5.10) and the fact that JZ@|;7, =1,, we im-
mediately obtain (5.9).
Let us now prove that
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n—1 No
g([E“]tE]? [E7JIE]) { £ (_ i+ }
Z =4 tanh /t E (iZy)p — B 5.12
=1 Q(JchJtFi) E I:ZI E Nﬁ+]ﬁl J E ( )

First of all, observe that from definitions, for any 1 < k < Ny we have that, for any
case of Table 1, when oy # oc,f,

B(Zo [Fis Ge) = 5 B(Zo [Fo + (-1 By, G + ()G
- %g(zg,, H, + H,) =, (5.13)
and, when o = of,
B(Zo, (Fir Gi]) = B(Zo, [Fy, Go)) = B(ZoiH) = b (5.13)

Similarly, forany Np+1 < j<n—1

So, using (5.13), (5.13"), (5.14) and the fact that #(F;, F;) = %4(G;, G;) = —1 for any
1 <i<n-—1, we obtain that for 1 <k < Ny,

B((E,J.E], [Fi,JiFi])
%’(JtFkaJtFk)

B(E,JE],Z3)
B(Zg,Zq)

— tanh™"" (441 (93(22, [Fr, Gi])

+ ‘@([E7 JfE]I+m7 [Fk7 Gk]l+m)>

k+1
= tanh"" (40)[Ap(0)l + B(E, JE] s [Frs Gl

(5.15)
and forany Np + 1 < j < N
%([EvaE]7[I;‘j7J1F‘i]) ﬂ([Ev‘]IELZE’Z)
== RB(Zg,[F;, G;
B(J,F;, J,F) BZg2y) Pl G
_g([E’JlE}Hm[F G}Hm)

From (5.15) and (5.16), we immediately obtain (5.12) and from (5.8) this concludes
the proof.

The expressions for the functions Ag(z) and Bg(t) simplify considerably if one
assumes that E is an element of the optimal basis. Such expressions are given in the
following conclusive proposition.
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Proposition 5.2. Let (F;, G;) be an optimal basis along an optimal transversal curve 7,
of a K-manifold M, which is standard or non-standard with non-sphere-like fibering.
For any | <i < Np, let 4; be as in Theorem 5.1 and denote by {o;, 0} = RS;) the pair
of CR-dual roots, such that F; = \/LE(F%. + e,-Fafz) or F; = F,, in case o; = af; also, for
any Nr +1 < j<n-—1, denote by p; € R’ the root such that F; = Fj,. Finally, let
Ag(t) and Bg(t) be as defined in Theorem 5.1 and let us write

n—1
Zr= Y iHy,. (5.17)
k=Np+1

(1) If E = F; for some 1 <i < Np, then

A (1) = atanh ™V () (5.18)
T B(Z4,Z49) '
/itanhY' (41
Br(f) = ,LH%(ZK7ZQ)

B(Z3,Z3)

NE

+ tanh V' (41) (Z tanh """ (40)B(F, Gy, 1B, Gj]1+m>) . (519

j=1
(2) If E=F; for some Np +1 <i<n-—1, then

B(Zy,iHy) .
Ap(t) = ——=—="=, Bg(t) = B(Z",iHy). 5.20
W) =G Bali) = A2 iHy) (520)

Proof. Formulae (5.18) and (5.19) are immediate consequences of definitions and
of (5.13), (5.13') and (5.14). Formula (5.20) can be checked using the fact that
[Fp,,JiFp] = [Fp,, Gg] = iHg, for any Ny +1 <i<n— 1, from properties of the Lie
brackets [F;, G;], with 1 < i < Np, which can be derived from Table 1, and from the
fact that RZs < [m/, m’]".
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