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The Ricci tensor of an almost homogeneous Kähler manifold
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Abstract. We determine an explicit expression for the Ricci tensor of a K-manifold, that is of
a compact Kähler manifold M with vanishing first Betti number, on which a semisimple group
G of biholomorphic isometries acts with an orbit of codimension one. We also prove that, up
to few exceptions, the Kähler form o and the Ricci form r of a K-manifold M are uniquely
determined by two special curves with values in g ¼ LieðGÞ, say Zo;Zr : R ! g, and we show
how Zr is determined by Zo.
These results are used in another work with F. Podestà, where new examples of non-

homogeneous compactKähler–Einsteinmanifoldswith positive first Chern class are constructed.
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1 Introduction

The objects of our study are the so-called K-manifolds, that is Kähler manifolds
ðM; J; gÞ with b1ðMÞ ¼ 0 and which are acted on by a group G of biholomorphic
isometries, with regular orbits of codimension one. Note that since M is compact and
G has orbits of codimension one, the complexified group GC acts naturally on M as
a group of biholomorphic transformations, with an open and dense orbit. According
to a terminology introduced by A. Huckleberry and D. Snow in [15], M is almost-

homogeneous with respect to the GC-action. By the results in [15] and [1], the subset
SHM of singular points for the GC-action is either connected or has exactly two
connected components. If the first case occurs, we will say that M is a non-standard

K-manifold; we will call it a standard K-manifold in the other case.
The aim of this paper is to furnish an explicit expression for the Ricci curvature

tensor of a K-manifold, to be used for constructing (and possibly classifying) new
families of examples of non-homogeneous K-manifolds with special curvature con-
ditions. A successful application of our results is given in [21], where several new ex-
amples of non-homogeneous compact Kähler–Einstein manifolds with positive first
Chern class are found.

Note that explicit expressions for the Ricci tensor of standard K-manifolds can be
found also in [22], [16], [20] and [11]. However our results can be applied to a wider



class of K-manifolds and they turn out to be particularly useful for the non-standard
cases (at this regard, see also [14], [13]). They can be summarized in three facts.

Before stating them, we need to consider the following concept. We recall that,
by the results in [1] and [15], any K-manifold M, acted on by a compact semisimple
Lie group G, admits a canonical G-equivariant blow-up p̂p : ~MM ! M along the com-
plex singular G-orbits, which has a holomorphic fibration p : ~MM ! GC=P over a flag
manifold GC=P; here PHGC is the smallest parabolic subgroup which contains the
isotropy ðGCÞx at some regular point for the action of GC. The semisimple group G

acts transitively on the flag manifold GC=P and the compact subgroup K ¼ GVP

acts on the standard fiber F ¼ p�1ðePÞH ~MM in one of the following two ways: either
K acts on F with an isolated fixed point and, in this case, the K-regular orbits are
K-equivariantly di¤eomorphic to the sphere S2r�1 HCPr, or F is K-equivariantly
di¤eomorphic to a compactification of the tangent space TN of some compact
rank one symmetric space N ¼ K=K 0 and the regular K-orbits are sphere bundles
SðNÞHTN. We will say that M is a K-manifold admitting a sphere-like fibering if it
is non-standard and if the blow up ~MM admits a fibration p : ~MM ! GC=P ¼ G=K over
a flag manifold so that the action of K on F ¼ p�1ðePÞ has an isolated fixed point; in
case there exists a fibration p : ~MM ! GC=P ¼ G=K over a flag manifold so that the
action of K on F ¼ p�1ðePÞ has no fixed point, we will say that M admits a non-

sphere-like fibering. A characterization of K-manifolds with sphere-like fibering can
be extracted from the proof of Theorem 5 in [1] (see also Theorem 14 in [13]). Ob-
serve also that if the regular G-orbits of a K-manifold M are Levi non-degenerate,
then M has a non-sphere-like fibering (see [21]).

In all of this paper, we limit our attention to K-manifolds with non-sphere-like
fibering, leaving the discussion of the remaining cases to a forthcoming paper.

Now, let g be the Lie algebra of the compact group G acting on a K-manifold
ðM; J; gÞ with at least one orbit of codimension one. By a result of [21], we may
always assume that G is semisimple. Let also B be the Cartan–Killing form of
g. Then for any x in the regular point set Mreg, one can consider the following B-
orthogonal decomposition of g:

g ¼ lþRZ þm; ð1:1Þ

where l ¼ gx is the isotropy subalgebra, RZ þm is naturally identified with the tan-
gent space ToðG=LÞFTxðG � xÞ of the G-orbit G=L ¼ G � x, and m is naturally
identified with the holomorphic subspace mFDx

Dx ¼ fv A TxðG � xÞ : Jv A TxðG � xÞg: ð1:2Þ

Notice that for any point x A Mreg the B-orthogonal decomposition (1.1) is uniquely
given; on the other hand, two distinct points x; x 0 A Mreg may determine two distinct
decompositions of type (1.1).

Now, our first result consists in proving that any K-manifold with non-sphere-like
fibering admits a family O of smooth curves h : R ! M of the form
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ht ¼ expðitZÞ � xo;

where Z A g, xo A M is a regular point for the GC-action and the following properties
are satisfied:

(1) ht intersects any regular G-orbit;

(2) for any point ht A Mreg, the tangent vector h 0
t is transversal to the regular orbit

G � ht;

(3) any element g A G which belongs to a stabilizer Ght , with ht A Mreg, fixes point-
wise the whole curve h; in particular, all regular orbits G � ht are equivalent to the
same homogeneous space G=L;

(4) the decompositions (1.1) associated with the points ht A Mreg do not depend on t;

(5) there exists a basis f f1; . . . fng for m such that for any ht A Mreg the complex
structure Jt : m ! m, induced by the complex structure of ThtM, is of the fol-
lowing form:

Jt f2j ¼ ljðtÞ f2jþ1; Jt f2jþ1 ¼ � 1

ljðtÞ
f2j; ð1:3Þ

where the function ljðtÞ is either �tanhðlj tÞ or �cothðlj tÞ, and lj can be 1, 2, 3, or
it is identically equal to 1.

We call any such curve an optimal transversal curve; the basis for RZ þmH g given
by ðZ; f1; . . . ; f2n�1Þ, where the fi’s satisfy (1.3), is called optimal basis associated with

h. An explicit description of the optimal basis for any given semisimple Lie group G

is given in Section 3.
Notice that the family O of optimal transversal curves depends only on the action

of the Lie group G. In particular it is totally independent of the choice of the G-
invariant Kähler metric g. At the same time, the Killing fields, associated with the
elements of an optimal basis, determine a 1-parameter family of holomorphic frames
at the points ht A Mreg, which are orthogonal with respect to at least one G-invariant
Kähler metric g. It is also proved that, for all K-manifolds M which do not belong to
a special class of non-standard K-manifolds, those holomorphic frames are orthog-
onal with respect to any G-invariant Kähler metric g on M (see Corollary 4.2 for
details). From these remarks and the fact that h 0

t ¼ JẐZht , where Z is the first element
of any optimal basis, it may be inferred that any curve h A O is a reparameterization
of a normal geodesic of some (in most cases, any) G-invariant Kähler metric on M.

Our second main result is the following. Let h be an optimal transversal curve of a
K-manifold with non-sphere-like fibering, let also g ¼ lþRZ þm be the decomposi-
tion (1.1) associated with the regular points ht A Mreg and let o and r be the Kähler
form and the Ricci form, respectively, associated with a given G-invariant Kähler
metric g on ðM; JÞ.

By a slight modification of arguments used in [20], we show that there exist two
smooth curves
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Zo;Zr : R ! CgðlÞ ¼ zðlÞ þ a; a ¼ CgðlÞV ðRZ þmÞ; ð1:4Þ

satisfying the following properties (here zðlÞ denotes the center of l and CgðlÞ denotes
the centralizer of l in g): for any ht A Mreg and any two element X ;Y A g, with asso-
ciated Killing fields X̂X and ŶY ,

ohtðX̂X ; ŶYÞ ¼ BðZoðtÞ; ½X ;Y �Þ; rhtðX̂X ; ŶYÞ ¼ BðZrðtÞ; ½X ;Y �Þ: ð1:5Þ

We call such curves ZoðtÞ and ZrðtÞ the algebraic representatives of o and r along h. It
is clear that the algebraic representatives determine uniquely the restrictions of o and
r to the tangent spaces of the regular orbits. But the following proposition establishes
a result which is somewhat stronger.

Before stating the proposition, we recall that in [20] the following fact was estab-
lished: if g ¼ lþRZ þm is a decomposition of the form (1.1), then the subalgebra
a ¼ CgðlÞV ðRZ þmÞ is either 1-dimensional or 3-dimensional and isomorphic with
su2. By virtue of this dichotomy, the two cases considered in the following proposi-
tion are all possible cases.

Proposition 1.1. Let ht be an optimal transversal curve of a K-manifold ðM; J; gÞ acted
on by the compact semisimple Lie group G and with non-sphere-like fibering. Let also
g ¼ lþRZ þm be the decomposition of the form (1.1) determined by the points

ht A Mreg and Z : R ! CgðlÞ ¼ zðlÞ þ a the algebraic representative of the Kähler form

o or of the Ricci form r. Then we have:

(1) If a is 1-dimensional, then it is of the form a ¼ RZD and there exists an element

I A zðlÞ and a smooth function f : R ! R so that

ZðtÞ ¼ f ðtÞZD þ I : ð1:6Þ

(2) If a is 3-dimensional, then it is of the form a ¼ su2 ¼ RZD þRX þRY , with
½ZD;X � ¼ Y and ½X ;Y � ¼ ZD and there exists an element I A zðlÞ, a real number

C and a smooth function f : R ! R so that

ZðtÞ ¼ f ðtÞZD þ C

coshðtÞX þ I : ð1:7Þ

Conversely, if Z : R ! CgðlÞ is a curve in CgðlÞ of the form (1.6) or (1.7), then there

exists a unique closed J-invariant, G-invariant 2-form $ on the set of regular points

Mreg, having ZðtÞ as algebraic representative.
In particular, the Kähler form o and the Ricci form r are uniquely determined by

their algebraic representatives.

Using (1.5), Proposition 1.1 and some basic properties of the decomposition
g ¼ lþRZ þm (see Section 5), it can be shown that the algebraic representatives
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ZoðtÞ and ZrðtÞ are uniquely determined by the values ohtðX̂X ; JX̂X Þ ¼ BðZoðtÞ;
½X ; JtX �Þ and rhtðX̂X ; JX̂XÞ ¼ BðZrðtÞ; ½X ; JtX �Þ, where X A m and Jt is the complex
structure on m induced by the complex structure of the tangent space ThtM.

Here comes our third main result. It consists in Theorem 5.1 and Proposition 5.2,
where we give the explicit expression for the value rhtðX ;X Þ ¼ rhtðX̂X ; JX̂XÞ for any

X A m, only in terms of the algebraic representative ZoðtÞ and of the Lie brackets
between X and the elements of the optimal basis in g. By the previous discussion, this
result furnishes a way to write down explicitly the Ricci tensor of the Kähler metric
associated with ZoðtÞ.

Acknowledgement. Many crucial ideas for this paper are the natural fruit of the
uncountable discussions that Fabio Podestà and the author had since they began
working on cohomogeneity one Kähler–Einstein manifolds. It is fair to say that most
of the credits should be shared with Fabio. We also are indebted to D. Guan for
checking and pointing out to us some serious mistakes in a previous version of this
paper.

Notation. Throughout the paper, if G is a Lie group acting isometrically on a Rie-
mannian manifold M and if X A g ¼ LieðGÞ, we will adopt the symbol X̂X to denote
the Killing vector field on M corresponding to X .

The Lie algebra of a Lie group will be always denoted by the corresponding Gothic
letter. For a group G and a Lie algebra g, ZðGÞ and zðgÞ denote the center of G and
of g, respectively. For any subset A of a group G or of a Lie algebra g, CGðAÞ and
CgðAÞ are the centralizer of A in G and g, respectively.

Finally, for any subspace nH g of a semisimple Lie algebra g, the symbol n?

denotes the orthogonal complement of n in g with respect to the Cartan–Killing
form B.

