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Abstract. Let ¢ be an odd prime power. A cap of the hyperbolic quadric Q7 (5, ¢) is a set of
points of Q" (5,¢) that does not contain three collinear points. It is called maximal, if it is
not contained in a larger cap. It is easy to see that a cap has size at most ¢> + ¢> + g + 1 with
equality if and only if it meets every plane of Q" (5, ¢) in a conic. Caps of this size do exist. The
largest known maximal