2 Fundamentals of K-manifolds

2.1 K-manifolds, KO-manifolds and KE-manifolds. A K-manifold is a pair formed by
a compact Kähler manifold ðM; J; gÞ and a compact semisimple Lie group G acting
almost e¤ectively and isometrically (hence biholomorphically) on M, such that:

i) b1ðMÞ ¼ 0;

ii) M has cohomogeneity one with respect to the action of G, i.e. the regular G-orbits
are of codimension one in M.

In this paper, ðM; J; gÞ will always denote a K-manifold of dimension 2n, acted on by
the compact semisimple Lie group G. We will denote by oð� ; �Þ ¼ gð� ; J�Þ the Kähler
fundamental form and by r ¼ rð� ; J�Þ the Ricci form of M.

For the general properties of cohomogeneity one manifolds and of K-manifolds,
see e.g. [2], [3], [10], [15], [20]. Here we only recall some properties, which will be used
in the paper.
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If p A M is a regular point, let us denote by L ¼ Gp the corresponding isotropy
subgroup. Since M is orientable, every regular orbit G � p is orientable. Hence we
may consider a unit normal vector field x, defined on the subset of regular points
Mreg, which is orthogonal to any regular orbit. It is known (see [3]) that any integral
curve of x is a geodesic. Any such geodesic is usually called a normal geodesic.

A normal geodesic g through a point p satisfies the following properties: it inter-
sects any G-orbit orthogonally; the isotropy subalgebra Ggt at a regular point gt is
always Gp ¼ L (see e.g. [2], [3]). We formalize these two facts in the following
definition.

We call nice transversal curve through a point p A Mreg any curve h : R ! M with
p A hðRÞ and such that:

i) it intersects any regular orbit;

ii) for any ht A Mreg

h 0
t B ThtðG � htÞ; ð2:1Þ

iii) for any ht A Mreg, Ght ¼ L ¼ Gp.

The following property of K-manifolds has been proved in [20].

Proposition 2.1. Let ðM; J; gÞ be a K-manifold acted on by the compact semisimple

Lie group G. Let also p A Mreg and L ¼ Gp be the isotropy subgroup at p. Then we

have:

(1) There exists an element Z (determined up to scaling) so that

RZ A CgðlÞV l?; CgðlþRZÞ ¼ zðlÞ þRZ: ð2:2Þ

In particular, the connected subgroup KHG with subalgebra k ¼ lþRZ is the

isotropy subgroup of a flag manifold F ¼ G=K .

(2) The dimension of a ¼ CgðlÞV l? is either 1 or 3; if dimR a ¼ 3, then a is a sub-

algebra isomorphic to su2 and there exists a Cartan subalgebra tC H lC þ aC H gC

so that aC ¼ CHa þCEa þCE�a for some root a of the root system of ðgC; tCÞ.

Note that if for some regular point p we have that dimR a ¼ 1 (resp. dimR a ¼ 3),
then the same occurs at any other regular point. Therefore we may consider the fol-
lowing definition.

Definition 2.2. Let ðM; J; gÞ be a K-manifold and L ¼ Gp the isotropy subgroup of a
regular point p. We say that M is a K-manifold with ordinary action (or shortly, KO-

manifold ) if dimR a ¼ dimRðCgðlÞV l?Þ ¼ 1.
In all other cases, we say that M is with extra-ordinary action (or, shortly, KE-

manifold ).

Andrea Spiro392



Another useful property of K-manifolds is the following. It can be proved that any
K-manifold admits exactly two singular orbits, at least one of which is complex (see
[21]). By the results in [15], it also follows that if M is a K-manifold whose singular
orbits are both complex, then M admits a G-equivariant blow-up ~MM along the com-
plex singular orbits, which is still a K-manifold and admits a holomorphic fibration
over a flag manifold G=K ¼ GC=P, with standard fiber equal to CP1.

Several other important facts are related to the existence (or non-existence) of two
singular complex orbits (see [21] for a review of these properties). For this reason, it is
convenient to introduce the following definition.

Definition 2.3. We say that a K-manifold M, acted on by a compact semisimple
group G with cohomogeneity one, is standard if the action of G has two singular
complex orbits. We call it non-standard in all other cases.

2.2 The CR structure of the regular orbits of a K-manifold. A CR structure of codi-

mension r on a manifold N is a pair ðD; JÞ formed by a distribution DHTN of co-
dimension r and a smooth family J of complex structures Jx : Dx ! Dx on the spaces
of the distribution.

A CR structure ðD; JÞ is called integrable if the distribution D10 HT CN, given by
the J-eigenspaces D10

x HDC
x corresponding to the eigenvalue þi, satisfies

½D10;D10�HD10:

Note that a complex structure J on a manifold N may be always considered as an
integrable CR structure of codimension zero.

A smooth map f : N ! N 0 between two CR manifolds ðN;D; JÞ and ðN 0;D 0; J 0Þ
is called CR map (or holomorphic map) if:

a) f�ðDÞHD 0;

b) for any x A N, f� � Jx ¼ J 0
fðxÞ � f�jDx

.

A CR transformation of ðN;D; JÞ is a di¤eomorphism f : N ! N which is also a CR
map.

Any codimension one submanifold NHM of a complex manifold ðM; JÞ is natu-
rally endowed with an integrable CR structure of codimension one ðD; JÞ, which is
called the induced CR structure; it is defined by

Dx ¼ fv A TxN : Jv A TxNg Jx ¼ JjDx
:

It is clear that any regular orbit G=L ¼ G � x A M of a K-manifold ðM; J; gÞ has an
induced CR structure ðD; JÞ, which is invariant under the transitive action of G. For
this reason, several facts on the global structure of the regular orbits of a K-manifolds
can be detected using what is known on compact homogeneous CR manifolds (see
e.g. [7] and [6]).
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Here, we recall some of those facts, which will turn out to be crucial in the next
sections.

Let ðG=L;D; JÞ be a homogeneous CR manifold of a compact semisimple Lie
group G, with an integrable CR structure ðD; JÞ of codimension one. If we consider
the B-orthogonal decomposition g ¼ lþ n, where l ¼ LieðLÞ, then the orthogonal
complement n is naturally identifiable with the tangent space ToðG=LÞ, o ¼ eL, by
means of the map

f : n ! ToðG=LÞ; fðXÞ ¼ X̂X jo:

If we denote by m the subspace

m ¼ f�1ðDoÞH n;

we get the following orthogonal decomposition of g:

g ¼ lþ n ¼ lþRZD þm: ð2:3Þ

where ZD A ðlþmÞ?. Since the decomposition is adl-invariant, it follows that
ZD A CgðlÞ.

Using again the identification map f : n ! ToðG=LÞ, we may consider the complex
structure

J : m ! m; J ¼def f�ðJoÞ: ð2:4Þ

Note that J is uniquely determined by the direct sum decomposition

mC ¼ m10 þm01; m01 ¼ m10; ð2:5Þ

where m10 and m01 are the J-eigenspaces with eigenvalues þi and �i, respectively.
In the following, (2.3) will be called the structural decomposition of g associated

with D; the subspace m10 HmC (respectively, m01 ¼ m10) given (2.5) will be called
the holomorphic (resp. anti-holomorphic) subspace associated with ðD; JÞ.

We recall that a G-invariant CR structure ðD; JÞ on G=L is integrable if and only if
the associated holomorphic subspace m10 HmC is so that

lC þm10 is a subalgebra of gC: ð2:6Þ

We now need to introduce a few concepts which are quite helpful in describing the
structure of a generic compact homogeneous CR manifold.
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Definition 2.4. Let N ¼ G=L be a homogeneous manifold of a compact semisimple
Lie group G and ðD; JÞ a G-invariant, integrable CR structure of codimension one
on N.

We say that a CR manifold ðN ¼ G=L;D; JÞ is a Morimoto–Nagano space if either
G=L ¼ S2n�1, n > 1, endowed with the standard CR structure of S2n�1 HCPn, or
there exists a subgroup HHG so that:

a) G=H is a compact rank one symmetric space (i.e. RPn ¼ SOnþ1=SOn � Z2, S
n ¼

SOnþ1=SOn, CPn ¼ SUnþ1=SUn, HPn ¼ Spnþ1=Spn or OP2 ¼ F4=Spin9);

b) G=L is a sphere bundle SðG=HÞHTðG=HÞ in the tangent space of G=H;

c) ðD; JÞ is the CR structure induced on G=L ¼ SðG=HÞ by the G-invariant complex
structure of TðG=HÞGGC=HC.

If a Morimoto–Nagano space is G-equivalent to a sphere S2n�1 we call it trivial; we
call it non-trivial in all other cases.

A G-equivariant holomorphic fibering

p : N ¼ G=L ! F ¼ G=Q

of ðN;D; JÞ onto a non-trivial flag manifold ðF ¼ G=Q; JFÞ with invariant complex
structure JF is called CRF fibration. A CRF fibration p : G=L ! G=Q is called nice if
the standard fiber is a non-trivial Morimoto–Nagano space; it is called very nice if it
is nice and there exists no other nice CRF fibration p 0 : G=L ! G=Q with standard
fibers of smaller dimension.

The following proposition gives necessary and su‰cient conditions for the exis-
tence of a CRF fibration. The proof can be found in [6].

Proposition 2.5. Let G=L be a homogeneous CR manifold of a compact semisimple Lie

group G, with an integrable, codimension one G-invariant CR structure ðD; JÞ. Let also
g ¼ lþRZD þm be the structural decomposition of g and m10 the holomorphic sub-

space, associated with ðD; JÞ.
Then G=L admits a non-trivial CRF fibration if and only if there exists a proper

parabolic subalgebra p ¼ rþ nW gC (here r is a reductive part and n the nilradical of

p) such that:

aÞ r ¼ ðpV gÞC; bÞ lC þm01 H p; cÞ lC W r:

In this case, G=L admits a CRF fibration with basis G=Q ¼ GC=P, where Q is the

connected subgroup generated by q ¼ rV g and P is the parabolic subgroup of GC with

Lie algebra p.

Let us go back to the regular orbits of a K-manifold ðM; J; gÞ acted on by the
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compact semisimple group G. First of all, we recall that by Theorem 4.3 in [15], any

non-standard K-manifold M admits a canonical G-equivariant blow-up ~MM, along
the singular complex G-orbit. Moreover, ~MM is a K-manifold acted on by G and it
has the following important property: there exists a G-equivariant holomorphic
fibration p : ~MM ! GC=P, where GC=P is a flag manifold and the standard fiber
F ¼ p�1ðePÞ is biholomorphic to CPn, Qn ¼ f½z� A CPnþ1 : ztz ¼ 0g, the Grass-
manian manifold G2;2nðCÞ or EIII ¼ E6=Spin10 � SO2.

On the other hand, we already pointed out that each regular orbit ðG=L ¼ G � x;
D; JÞ in M, endowed with the induced CR structure ðD; JÞ, is a compact homoge-
neous CR manifold. Moreover, G is a maximal compact subgroup of GC and hence
it acts transitively on GC=P. Now, since each regular G-orbit of M is G-equivalent to
a regular orbit of ~MM, the holomorphic fibration p : ~MM ! GC=P ¼ G=K, K ¼ GVP,
induces a CRF fibration p : G=L ¼ G � x ! G=K on any regular G-orbit, whose
standard fiber K=L is a regular K-orbit in F ¼ p�1ðePÞH ~MM. By the proof of Theo-
rem 4.3 in [15] (see also [1]), the standard fiber of p : G=L ¼ G � x ! G=K is always
CR equivalent to a Morimoto–Nagano space and it is CR equivalent to the standard
sphere S2r�1 if and only if K acts on F with an isolated fixed point (in this case,
F ¼ CPr).

We are interested mainly in the cases in which M is either standard or non-
standard with fiber of the CRF fibration p : G=L ¼ G � x ! G=K that is a non-
trivial Morimoto–Nagano space. For this reason, we consider the following
definition.

Definition 2.6. Let ðM; J; gÞ be a K-manifold acted on by the compact semisimple Lie
group G and let p : ~MM ! GC=P ¼ G=K be a holomorphic fibration as described
above, with typical fiber F ¼ p�1ðePÞ. We say that p is a sphere-like fibering if M is
non-standard and K acts on F with an isolated fixed point. We say p is a non-sphere-

like fibering in all other cases.

In the statement of the following theorem we collect some basic results on the regular
orbits of K-manifolds. It is a direct consequence of Theorem 3.1 in [21] (see also [15],
[1] and [20] Theorem 2.4).

Theorem 2.7. Let ðM; J; gÞ be a K-manifold acted on by the compact semisimple Lie

group G.

(1) If M is standard, then there exists a flag manifold ðG=K ; JoÞ with a G-invariant

complex structure Jo, such that any regular orbit ðG � x ¼ G=L;D; JÞ of M admits

a CRF-fibration p : ðG=L;D; JÞ ! ðG=K ; JoÞ onto ðG=K ; JoÞ with typical fiber S1.

(2) If M is non-standard and admitting a non-sphere-like fibering, then there exists

a flag manifold ðG=K ; JoÞ with a G-invariant complex structure Jo such that any

regular orbit ðG=L ¼ G � x;D; JÞ admits a nice CRF fibration p : ðG=L;D; JÞ !
ðG=K ; JoÞ where the typical fiber K=L is a non-trivial Morimoto–Nagano space of

dimension dimK=Ld 3.
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Furthermore, if the last case occurs, then the fiber K=L of the CRF fibration

p : ðG=L;D; JÞ ! ðG=K ; JoÞ has dimension 3 only if K=L is either SðRP2ÞH
TðRP2Þ ¼ CP2nf½z� : tz � z ¼ 0g or SðCP1ÞHTðCP1Þ ¼ CP1 �CP1nf½z� ¼ ½w�g.

3 The optimal transversal curves of a K-manifold

3.1 Notation and preliminary facts. If G is a compact semisimple Lie group and
tC H gC is a given Cartan subalgebra, we will use the following notation:

. B is the Cartan–Killing form of g and for any subspace AH g, A? is the B-
orthogonal complement to A;

. R is the root system of ðgC; tCÞ;

. Ha A tC is the B-dual element to the root a;

. for any a; b A R, the scalar product ða; bÞ is set to be equal to ða; bÞ ¼ BðHa;HbÞ;

. Ea is the root vector with root a in the Chevalley normalization; in particular
BðEa;E�bÞ ¼ dab, ½Ea;E�a� ¼ Ha, ½Ha;Eb� ¼ ðb; aÞEb and ½Ha;E�b� ¼ �ðb; aÞE�b;

. for any root a, Fa ¼ 1ffiffi
2

p ðEa � E�aÞ and Ga ¼ iffiffi
2

p ðEa þ E�aÞ; note that for a; b A R

BðFa;FbÞ ¼ �dab ¼ BðGa;GbÞ; BðFa;GbÞ ¼ BðFa;HbÞ ¼ BðGa;HbÞ ¼ 0;

. the notation for the roots of a simple Lie algebra is the same of [12] and [6].

Recall that for any two roots a, b, with b0�a, if ½Ea;Eb� is non-trivial then
½Ea;Eb� ¼ Na;bEaþb where the coe‰cients Na;b satisfy the following conditions:

Na;b ¼ �Nb;a; Na;b ¼ �N�a;�b: ð3:1Þ

From (3.1) and the properties of root vectors in the Chevalley normalization, the
following well known properties can be derived:

(1) for any a; b A R with a0 b

½Fa;Fb�; ½Ga;Gb� A spanfFg; g A Rg; ½Fa;Gb� A spanfGg; g A Rg; ð3:2Þ

(2) for any H A tC and any a; b A R, BðH; ½Fa;Fb�Þ ¼ BðH; ½Ga;Gb�Þ ¼ 0 and

BðH; ½Fa;Gb�Þ ¼ idabBðH;HaÞ ¼ dabaðiHÞ; ð3:3Þ

Finally, concerning the Lie algebra of flag manifolds and of CR manifolds, we
adopt the following notation.
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Assume that G=K is a flag manifold with invariant complex structure J (for defi-
nitions and basic facts, we refer to [4], [5], [9], [19]) and let p : G=L ! G=K be a G-
equivariant S1-bundle over G=K . In particular, let us assume that l is a codimension
one subalgebra of k. Recall that k ¼ k ss þ zðkÞ, with k ss the semisimple part of k. Hence
the semisimple part lss of l is equal to k ss and k ¼ lþRZ ¼ ðk ss þ zðkÞV lÞ þRZ for
some Z A zðkÞ.

Let tC H kC be a Cartan subalgebra for gC contained in kC and R the root system
of ðgC; tCÞ. Then we will use the following notation:

. Ro ¼ fa A R;Ea A kCg;

. Rm ¼ fa A R;Ea A mCg;

. for any a A R, we let gðaÞC ¼ spanCfEGa;Hag and gðaÞ ¼ gðaÞC V g;

. mðaÞ denotes the irreducible kC-submodule of mC, with highest weight a A Rm;

. if mðaÞ and mðbÞ are equivalent as lC-modules, we denote by mðaÞ þ lmðbÞ the
irreducible lC-module with highest weight vector Ea þ lEb, a; b A Rm, l A C.

3.2 The structural decomposition gF lBRZD Bm determined by the CR structure

of a regular orbit. The main results of this subsection are given by the following two
theorems on the structural decomposition of the regular orbits of a K-manifolds. The
first one is a straightforward consequence of definitions, Theorem 2.7 and the results
in [20].

Theorem 3.1. Let ðM; J; gÞ be a standard K-manifold acted on by the compact semi-

simple group G and let g ¼ lþRZD þm and m10 be the structural decomposition and

the holomorphic subspace, respectively, associated with the CR structure ðD; JÞ of a

regular orbit G=L ¼ G � p. Let also J : m ! m be the unique complex structure on m,
which determines the decomposition mC ¼ m10 þm10.

Then, k ¼ lþRZD is the isotropy subalgebra of a flag manifold K , and the complex

structure J : m ! m is adk-invariant and corresponds to a G-invariant complex struc-

ture J on G=K .
In particular, there exists a Cartan subalgebra tC H kC and an ordering of the asso-

ciated root system R, so that m10 is generated by the corresponding positive root vec-

tors in mC ¼ ðk?ÞC.

The following theorem describes the structural decomposition and the holomor-
phic subspace of a regular orbit of a non-standard K-manifold with non-sphere-like
fibering. Also this theorem can be considered as a consequence of Theorem 2.7, but
the proof is a little bit more involved.

Theorem 3.2. Let ðM; J; gÞ be a non-standard K-manifold acted on by the compact

semisimple group G and with non-sphere-like fibering. Let also g ¼ lþRZD þm and

m10 be the structural decomposition and the holomorphic subspace, respectively, asso-

Andrea Spiro398



ciated with the CR structure ðD; JÞ of a regular orbit G=L ¼ G � p. Then there exists a

simple subalgebra gF H g with the following properties:

a) Let lF ¼ lV gF , lo ¼ lV g?F , mF ¼ mV gF and m 0 ¼ mV g?F ; then the pair ðgF ; lF Þ
is one of those listed in Table 1 and g and gF admit the following B-orthogonal
decompositions:

g ¼ lo þ ðlF þRZDÞ þ ðmF þm 0Þ; gF ¼ lF þRZD þmF ;

furthermore ½lo; gF � ¼ f0g and the connected subgroup KHG with Lie algebra

k ¼ lo þ gF is the isotropy subalgebra of a flag manifold G=K .

b) Let m10
F ¼ mC

F Vm10; then there exists a Cartan subalgebra tCF H lCF þCZD and

a complex number l with 0 < jlj < 1 so that the element ZD, determined up to

scaling, and the subspace m10
F , determined up to an element of the Weyl group and

up to complex conjugation, are as listed in Table 1 (see Section 3.1 for notation—in

case gF ¼ su2 þ su2 let c ¼ BðHe1�e2
;He1�e2

Þ
BðHe 0

1
�e 0

2
;He 0

1
�e 0

2
Þ , where B is the Cartan–Killing form of

gI gF ):

Table 1

gF lF ZD m10
F

su2 f0g � i
2He1�e2 CðEe1�e2 þ lE�e1þe2 Þ

sunþ1 sun�2 lR �iHe1�e2

CðEe1�e2 þ l2E�e1þe2Þ
l ðmðe1 � e3Þ þ lmðe2 � e3ÞÞ
l ðmðe3 � e2Þ þ lmðe3 � e1ÞÞ

su2 þ su2 R � i
1þc

ðHe1�e2 þ cHe 0
1
�e 0

2
Þ CðEe1�e2 þ lE�ðe 0

1
�e 0

2
ÞÞ

lCðEe 0
1
�e 0

2
þ lE�ðe1�e2ÞÞ

so7 su3 � 2i
3 ðHe1þe2 þHe3Þ

ðmðe1 þ e2Þ þ lmð�e3ÞÞ
l ðmð�e3Þ þ lmðe1 þ e2ÞÞ

f4 so7 �i2He1

ðmðe1 þ e2Þ þ l2mð�e1 þ e2ÞÞ
l ðmð1=2ðe1 þ e2 þ e3 þ e4ÞÞ
þ lmð1=2ð�e1 þ e2 þ e3 þ e4ÞÞÞ

g2 su2 �i3He1

CðEe1 þ l2E�e1Þ
þCðE�e3 þ lEe2 Þ
þCðE�e2 þ lEe3 Þ
þCðEe1�e2 þ l3Ee3�e1Þ
þCðEe1�e3 þ l3Ee2�e1Þ

so2nþ1 so2n�1 �iHe1 mðe1 þ e2Þ þ lmð�e1 þ e2Þ

so2n so2n�2 �iHe1 mðe1 þ e2Þ þ lmð�e1 þ e2Þ

spn sp1 þ spn�2 �iHe1þe2

ðmð2e1Þ þ l2mð�2e2ÞÞ
l ðmðe1 þ e3Þ þ lmð�e2 þ e3ÞÞ
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c) The holomorphic subspace m10 admits the following orthogonal decomposition

m10 ¼ m10
F þm 010;

where m 010 ¼ m 0C Vm10.

d) The complex structure J 0 : m 0 ! m 0 associated with the eigenspace decomposi-

tion m 0C ¼ m 010 þm 001, where m 001 ¼ m 010 is AdK -invariant and determines a

G-invariant complex structure on the flag manifold G=K ; in particular the J 0-
eigenspaces are adRZD

-invariant:

½RZD;m
010�Hm 010; ½RZD;m

001�Hm 001:

The proof of Theorem 3.2 needs the following lemma.

Lemma 3.3. Let G=L ¼ G � p be a regular orbit of a non-standard K-manifold

ðM; J; gÞ. Let also p : ðG=L;D; JÞ ! ðG=K ; JoÞ be the CRF fibration given in Theo-

rem 2.7 and ðDK ; JKÞ the CR structure of the typical fiber K=L. Then we have:

i) The isotropy subalgebra h ¼ LieððGCÞpÞ is equal to h ¼ lC þm01, where

m01 ¼ m10 is the anti-holomorphic subspace associated with the CR structure of

G=L ¼ G � p.

ii) Let g ¼ kþm 0 be the B-orthogonal decomposition of g associated with the flag

manifold G=K and let m 0C ¼ m 010 þm 001 be the decomposition into (þi)- and (�i)-
eigenspaces determined by the complex structure Jo : m

0 ! m 0 given by the com-

plex structure of G=K ; then the isotropy subalgebra p ¼ LieððGCÞeKÞ at eK A
G=K ¼ GC=P is p ¼ kC þm 001; moreover, if M has non-sphere-like fibering then

m 001 Hm01.

If we assume that M has non-sphere-like fibering, then the following are also true:

iii) The holomorphic subspace m10 of ðG=L;D; JÞ admits the B-orthogonal decompo-

sition m10 ¼ m10
K þm 010 where m 010 ¼ m10 Vm 0C and m10

K is the holomorphic

subspace of ðK=L;DK ; JK ).

iv) Denote by Lo the kernel of e¤ectivity of the action of K on K=L. Then the 1-
dimensional subspaces RZDK and RZD of the structural decompositions of k and

g at the point p are both in kVC kðlÞV l?o ; moreover, in case kV ðloÞ? is simple,
RZDK and RZD are the same and we have that k ¼ lþRZD þmK and g ¼
lþRZD þm ¼ lþRZD þ ðmK þm 0Þ.

v) ½RZD;m
010�Hm 010 and ½RZD;m

001�Hm 001.

Proof. First of all, let k ¼ lþRZDK þmK and g ¼ lþRZD þm be the structural
decompositions of k and g at the point p, associated with the CR structures ðDK ; JKÞ
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and ðD; JÞ, respectively. Denote also by JK and J the induced complex structures on
mK and m.

To prove (i), consider an element V ¼ X þ iY A gC, with X ;Y A g. Then V belongs
to h if and only if dXþ iYXþ iY jp ¼ X̂Xp þ JŶYp ¼ 0. This means that JX̂Xp ¼ �ŶYp is tangent
to the orbit G � p. In particular, X ;Y A lþm and V ¼ X þ iJX A lC þm01.

Following the same argument, one gets also the identity p ¼ kC þm 001. Moreover,
from standard facts on flag manifolds (see e.g. [5], [9]) it can be checked that m 001

coincides with the nilradical of p. Now, by (i) and the proof of Theorem 5 in [1], we
have that if p is non-sphere-like then m 001 H h ¼ lC þm01. Since m 001 is orthogonal
to kC I lC, we conclude that m 001 Hm01 and (ii) is proved.

To check (iii), consider the subspace mK ¼ fX A m : p�ðX̂XeLÞ ¼ 0g ¼ mV k. Note
thatmK is J- and Ad l-invariant. Furthermore, if it contains no trivial adl-module, it is
orthogonal to l with respect to any l-invariant inner product, and hence with respect
to the Cartan–Killing form of k. The cases in which mK contains a trivial adl-module
may occur only when the subalgebra gF ¼ kV ðloÞ? is simple (here we denote by lo the
Lie algebra of the kernel of e¤ectivity on K=L); to check this, look at Table 1 and the
proof of Theorem 3.2 below. On the other hand we have that mK H gF and hence
also in this case mK is not only B-orthogonal to l, but also orthogonal to l with
respect to the Cartan–Killing form of gF (and hence of k). So, mK is always the JK -
invariant subspace which occurs in the structural decomposition of k given by
ðDK ; JKÞ, namely k ¼ lþRZDK þmK .

Now, since m 001 Hm01 and m 010 ¼ m 001 Hm01 ¼ m10, we may conclude that
m 0 Hm and that Jojm 0 ¼ Jjm 0 . In particular, m 0 is J-invariant. So, we have the fol-
lowing B-orthogonal and J-invariant decomposition

m ¼ m 0 þ ððm 0Þ? VmÞ ¼ m 0 þ ðkVmÞ ¼ m 0 þmK :

It follows also that m10 ¼ m 010 þm10
K and that m 010 ¼ m10 VmC as we needed to

prove.
From the B-orthogonal decomposition m ¼ m 0 þmK we get also that RZD ¼

ðlþmÞ? ¼ ðlþmK þm 0Þ? ¼ ðlþmKÞ? V k. It follows that, if lo H l denotes the Lie
algebra of the kernel of e¤ectivity of K on K=L, then RZD H l?o V k and it is also
in C kðlÞ, since ðlþmKÞ? V k is Ad l-invariant and 1-dimensional. By definition, also
RZDK A l?o VC kðlÞV k and this proves the first claim of (iv). For the second claim,
recall that the restriction of B to each simple ideal of k coincides, up to a multiple,
with the restriction to that ideal of the Cartan–Killing form of k. Therefore, in case
kV l?o is simple, we get that RZD (i.e. the B-orthogonal complement in kV l?o to the
subspace ðlþmKÞV ðloÞ?Þ) coincides with RZDK , which is the orthogonal comple-
ment in kV l?o to ðlþmKÞV ðloÞ? by means of the Cartan–Killing form of k.

To prove v), recall that m 001 is the nilradical of p ¼ kC þm 001 and that ZD A k. It
follows that ½RZD;m

001�H ½k;m 001�Hm 001 and ½RZD;m
010� ¼ ½RZD;m 001�Hm 001 ¼

m 010.

Proof of Theorem 3.2. Let KHG be a subgroup so that any regular orbit G=L admits
a very nice CRF fibration p : ðG=L;D; JÞ ! ðG=K ; JoÞ as prescribed by Theorem
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2.7. Then, for any regular point p, the K-orbit K=L ¼ K � pHG=L ¼ G � p (which is
the fiber of the CRF fibration p) is a non-trivial Morimoto–Nagano space. In par-
ticular, K=L is Levi non-degenerate, it is simply connected and the CR structure is
non-standard (for the definition of non-standard CR structures and the properties of
the CR structures of the Morimoto–Nagano spaces, see [6]).

Let Lo HL be the normal subgroup of the elements which act trivially on K=L. Let
also GF ¼ K=Lo and lo ¼ LieðLoÞ, gF ¼ kV ðloÞ? GLieðGF Þ.

Note that Theorem 1.3, 1.4 and 1.5 of [6] apply immediately to the homogeneous
CR manifold GF=LF , with LF ¼ L modLo. In particular, since the CRF fibration
p : G=L ! G=K is nice and K=L ¼ GF=LF is a non-trivial Morimoto–Nagano space,
it follows that gF is sun, su2 þ su2, so7, f4, g2, son ðnd 5Þ or spn ðnd 2Þ.

From Theorem 1.4, Proposition 6.3 and Proposition 6.4 in [6] and from Lemma
3.3 iii)–v), it follows that the subalgebras gF , lF and the holomorphic subspace m10

F ,
associated with the CR structure of the fiber K=L ¼ GF=LF , satisfy a), b), c) and d).
Concerning the subspace RZD, for all cases in which gF is simple, it is equal to the
corresponding subspace RZD described in [6], because of the second claim of Lemma
3.3 iv); for the case gF ¼ su2 þ su2, it is enough to observe that, according to the nota-
tion and the results in [6], lF ¼ CðHe1�e2 �He 0

1
�e 0

2
Þ and CgF

ðlF Þ ¼ CHe1�e2 þCHe 0
1
�e 0

2
;

hence RZD coincides with the 1-dimensional orthogonal complement to lF in CgF
ðlF Þ

with respect to the Cartan–Killing form B of gI gF .

In the following, we will call the subalgebra gF the Morimoto–Nagano subalgebra

of the K-manifold M. We will soon prove that the Morimoto–Nagano subalgebra is
independent (up to conjugation) from the choice of the regular orbit G � p ¼ G=L.

We will also call ðgF ; lF Þ and the subspace m10
F the Morimoto–Nagano pair and

the Morimoto–Nagano holomorphic subspace, respectively, of the regular orbit
G=L ¼ G � p.

3.3 Optimal transversal curves. We prove now the existence of a special family of
nice transversal curves called optimal transversal curves (see Section 1). We first show
the existence of such curves for a non-standard K-manifold with non-sphere-like
fibering.

Theorem 3.4. Let ðM; J; gÞ be a non-standard K-manifold acted on by the compact

semisimple group G and with non-sphere-like fibering. Then there exists a point po in

the non-complex singular orbit and an element Z A g such that the curve

h : R ! M; ht ¼ expðtiZÞ � po

satisfies the following properties:

(1) It is a nice transversal curve; in particular the isotropy subalgebra ght for any

ht A Mreg is a fixed subalgebra l.

(2) There exists a subspace m such that, for any ht A Mreg, the structural decompo-
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sition g ¼ lþRZDðtÞ þmðtÞ of the orbit G=L ¼ G � ht is given by mðtÞ ¼ m and

RZDðtÞ ¼ RZ.

(3) The Morimoto–Nagano pairs ðgF ðtÞ; lF ðtÞÞ of the regular orbits G � ht do not

depend on t.

(4) For any ht A Mreg, the holomorphic subspace m10ðtÞ admits the orthogonal decom-

position

m10ðtÞ ¼ m10
F ðtÞ þm 010ðtÞ;

where m 010ðtÞ ¼ m 010 HmC is independent of t and m10
F ðtÞ is a Morimoto–Nagano

holomorphic subspace which is listed in Table 1, determined by the parameter l

equal to l ¼ lðtÞ ¼ e2t.

Moreover, if ht ¼ expðtiZÞ � po is any of such curves and if ðgF ; lF Þ is (up to conju-

gation) the Morimoto–Nagano pair of a regular orbit G=L ¼ G � ht, then (up to con-

jugation) Z is the element in the column ‘‘ZD’’ of Table 1, associated with the Lie al-

gebra gF .

For the proof of Theorem 3.4, we first need two lemmas.

Lemma 3.5. Let ðM; J; gÞ be a K-manifold acted on by the compact semisimple Lie

group G. Let also p be a regular point and G=L ¼ G � p and GC=H ¼ GC � p the G-

and the GC-orbit of p, respectively. Then we have:

(1) For any g A GC, the isotropy subalgebra l 0 ¼ gp 0 at p 0 ¼ g � p is equal to

l 0 ¼ AdgðlC þm01ÞV g:

(2) Let g A GC and suppose that p 0 ¼ g � p is a regular point. If we denote by g ¼
l 0 þRZ 0

D þm 0 and by m 010 the structural decomposition and the holomorphic

subspace, respectively, given by the CR structure of G � p 0 ¼ G=L 0, then

m 010 ¼ AdgðlC þm10Þ;

m 0 ¼ ðAdgðlC þm10Þ þAdgðlC þm10ÞÞV gV l 0?:

Proof. (1) Clearly, L 0 ¼ GVGC
p 0 ¼ GV ðgHg�1Þ and l 0 ¼ gVAdgðhÞ. The claim is

then an immediate consequence of Lemma 3.3 (i).
(2) From Lemma 3.3 (i), it follows that

m 010 ¼ m 001 ¼ h 0 V ðl 0CÞ? ¼ AdgðlC þm01ÞV ðl 0CÞ?:

From this, the conclusion follows.
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Lemma 3.6. Let ðM; J; gÞ be a K-manifold acted on by the compact semisimple Lie

group G. Let also p be a regular point and g ¼ lþRZD þm the structural decompo-

sition associated with the CR structure of G=L ¼ G � p. Then we have:

(1) For any g A expðC�ZDÞ, the isotropy subalgebra gp 0 at the point p 0 ¼ g � p is

orthogonal to RZD; moreover, lJ gp 0 and, if p 0 is regular, l ¼ gp 0 .

(2) The curve

h : R ! M; ht ¼ expðitZDÞ � p

is a nice transversal curve through p.

Proof. (1) From Lemma 3.5 (1), for any point p 0 ¼ expðlZDÞ � p, with l A C�,

Bðgp 0 ;RZDÞ ¼ BðAdexpðlZDÞðl
C þm01ÞV g;RZDÞ

¼ BððlC þm01ÞV g;Adexpð�lZDÞðRZDÞÞ

¼ BððlC þm01ÞV g;RZDÞ ¼ 0:

Moreover, since ZD A CgCðlCÞ, we get that

gp 0 ¼ ðAdexpðlZDÞðl
C þm01ÞÞV g ¼ lþAdexpðlZDÞðm01ÞV gI l:

This implies that l ¼ gp 0 if p 0 is regular.
(2) From (1), we have that condition (2.1) and the equality G � ht ¼ G � p ¼ G=L

are satisfied for any point ht A Mreg. It remains to show that h intersects any regular
orbit.

Let W ¼ MnG be the orbit space and p : M ! W ¼ MnG the natural projection
map. It is known (see e.g. [10]) that W is homeomorphic to W ¼ ½0; 1�, with Mreg ¼
p�1ð�0; 1½Þ. Hence h intersects any regular orbit if and only if ðp � hÞðRÞI �0; 1½.

Let x1 ¼ infðp � hÞðRÞ and let ftngH �0; 1½ be a sequence such that ðp � hÞtn tends
to x1. If we assume that x1 > 0, we may select a subsequence tnk so that limnk!y htnk
exists and it is equal to a regular point po. From (1) and a continuity argument,
we could conclude that l is equal to the isotropy subalgebra gpo , that ẐZDjpo 0 0 and
that JẐZDjpo is not tangent to the orbit G � po. In particular, it would follow that the
curve expðiRZDÞ � po has non-empty intersection with hðRÞ ¼ expðiRZDÞ � p and
that po A hðRÞ; moreover we would have that h is transversal to G � po and that
x1 ¼ pðpoÞ is an inner point of p � hðRÞ, which is a contradiction.

A similar contradiction arises if we assume that x2 ¼ sup p � hðRÞ < 1.

Proof of Theorem 3.4. Pick a regular point p. Let g ¼ lþRZD þm be the structural
decomposition of the orbit G � p and let ht ¼ expðitZDÞ � p. From Lemmas 3.5 and
3.6 and Theorem 3.2, the structural decompositions g ¼ lþRZDðtÞ þmðtÞ of all
regular orbits G � ht are independent of t. Moreover, from Lemma 3.5 and Theorem
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3.2, it follows that the Morimoto–Nagano pair ðgF ; lF Þ is the same for all regular
orbits G � ht and the holomorphic subspace m10

t of the orbit G � ht is of the form

m10
t ¼ AdexpðitZDÞðm10

0 Þ ¼ Adexpð�itZDÞðm10
F ð0ÞÞ þAdexpð�itZDÞðm 010ð0ÞÞ ð3:4Þ

where m10
0 ¼ m10

F ð0Þ þm 010ð0Þ is the decomposition of the holomorphic subspace of
G � h0 given in Theorem 3.2 c). Since ZD A gF , from (3.4) and Theorem 3.2 d), it fol-
lows that

m10
t ¼ Adexpð�itZDÞðm10

F ð0ÞÞ þm 010ð0Þ:

This proves that the Morimoto–Nagano holomorphic subspace m10
F ðtÞ of the orbit

G � ht is

m10
F ðtÞ ¼ Adexpð�itZDÞðm10

F ð0ÞÞ ð3:5Þ

and that the B-orthogonal complement m 010 ¼ m 010ð0Þ is independent of t and adZD
-

invariant.
A simple computation shows that if gF and m10

F ðtÞ ¼ Adexpð�itZDÞðm10
F ð0ÞÞ appear

in a row of Table 1 and if ZD is equal to ZD ¼ AZo, where Zo is the corresponding
element listed in the column ‘‘ZD’’, then m10

F ðtÞ is determined by a complex parame-
ter l ¼ lðtÞ, which satisfies the di¤erential equation

dl

dt
¼ 2AlðtÞ:

In particular, if we assume A ¼ 1, then lðtÞ ¼ e2tþBp where Bp is a complex number
which depends only on the regular point p.

Let us replace p with the point po ¼ exp �i
Bp

2 Z
� �

� p: it is immediate to realize
that the new function lðtÞ is equal to

lðtÞ ¼ e2tþBp�Bp ¼ e2t:

This proves that the curve ht ¼ eitZD � po satisfies (1), (2), (3) and (4).
It remains to prove that for any choice of the regular point p, the point po ¼

exp �i
Bp

2 Z
� �

� p is a point of the non-complex singular orbit of M.

Observe that, since hðRÞ is the orbit of a real 1-parameter subgroup of GC, the
complex isotropy subalgebra ht H gC is (up to conjugation) independent of the point
ht. Indeed, if hto is a regular point with complex isotropy subalgebra hto ¼ lC þm01

F þ
m 001, then for any other point ht, we have that

ht ¼ Adexpðiðt�toÞZDÞðl
C þm01

F þm 001Þ:

On the other hand, the real isotropy subalgebra ght H g is equal to
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ght ¼ ht V g ¼ Adexpðiðt�toÞZDÞðl
C þm01

F þm 001ÞV g: ð3:6Þ

From (3.6), Table 1 and (4), one can check that in all cases

gh0 X lþRZD

and hence that h0 ¼ po is a singular point for the G-action. On the other hand
po cannot be in the complex singular G-orbit, because otherwise this orbit would
coincide with GC � po ¼ GC � p and it would contradict the assumption that p is a
regular point for the G-action.

The following is the analogous result for standard K-manifolds.

Theorem 3.7. Let ðM; J; gÞ be a standard K-manifold acted on by the compact semi-

simple group G and let po be any regular point for the G-action. Let also g ¼ lþRZþ
m and m10 be the structural decomposition and the holomorphic subspace associated

with the CR structure of the orbit G=L ¼ G � po. Then the curve

h : R ! M; ht ¼ expðtiZÞ � po

satisfies the following properties:

(1) It is a nice transversal curve; in particular the stabilizer in g of any regular point ht
is equal to the isotropy subalgebra l ¼ gpo .

(2) For any regular point ht, the structural decomposition g ¼ lþRZDðtÞ þmðtÞ and
the holomorphic subspace m10ðtÞ of the CR structure of G=L ¼ G � ht is given by

the subspaces mðtÞ ¼ m, RZDðtÞ ¼ RZ and m10ðtÞ ¼ m10.

Proof. (1) is immediate from Lemma 3.6.
(2) It is su‰cient to prove that ½Z;m10�Hm10. In fact, from this the claim follows

as an immediate corollary of Lemmas 3.5 and 3.6.
Let ðG=K ; JF Þ be the flag manifold with invariant complex structure JF , given by

Theorem 2.7, so that any regular orbit G � x admits a CRF fibration onto G=K , with
fiber S1. Let also P be the parabolic subalgebra of GC such that G=K is biholomor-
phic to GC=P.

From Proposition 2.5, if we denote by p ¼ kC þ n the decomposition of the para-
bolic subalgebra pH gC into nilradical n plus reductive part kC, we have that

k ¼ pV g; lC W kC; lC þm01 H kC þ n: ð3:7Þ

Since the CRF fibration has fiber S1, it follows that k ¼ lþRZ 0 for some Z 0 A
zðkÞH a ¼ CgðlÞV l?.

In case dim a ¼ 1, we have that a ¼ RZ ¼ RZ 0 and hence m10 H ðlC þCZÞ? ¼
ðkCÞ?. From (3.7) we get that m01 ¼ n and that ½Z;m01�H ½kC; n�H n ¼ m01.
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In case a is 3-dimensional, let us denote by a? ¼ aVm ¼ aV ðRZÞ? and by
a10 ¼ aC Vm10, a01 ¼ aC Vm01 ¼ a10 so that ða?ÞC ¼ a10 þ a01. Consider also the
orthogonal decompositions

g ¼ lþRZ þm ¼ lþRZ þ a? þm 0; m10 ¼ a10 þm 010;

where m 010 ¼ m10 Vm 0C. Let lss be the semisimple part of l and note that lss ¼ k ss.
By classical properties of flag manifolds (see e.g. [4], [5], [19]) the adk ss -module m 0

contains no trivial adk ss -module and hence m 010 ¼ ½k ss;m 010� ¼ ½k;m 010�. In particular,
m 001 ¼ m 010 is orthogonal to kC and hence it is included in n. So,

½Z;m 001�H ½Z; nV ðlC þ aCÞ?�H nV ðlC þ aCÞ? ¼ m 001:

From this, it follows that in order to prove that ½Z;m10�Hm10, one has only to show
that ½Z; a10�H a10 Hm10.

By dimension counting, a10 ¼ CE for some element E A aC F sl2ðCÞ. In case E

is a nilpotent element for the Lie algebra aC F sl2ðCÞ, we may choose a Cartan sub-
algebra CHa for a ¼ sl2ðRÞ, so that E A CEa. In this case, we have that

Z A ða10 þ a01Þ? ¼ ðCEa þCE�aÞ? ¼ CHa

and hence ½Z; a10�H ½CHa;CEa� ¼ CEa ¼ a10 and we are done.
In case E is a regular element for aC, with no loss of generality, we may consider

a Cartan subalgebra CHa for aC so that CE ¼ CðEa þ tE�aÞ for some t0 0. In this

case, a01 ¼ a10 ¼ CðE�a þ tEaÞ ¼ C Ea þ 1
t
E�a

� �
and, since a10 V a01 ¼ f0g, it fol-

lows that t0 1=t. In particular, we get that CZ ¼ ða10 þ a01Þ? ¼ CHa. Now, by
Lemma 3.5 (1), for any l A C�, the isotropy subalgebra lgl�po , with gl ¼ expðlZÞ, is
equal to

lgl�po ¼ AdexpðlZÞðlC þ a01 þm 001ÞV g ¼ lC þm 001 þCðEa þ te�2laðZÞE�aÞV g:

Therefore, if l is such that te�2laðZÞ ¼ �1, we have that lgl�po ¼ lþRðEa � E�aÞX l

and hence that p ¼ gl � po is a singular point for the G-action. On the other hand, p is
in the GC-orbit of po and hence the singular orbit G � p is not a complex orbit. But
this is in contradiction with the hypothesis that M is standard and hence that it has
two singular G-orbits, which are both complex.

Any curve ht ¼ expðitZÞ � po, which satisfies the claim of Theorems 3.4 or 3.7, will
be called an optimal transversal curve.

3.4 The optimal bases along the optimal transversal curves. In the following, h is
an optimal transversal curve. In case M is a non-standard K-manifold with non-
sphere-like fibering, we denote by g ¼ lþRZD þm, ðgF ; lF Þ, m10

F ðtÞ and m10 ¼
m10

F ðtÞ þm 010 the structural decomposition, the Morimoto–Nagano pair, the
Morimoto–Nagano subspace and the holomorphic subspace, respectively, at the
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regular points ht A Mreg. The same notation will be adopted in case M is a standard
K-manifold, with the convention that, in this case, the Morimoto–Nagano pair
ðgF ; lF Þ is the trivial pair ðf0g; f0gÞ and that the Morimoto–Nagano holomorphic
subspace is m10

F ¼ f0g.
We will also assume that l ¼ lo þ lF , where lo ¼ lV l?F . By tC ¼ tCo þ tCF H lC H gC,

with to H lo and tF H lF , we denote a Cartan subalgebra of gC with the property that
the expressions of m10

F ðtÞ and ZD in terms of the root vectors of ðgCF ; tCF Þ are exactly
as those listed in Table 1, corresponding to the parameter lt ¼ e2t.

Let R be the root system of ðgC; tCÞ. Then R is union of the following disjoint
subsets of roots:

R ¼ Ro UR 0 ¼ ðRo
? URo

F ÞU ðR 0
F UR 0

þ UR 0
�Þ;

where

Ro
? ¼ fa;Ea A lCo g; Ro

F ¼ fa;Ea A lCF g;

R 0
F ¼ fa;Ea A mC

F g; R 0
þ ¼ fa;Ea A m 010g; R 0

� ¼ fa;Ea A m 001g:

Note that

�Ro
? ¼ Ro

?; �Ro
F ¼ Ro

F ; �R 0
F ¼ R 0

F ; �R 0
þ ¼ R 0

�:

Moreover, Ro
? is orthogonal to Ro

F and Ro
?, R

o
F and Ro

F UR 0
F are closed subsystems.

Clearly, in case M is standard, we will assume that Ro
F ¼ R 0

F ¼ q.
We claim that for any a A R 0

F there exists exactly one root ad A R 0
F and two in-

tegers �a ¼G1 and la ¼G1;G2;G3 such that, for any t A R,

Ea þ e2lat�aE�a d A m10
F ðtÞ: ð3:8Þ

The proof of this claim is the following. By direct inspection of Table 1, the reader
can check that any maximal lCF -isotopic subspace of mC

F ðtÞ (i.e. any maximal sub-
space which is sum of equivalent irreducible lCF -modules) is a direct sum of exactly
two irreducible lCF -modules (see also [6]). Let us denote by ðai;�ad

i Þ ði ¼ 1; 2; . . .Þ all
pairs of roots in RF with the property that the associated root vectors Eai and E�a d

i

are maximal weight vectors of equivalent lCF -modules in mC
F ðtÞ. Using Table 1, one

can check that in all cases m10
F ðtÞ decomposes into non-equivalent irreducible lCF -

modules, with maximal weight vectors of the form

Eai þ l
ðiÞ
t E�a d

i

where l
ðiÞ
t ¼ ðlðtÞÞli ¼ e2tli t, where li is an integer which is eitherG1,G2 orG3.

Hence m10
F ðtÞ is spanned by the vectors Eai þ l

ðiÞ
t E�a d

i
and by vectors of the form

½Eb;Eai þ l
ðiÞ
t E�a d

i
� ¼ Nb;aiEaiþb þ l

ðiÞ
t Nb;�a d

i
E�a d

i
þb; ð3:9Þ

for some Eb A lC. Since the lC-modules containing Eai and E�ad
i
are equivalent, the
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lengths of the sequences of roots ai þ rb and �ad
i þ rb are both equal to some given

integer, say p. This implies that for any root b A Ro
F

N 2
b;ai

¼ ðpþ 1Þ2 ¼ N 2
b;�a d

i

and hence that Nb;ai=Nb;�a d
i
¼G1. From this remark and (3.9), we conclude that

m10
F ðtÞ is generated by elements of the form

Ea þ �ae
tlatE�a d ;

where b A Ro
F , a ¼ ai þ b, a ¼ ai þ b, ad ¼ ad

i þ b and �a ¼ Nb;ai=Nb;�a d
i
. This con-

cludes the proof of the claim.
For any root a A RF , we call CR-dual root of a the root ad so that Ea þ

�ae
tlatE�ad A m10ðtÞ.
We fix a positive root subsystem Rþ HR so that R 0

þ ¼ Rþ V ðRnðRo URo
F UR 0

F ÞÞ.
Moreover, we decompose the set of roots R 0

F into

R 0
F ¼ R

ðþÞ
F UR

ð�Þ
F

where

R
ðþÞ
F ¼ fa A R 0

F : Ea þ �ae
latE�ad A m10; with la ¼ þ1;þ2;þ3g

R
ð�Þ
F ¼ fa A R 0

F : Ea þ �ae
latE�ad A m10; with la ¼ �1;�2;�3g

Using Table 1, one can check that in all cases

m10 ¼ spanCfEa þ �ae
latE�a d : a A R

ðþÞ
F g

and that if a A R
ðþÞ
F , then also the CR dual root ad A R

ðþÞ
F . We will denote by

fa1; ad
1 ; a2; a

d
2 ; . . . ; ar; a

d
r g the set of roots in R

ðþÞ
F and by fb1; . . . ; bsg the roots in

R 0
þ ¼ Rþ VR 0.
Observe that the number of roots in R

ðþÞ
F is equal to 1

2 ðdimR GF=LF � 1Þ, where
GF=LF is the Morimoto–Nagano space associated with the pair ðgF ; lF Þ.

Finally, we consider the following basis for RZD þmFThtG � ht. We set

F0 ¼ ZD;

and, for any 1c ic r, we define the vectors F þ
i , F �

i , Gþ
i and G�

i , as follows: in case
fai; ad

i gHR
ðþÞ
F is a pair of CR dual roots with ai 0 ad

i , we set

F þ
i ¼ 1ffiffiffi

2
p ðFai þ �ai Fa d

i
Þ; F �

i ¼ 1ffiffiffi
2

p ðFai � �ai Fad
i
Þ;

Gþ
i ¼ 1ffiffiffi

2
p ðGai þ �aiGa d

i
Þ; G�

i ¼ 1ffiffiffi
2

p ðGai � �aiGa d
i
Þ; ð3:10Þ
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where �ai ¼G1 is the integer defined in (3.8); in case fai; ad
i gHR

ðþÞ
F is a pair of CR

dual roots with ai ¼ ad
i , we set

F þ
i ¼ Fai ¼

Eai � E�aiffiffiffi
2

p ; Gþ
i ¼ Gai ¼ i

Eai þ E�aiffiffiffi
2

p ð3:10 0Þ

and we do not define the corresponding vectors F �
i or G�

i . Finally, for any 1c ic s ¼
n� 1� 2r, we set

F 0
i ¼ Fbi ; G 0

i ¼ Gbi : ð3:11Þ

Note that in case r is odd, there is only one root ai A R
ðþÞ
F such that ai ¼ ad

i . When
gF ¼ su2, this root is also the unique root in R

ðþÞ
F .

In case gF ¼ f0g, we set F0 ¼ ZD and F 0
i ¼ Fbi , G

0
i ¼ Gbi and we do not define the

vector F
ðGÞ
i or G

ðGÞ
i .

The basis ðF0;F
G
k ;Fj ;G

G
k ;GjÞ for RZD þm, which we just defined, will be called

an optimal basis associated with the optimal transversal curve h. Notice that this basis
is B-orthonormal.

For simplicity of notation, we will often use the symbol Fk (resp. Gk) to denote
any vector in the set fF0;F

G
j ;F 0

j g (resp. in fGG
j ;G 0

j g). We will also denote by NF the
number of elements of the form FG

i . Note that NF is equal to half the real dimension
of the holomorphic distribution of the Morimoto–Nagano space GF=LF .

For any odd integer 1c 2k � 1cNF , we will assume that F2k�1 ¼ F þ
k ; for any

even integer 2c 2kcNF , we will assume F2k ¼ F �
k . If NF is odd, we denote by FNF

the unique vector defined by (3.10 0). We will also assume that Fj ¼ F 0
j�NF

for any
NF þ 1c jc n� 1.

In case M is a standard K-manifold, we assume that NF ¼ 0.
In the following lemma, we describe the action of the complex structure Jt in terms

of an optimal basis.

Lemma 3.8. Assume that ht is an optimal transversal curve and let

ðF0;F
G
k ;F 0

j ;G
G
k ;G 0

j Þ

be an associated optimal basis of RZD þm. Let also Jt be the complex structure of m

corresponding to the CR structure of a regular orbit G � ht.
Then JtF

0
i ¼ G 0

i for any 1c ic s ¼ n� 1�NF . Furthermore, if M is non-standard

(i.e. NF > 0) then the following holds:

(1) If 1c icNF and fai; ad
i g is a pair of CR-dual roots in R

ðþÞ
F with ai 0 ad

i then

JtF
þ
i ¼ �cothðlitÞGþ

i ; JtF
�
i ¼ �tanhðlitÞG�

i ; ð3:12Þ

where li is equal to 2 if FG
i A ½mF ;mF �C VmC

F and is equal to 1 otherwise.
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(2) If 1c icNF and fai; ad
i g is a pair of CR-dual roots in R

ðþÞ
F with ai ¼ ad

i , so that

F þ
i ¼ Fai , then

JtF
þ
i ¼ �cothðlitÞGþ

i ; ð3:13Þ

where li is equal to 2 or 3 if FG
i A ½mF ;mF �C VmC

F and is equal to 1 otherwise. Note

that the cases li ¼ 2; 3 may occur only if gF ¼ f4; g2 or spn—see Table 1.

Proof. The first claim is an immediate consequence of Theorem 3.2 d) and the prop-
erty of invariant complex structures on flag manifolds.

In order to prove (3.12), let us consider a pair fai; ad
i g of CR dual roots in Rþ

F with
ai 0 ad

i ; by the previous remarks, there exist two integers li, l
d
i , which are either þ1,

þ2 or þ3, and two integers �ai ; �a d
i
¼G1, so that

Eai þ �ai e
2li tE�a d

i
; Ead

i
þ �a d

i
e2l

d
i tE�ai A m10

F ðtÞ

for any t0 0.
By direct inspection of Table 1, one can check that the integers ld

i , li are always

equal. We claim that also �i ¼ �di for any CR dual pair fai; ad
i gHR

ðþÞ
F .

In fact, by conjugation, it follows that the following two vectors are in m01
F ðtÞ for

any t0 0:

Eai þ
1

�a d
i
e2li t

E�a d
i
; Ea d

i
þ 1

�ai e
2li t

E�ai A m01
F ðtÞ: ð3:14Þ

At this point, we recall that h0 is a singular point for the G-action and that, by the
structure theorems in [15] (see also [6]), the isotropy subalgebra gh0 contains the
isotropy subalgebra ðgF Þh0 of the non-complex singular GF -orbit in M, which is a
c.r.o.s.s. In particular, one can check that dimRðgF Þh0 ¼ dimR lF þ dimC m01

F .

On the other hand, by Lemma 3.5 (1), we have that ðgF Þh0 ¼ lF þ gVm01
F ð0Þ and

hence that

dimRðgVm01
F ð0ÞÞ ¼ dimC m01

F ð0Þ: ð3:15Þ

Here, by m01
F ð0Þ we denote the subspace which is obtained from Table 1, by setting

the value of the parameter l equal to lð0Þ ¼ e0 ¼ 1. Note that this subspace is not a
Morimoto–Nagano subspace.

From (3.14), one can check that (3.15) occurs if and only if

�a d
i
¼ �ai ð3:16Þ

for any pair of CR dual roots ai, a
d
i . This proves the claim.

In the following, we will use the notation �i ¼ �ai ¼ �ad
i
.

By some straightforward computations, it follows that, for any t0 0, the elements
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Fai , Fa d
i
, Gai and Gad

i
are equal to the following linear combinations of holomorphic

and anti-holomorphic elements:

Fai ¼
1ffiffiffi

2
p

ð1� e4li tÞ

�
½ðEai þ �ie

2li tE�ad
i
Þ þ �ie

2li tðEa d
i
þ �ie

2li tE�aiÞ�

þ �e4li t Eai þ
1

�ie2li t
E�a d

i

� �
� �ie

2li t Ead
i
þ 1

�ie2li t
E�ai

� �� �	
;

Fa d
i
¼ 1ffiffiffi

2
p

ð1� e4li tÞ

�
½�ie2li tðEai þ �ie

2li tE�ad
i
Þ þ ðEa d

i
þ �ie

2li tE�aiÞ�

� e2li t�i Eai þ
1

�ie2li t
E�a d

i

� �
þ e4li t Ea d

i
þ 1

�ie2li t
E�ai

� �� �	
;

Gai ¼
iffiffiffi

2
p

ð1� e4li tÞ

�
½ðEai þ �ie

2li tE�ad
i
Þ � �ie

2li tðEa d
i
þ �ie

2li tE�aiÞ�

þ �e4li t Eai þ
1

�ie2li t
E�a d

i

� �
þ �ie

2li t Ead
i
þ 1

�ie2li t
E�ai

� �� �	
;

Ga d
i
¼ iffiffiffi

2
p

ð1� e4li tÞ

�
½��ie

2li tðEai þ �ie
2li tE�a d

i
Þ þ ðEa d

i
þ �ie

2li tE�aiÞ�

þ �ie
2li t Eai þ

1

�ie2li t
E�a d

i

� �
� e4li t Ea d

i
þ 1

�ie2li t
E�ai

� �� �	
:

We then obtain that

JtFai ¼
1þ e4li t

1� e4li t
Gai þ

2�ie
2li t

1� e4li t
Ga d

i
;

JtFad
i
¼ 2�ie

2li t

1� e4li t
Gai þ

1þ e4li t

1� e4li t
Ga d

i
: ð3:17Þ

So, using the fact that �2i ¼ 1, we get JtF
þ
i ¼ 1þe2li t

1�e2li t
Gþ

i ¼ �cothðlitÞGþ
i and

JtF
�
i ¼ 1�e2li t

1þe2li t
G�

i ¼ �tanhðlitÞG�
i . The proof of (3.13) is similar. It su‰ces to observe

that for any t0 0

F þ
i ¼ 1ffiffiffi

2
p

ð1� e4li tÞ
fð1þ e2li tÞðEai þ e2li tE�aiÞ

� e2li tð1þ e2li tÞðEai þ e�2li tE�aiÞg;

Gþ
i ¼ iffiffiffi

2
p

ð1� e4li tÞ
fð1� e2li tÞðEai þ e2li tE�aiÞ

þ e2li tð1� e2li tÞðEai þ e�2li tE�aiÞg;

and hence that JtF
þ
i ¼ 1þe2li t

1�e2li t
Gþ

i ¼ �cothðlitÞGþ
i .
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4 The algebraic representatives of the Kähler and Ricci form of a K-manifold

In this section we give a rigorous definition of the algebraic representatives of the
Kähler form o and the Ricci form r of a K-manifold. We will also prove Proposition
1.1.

Indeed, we will give the concept of ‘algebraic representative’ for any bounded,
closed 2-form $, which is defined on Mreg and which is G-invariant and J-invariant.
Clearly, ojMreg

and rjMreg
belong to this class of 2-forms.

Let h : R ! M be an optimal transversal curve. Since g is semisimple, for any
G-invariant 2-form $ on Mreg there exists a unique adl-invariant element F$; t A
Homðg; gÞ such that:

BðF$; tðXÞ;YÞ ¼ $htðX̂X ; ŶY Þ; X ;Y A g; t0 0: ð4:1Þ

If $ is also closed, we have that for any X ;Y ;W A g

0 ¼ 3d$ðX̂X ; ŶY ; ŴWÞ ¼ $ðX̂X ; ½ŶY ; ŴW �Þ þ$ðŶY ; ½ŴW ; X̂X �Þ þ$ðŴW ; ½X̂X ; ŶY �Þ:

This implies that

F$; tð½X ;Y �Þ ¼ ½F$; tðXÞ;Y � þ ½X ;F$; tðY Þ�

i.e. F$; t is a derivation of g. Therefore, F$; t is of the form

F$; t ¼ adðZ$ðtÞÞ ð4:2Þ

for some Z$ðtÞ A g and $htðX̂X ; ŶYÞ ¼ Bð½Z$ðtÞ;X �;YÞ ¼ BðZ$ðtÞ; ½X ;Y �Þ. Note
that since F$; t is adl-invariant, Z$ðtÞ A CgðlÞ ¼ zðlÞ þ a, where a ¼ CgðlÞV l?.

We call the curve

Z$ : R ! CgðlÞ ¼ zðlÞ þ a; ð4:3Þ

the algebraic representative of the 2-form $ along the optimal transversal curve h.
By definition, if the algebraic representative Z$ðtÞ is given, it is possible to

reconstruct the values of $ on any pair of vectors which are tangent to the regular
orbits G � ht. Actually, since for any point ht A Mreg we have that JðThtGÞ ¼ ThtM,
it follows that one can evaluate $ on any pair of vectors in ThtM if the value
$htðẐZD; JẐZDÞ is also given. However, in case $ is a closed form, the following
proposition shows that this last value can be recovered from the first derivative of the
function Z$ðtÞ.

Proposition 4.1. Let ðM; J; gÞ be a K-manifold acted on by the compact semisimple Lie

group G and assume that, if it is non-standard, it has a non-sphere-like fibering. Let also
ht ¼ expðtiZDÞ � po be an optimal transversal curve and Z$ : R ! zðlÞ þ a the alge-

braic representative of a bounded, G-invariant, J-invariant closed 2-form $ along h.
Then we have:
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(1) If M is a standard K-manifold or a non-standard KO-manifold (i.e. if either

a ¼ RZD or a ¼ su2 and M is standard ), then there exists an element I$ A zðlÞ and
a smooth function f$ : R ! R so that

Z$ðtÞ ¼ f$ðtÞZD þ I$: ð4:4Þ

(2) If M is non-standard KE-manifold, then there exists a Cartan subalgebra tC H
lC þ aC and a root a of the corresponding root system, such that ZD A RðiHaÞ
and a ¼ RZD þRFa þRGa; furthermore there exists an element I$ A zðlÞ, a real

number C$ and a smooth function f$ : R ! R so that

Z$ðtÞ ¼ f$ðtÞZD þ C$

coshðtÞGa þ I$: ð4:4 0Þ

Conversely, if Z$ : R ! CgðlÞ is a curve in CgðlÞ of the form (4.4) or (4.4 0), then
there exists a unique closed J-invariant, G-invariant 2-form $ on Mreg, having Z$ðtÞ as
algebraic representative. Such a 2-form is the unique J- and G-invariant form which

satisfies

$htðV̂V ; ŴWÞ ¼ BðZ$ðtÞ; ½V ;W �Þ; $htðJẐZD; ẐZDÞ ¼ � f 0
$ðtÞBðZD;ZDÞ: ð4:5Þ

for any V ;W A m and any ht A Mreg.

Proof. Let $ be a closed 2-form which is G-invariant and J-invariant and let Z$ðtÞ
be the associated algebraic representative along h. Recall that Z$ðtÞ A zðlÞ þ a. So, if
the action is ordinary (i.e. a ¼ RZD), Z$ðtÞ is of the form

Z$ðtÞ ¼ f$ðtÞZD þ I$ðtÞ; ð4:6Þ

where the vector I$ðtÞ A zðlÞ may depend on t.
In case the action of G is extraordinary (that is a ¼ su2), by Lemma 2.2 in [20]

there exists a Cartan subalgebra tC H lC þ aC such that aC ¼ CHa þCEa þCE�a

for some root a of the corresponding root system. By the arguments in the proof
of Theorem 3.7, this Cartan subalgebra can be always chosen in such a way that
ZD A RðiHaÞ and hence that a ¼ RZD þRFa þRGa.

Then the function Z$ðtÞ can be written as

Z$ðtÞ ¼ f$ðtÞZD þ g$ðtÞFa þ h$ðtÞGa þ I$ðtÞ ð4:6 0Þ

for some smooth real valued functions f$, g$ and h$ and some element I$ðtÞ A zðlÞ.
We now want to show that, in case M is a non-standard KE-manifold, then

g$ðtÞ1 0 and that h$ðtÞ ¼ C$

coshðtÞ for some constant C$.

In fact, observe that if Z$ðtÞ is of the form (4.6 0) and if ZD is as listed in Table 1
for gF ¼ su2, then
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$htðẐZD; ĜGaÞ ¼ g$ðtÞBðFa; ½ZD;Ga�Þ ¼ �g$ðtÞ;

$htðẐZD; F̂FaÞ ¼ h$ðtÞBðGa; ½ZD;Fa�Þ ¼ h$ðtÞ:

Consider now the facts that $ is closed, ĜGa and ẐZD are holomorphic vector fields and
JẐZDjht ¼ h 0

t . It follows that g$ satisfies the following ordinary di¤erential equation

dg$

dt






ht

¼ � d

dt
$ðẐZD; ĜGaÞjht ¼ �JẐZDð$ðẐZD; ĜGaÞÞjht

¼ ĜGað$ðJẐZD; ẐZDÞÞjht þ ẐZDð$ðĜGa; JẐZDÞÞjht �$htð½JẐZD; ẐZD�; ĜGaÞ

�$htð½ĜGa; JẐZD�; ẐZDÞ �$htð½ẐZD; ĜGa�; JẐZDÞ

¼ $htð½ẐZD; ĜGa�; JẐZDÞ ¼ �$htð½ dZD;GaZD;Ga�; JẐZDÞ

¼ �$htðẐZD; JF̂FaÞ ¼ cothðtÞ$htðẐZD; ĜGaÞ ¼ �cothðtÞg$ðtÞ: ð4:7Þ

We claim that this implies

g$ðtÞ1 0: ð4:8Þ

In fact, if we assume that g$ðtÞ does not vanish identically, integrating the above
equation, we have that g$ðtÞ ¼ C

jsinhðtÞj for some C0 0 and hence with a singularity at

t ¼ 0. But this contradicts the fact that $ is a bounded 2-form.
With a similar argument, we have that h$ðtÞ satisfies the di¤erential equation

dh$

dt






ht

¼ �tanhðtÞh$ðtÞ;

by integration this gives

h$ðtÞ ¼
C$

coshðtÞ ð4:9Þ

for some constant C$.
We show now that, in case M is a standard KE-manifold, then Z$ðtÞ is of the form

(4.4). In fact, even if a priori Z$ðtÞ is of the form (4.6 0), from Lemma 3.8 and the
same arguments for proving (4.7), we obtain that

dg$

dt






ht

¼ �$htðẐZD; JF̂FaÞ ¼ �$htðẐZD; ĜGaÞ ¼ g$ðtÞ: ð4:10Þ

This implies that g$ðtÞ ¼ Aet for some constant A. On the other hand, if A0 0, it
would follow that limt!yj$htðẐZD; ĜGaÞj ¼ limt!yjg$ðtÞj ¼ þy, which is impossible
since $htðẐZD; ĜGaÞ is bounded. Hence g$ðtÞ1 0.
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A similar argument proves that h$ðtÞ1 0.
In order to conclude the proof, it remains to show that in all cases the element

I$ðtÞ is independent of t and that $htðJẐZD;ZDÞ ¼ � f 0
$ðtÞBðZD;ZDÞ for any t. We

will prove these two facts only for the case aF su2 and M non-standard, since the
proof in all other cases is similar.

Consider two elements V ;W A g. Since $ is closed we have that

0 ¼ 3d$htðJẐZD; V̂V ; ŴWÞ

¼ JẐZDð$htðV̂V ; ŴWÞÞ � V̂Vð$htðJẐZD; ŴWÞÞ þWð$htðJẐZD; V̂VÞÞ

�$htð½JẐZD; V̂V �; ŴWÞ þ$htð½JẐZD; ŴW �; V̂VÞ �$htð½V̂V ; ŴW �; JẐZDÞ

¼ JẐZDjhtð$ðV̂V ; ŴWÞÞ �$htðJẐZD; ½V̂V ; ŴW �Þ

¼ d

dt
ðBðZ$; ½V ;W �ÞÞjt þ$htðJẐZD; ½ dV;WV;W �Þ: ð4:11Þ

On the other hand, we have the following orthogonal decomposition of the element
½V ;W �:

½V ;W � ¼ BðZD; ½V ;W �Þ
BðZD;ZDÞ

ZD �BðFa; ½V ;W �ÞFa �BðGa; ½V ;W �ÞGa

þ ½V ;W �ðlþaÞ? þ ½V ;W �l;

where ½V ;W �l and ½V ;W �ðlþaÞ? are the orthogonal projections of ½V ;W � into l and

ðlþ aÞ?, respectively. Then

$htðJẐZD; ½ dV;WV;W �Þ ¼ BðZD; ½V ;W �Þ
BðZD;ZDÞ

$htðJẐZD; ẐZDÞ �BðFa; ½V ;W �Þ$htðJẐZD; F̂FaÞ

�BðGa; ½V ;W �Þ$htðJẐZD; ĜGaÞ þ$htðJẐZD; ½ dV;WV;W �ðlþaÞ?Þ

¼ BðZD; ½V ;W �Þ
BðZD;ZDÞ

$htðJẐZD; ẐZDÞ þBðFa; ½V ;W �Þ$htðẐZD; JF̂FaÞ

þBðGa; ½V ;W �Þ$htðẐZD; JĜGaÞ �$htðẐZD; J½ dV;WV;W �ðlþaÞ?Þ

¼ BðZD; ½V ;W �Þ
BðZD;ZDÞ

$htðJẐZD; ẐZDÞ þBðGa; ½V ;W �ÞC$ tanhðtÞ
coshðtÞ

�BðZ$ðtÞ; ½ZD; Jhtð½V ;W �ðlþaÞ?Þ�Þ

¼ B
$htðJẐZD; ẐZDÞ
BðZD;ZDÞ

ZD � h 0
$ðtÞGa

( )
; ½V ;W �

 !
:
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Therefore (4.11) becomes

B f 0
$ðtÞ þ

$htðJẐZD; ẐZDÞ
BðZD;ZDÞ

( )
ZD þ dI$

dt
; ½V ;W �

 !
¼ 0:

Since V , W are arbitrary and dI$
dt

A zðlÞH ðZDÞ?, it implies f 0
$ðtÞ ¼ �$ht ðJẐZD; ẐZDÞ

BðZD;ZDÞ and
dI$
dt

1 0, as we needed to prove.

We conclude this section with the following corollary which gives a geometric
interpretation of the optimal bases (see also Section 1).

Corollary 4.2. Let ðM; J; gÞ be a K-manifold, which is standard or non-standard with

non-sphere-like fibering, and let ðFi;GiÞ be an optimal basis along an optimal trans-

versal curve ht ¼ expðtiZÞ � po. For any ht A Mreg, denote by Ft ¼ ðe0; e1; . . . ; enÞt the
following holomorphic frame in T C

ht
M:

e0 ¼ F̂F0jht � iJF̂F0jht ¼ ẐZjht � iJẐZjht ; ei ¼ F̂Fijht � iJF̂F jht id 1:

Then we have:

(1) If M is a KO-manifold or a standard KE-manifold, then the holomorphic frames Ft

are orthogonal with respect to any G-invariant Kähler metric g on M.

(2) If M is a non-standard KE-manifold, then the holomorphic frames Ft are orthogo-

nal with respect to any G-invariant Kähler metric g on M, whose associated alge-

braic representative ZoðtÞ has vanishing coe‰cient Co ¼ 0 (see Proposition 4.1 for

the definition of Co).

Proof. It is a direct consequence of definitions and Proposition 4.1.

5 The Ricci tensor of a K-manifold

From the results of Section 4, the Ricci form r can be completely recovered from
the algebraic representative ZrðtÞ along an optimal transversal curve ht. On the other
hand, using a few known properties of flag manifolds, the reader can check that the
curve ZrðtÞ A zðlÞ þ a is uniquely determined by the 1-parameter family of quadratic
forms Qr on m given by

Qr
t : m ! R; Qr

t ðEÞ ¼ rhtðÊE; ÊEÞ ð¼�rhtðÊE; ÊEÞ ¼ �BðZrðtÞ; ½E; JtE �ÞÞ:

Since m corresponds to the subspace Dht HThtG � ht, this means that for any Kähler

metric o, the corresponding the Ricci tensor r is uniquely determined by its restrictions

rjDt�Dt
to the holomorphic tangent spaces Dt of the regular orbits G � ht.

The expression for the restrictions rjDt�Dt
in terms of the algebraic representative

ZoðtÞ of the Kähler form o is given in the following theorem.
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Theorem 5.1. Let ðM; J; gÞ be a K-manifold, which is standard or non-standard with

non-sphere-like fibering, and let ht ¼ expðtiZDÞ � po be an optimal transversal curve.
Using the same notation of Section 3, let also ðFi;GiÞ ¼ ðF0;F

G
k ;GG

k ;F 0
j ;G

0
j Þ be an

optimal basis for RZD þm. Finally, for any 1c jcNF let lj be the integer which

appears in (3.12) for the expression of JtFi, and for any NF þ 1c kc n� 1 let bk be

the root so that Fk ¼ Fbk .
Then, for any ht A Mreg and for any element E A m

rhtðÊE; JÊEÞ ¼ AEðtÞ
�
1

2
h 0ðtÞ �

XNF

i¼1

tanhð�1Þ iþ1

ðlitÞli þ
Xn�1

j¼NFþ1

bjðiZDÞ
	
þ BEðtÞ ð5:1Þ

where

hðtÞ ¼ logðonðF̂F0; JF̂F0; F̂F1; JF̂F1; . . . ; JFn�1ÞjhtÞ; ð5:2Þ

AEðtÞ ¼
Bð½E; JtE �;ZDÞ
BðZD;ZDÞ

; ð5:3Þ

BEðtÞ ¼ �
XNF

i¼1

tanhð�1Þ iþ1

ðlitÞBð½E; JtE �lþm; ½Fi;Gi�lþmÞ

þ
Xn�1

j¼NFþ1

BðiHbj ; ½E; JtE �zðlÞÞ; ð5:4Þ

and where, for any X A g, we denote by Xlþm (resp. XzðlÞ) the projection parallel to

ðlþmÞ? ¼ RZD (resp. to zðlÞ?) of X into lþm (resp. into zðlÞ).

Proof. Let Jt be the complex structure on m induced by the complex structure J

of M. For any E A m and any point ht, we may clearly write that rhtðÊE; JÊEÞ ¼
rhtðÊE; cJtEJtEÞ and hence, by Koszul’s formula (see [17], [8]),

rhtðÊE; JÊEÞ ¼
1

2

ðL
J d½E;JtE �o

nÞhtðF̂F0; JF̂F0; F̂F1; JF̂F1; . . . ; JFn�1Þ

on
ht
ðF̂F0; JF̂F0; F̂F1; JF̂F1; . . . ; JFn�1Þ

ð5:5Þ

(note that the definition we adopt here for the Ricci form r is opposite in sign to the
definition used in [8]).

Recall that for any Y A g, we may write

ŶY jhðtÞ ¼
X
id0

liF̂FijhðtÞ þ
X
id1

miJF̂FijhðtÞ;

where li ¼ BðY ;FiÞ
BðFi ;FiÞ and mi ¼

BðY ;JtFiÞ
BðJtFi ;JtFiÞ . Hence, for any i
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½J½ dE; JtEE; JtE �; F̂Fi�ht ¼ �J d½½E; JtE�;Fi�½½E; JtE�;Fi�ht

¼ �
X
jd0

Bð½½E; JtE �;Fi�;FjÞ
BðFj;FjÞ

JF̂FjjhðtÞ þ
X
jd1

Bð½½E; JtE �;Fi�; JtFjÞ
BðJtFj; JtFjÞ

F̂FjjhðtÞ

¼ �
X
jd0

Bð½E; JtE �; ½Fi;Fj�Þ
BðFj;FjÞ

JF̂FjjhðtÞ

þ
X
jd1

Bð½E; JtE �; ½Fi; JtFj�Þ
BðJtFj; JtFjÞ

F̂FjjhðtÞ; ð5:6Þ

½J½ dE; JtEE; JtE �; JF̂Fi�ht ¼
d½½E; JtE�;Fi�½½E; JtE�;Fi�ht

¼
X
jd0

Bð½E; JtE �; ½Fi;Fj�Þ
BðFj ;FjÞ

F̂FjjhðtÞ

þ
X
jd1

Bð½E; JtE �; ½Fi; JtFj�Þ
BðJtFj ; JtFjÞ

JF̂FjjhðtÞ: ð5:7Þ

Therefore, if we denote hðtÞ ¼ logðonðF̂F0; JF̂F0; F̂F1; JF̂F1; . . . ; JFn�1ÞjhtÞ, then, after
some straightforward computations, (5.5) becomes

rhtðÊE; cJtEJtEÞ ¼
1

2
J½ dE; JtEE; JtE �ðhÞjht �

Xn�1

id1

Bð½E; JtE �; ½Fi; JtFi�Þ
BðJtFi; JtFiÞ

: ð5:8Þ

We claim that

J½ dE; JtEE; JtE �ðhÞjht ¼ AEðtÞh 0
t : ð5:9Þ

In fact, for any X A g

X̂X ðoðF̂F0; JF̂F0; . . . ; JF̂Fn�1Þjht

¼ �ohtð d½X;F0�½X;F0�; JF̂F0; . . . ; JF̂Fn�1Þ � oðF0; J d½X;F0�½X;F0�; . . . ; JF̂Fn�1Þ � � � � ¼ 0: ð5:10Þ

On the other hand,

J½ dE; JtEE; JtE �jht ¼
Bð½E; JtE �;ZDÞ
BðZD;ZDÞ

JẐZDjht þ JX̂Xht ¼ AEðtÞJẐZDjht þ cJtXJtXht
ð5:11Þ

for some some X A m. From (5.11) and (5.10) and the fact that JẐZDjht ¼ h 0
t , we im-

mediately obtain (5.9).
Let us now prove that
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Xn�1

id1

Bð½E; JtE �; ½Fi; JtFi�Þ
BðJtFi; JtFiÞ

¼ AE

�XNF

i¼1

tanhð�1Þ iþ1

ðlitÞli �
Xn�1

j¼NFþ1

biðiZDÞ
	
� BE ð5:12Þ

First of all, observe that from definitions, for any 1c kcNF we have that, for any
case of Table 1, when ak 0 ad

k ,

BðZD; ½Fk;Gk�Þ ¼
1

2
BðZD; ½Fak þ ð�1Þkþ1�kFad

k
;Gak þ ð�1Þkþ1�kGa d

k
�Þ

¼ i

2
BðZD;Hak þHa d

k
Þ ¼ lk; ð5:13Þ

and, when ak ¼ ad
k ,

BðZD; ½Fk;Gk�Þ ¼ BðZD; ½Fak ;Gak �Þ ¼ BðZD; iHak Þ ¼ lk: ð5:13 0Þ

Similarly, for any NF þ 1c jc n� 1

BðZD; ½Fj;Gj�Þ ¼ BðZD; iHbj Þ ¼ bjðiZDÞ: ð5:14Þ

So, using (5.13), (5.13 0), (5.14) and the fact that BðFi;FiÞ ¼ BðGi;GiÞ ¼ �1 for any
1c ic n� 1, we obtain that for 1c kcNF ,

Bð½E; JtE �; ½Fk; JtFk�Þ
BðJtFk; JtFkÞ

¼ tanhð�1Þkþ1

ðlktÞ
�
BðZD; ½Fk;Gk�Þ

Bð½E; JtE �;ZDÞ
BðZD;ZDÞ

þBð½E; JtE �lþm; ½Fk;Gk�lþmÞ
�

¼ tanhð�1Þkþ1

ðlktÞ½AEðtÞlk þBð½E; JtE �lþm; ½Fk;Gk�lþmÞ�;
ð5:15Þ

and for any NF þ 1c jcN

Bð½E; JtE �; ½Fj ; JtFj�Þ
BðJtFj; JtFjÞ

¼ �Bð½E; JtE �;ZDÞ
BðZD;ZDÞ

BðZD; ½Fj;Gj�Þ

�Bð½E; JtE �lþm½Fj;Gj�lþmÞ

¼ �AEbjðiZDÞ �BðiHbj ; ½E; JtE �zðlÞÞ: ð5:16Þ

From (5.15) and (5.16), we immediately obtain (5.12) and from (5.8) this concludes
the proof.

The expressions for the functions AEðtÞ and BEðtÞ simplify considerably if one
assumes that E is an element of the optimal basis. Such expressions are given in the
following conclusive proposition.
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Proposition 5.2. Let ðFi;GiÞ be an optimal basis along an optimal transversal curve ht
of a K-manifold M, which is standard or non-standard with non-sphere-like fibering.
For any 1c icNF , let li be as in Theorem 5.1 and denote by fai; ad

i gHR
ðþÞ
F the pair

of CR-dual roots, such that Fi ¼ 1ffiffi
2

p ðFai G �iFa d
i
Þ or Fi ¼ Fai , in case ai ¼ ad

i ; also, for

any NF þ 1c jc n� 1, denote by bj A R 0
þ the root such that Fj ¼ Fbj . Finally, let

AEðtÞ and BEðtÞ be as defined in Theorem 5.1 and let us write

Zk ¼
Xn�1

k¼NFþ1

iHbk : ð5:17Þ

(1) If E ¼ Fi for some 1c icNF , then

AFi
ðtÞ ¼ � li tanh

ð�1Þ iðlitÞ
BðZD;ZDÞ

and ð5:18Þ

BFi
ðtÞ ¼ � li tanh

ð�1Þ iðlitÞ
BðZD;ZDÞ

BðZk;ZDÞ

þ tanhð�1Þ iðlitÞ
�XNF

j¼1

tanhð�1Þ jþ1

ðlj tÞBð½Fi;Gi�lþm; ½Fj;Gj�lþmÞ
�
: ð5:19Þ

(2) If E ¼ Fi for some NF þ 1c ic n� 1, then

AFi
ðtÞ ¼

BðZD; iHbiÞ
BðZD;ZDÞ

; BFi
ðtÞ ¼ BðZk; iHbiÞ: ð5:20Þ

Proof. Formulae (5.18) and (5.19) are immediate consequences of definitions and
of (5.13), (5.13 0) and (5.14). Formula (5.20) can be checked using the fact that
½Fbi ; JtFbi � ¼ ½Fbi ;Gbi � ¼ iHbi for any NF þ 1c ic n� 1, from properties of the Lie
brackets ½Fi;Gi�, with 1c icNF , which can be derived from Table 1, and from the
fact that RZD H ½m 0;m 0�?.
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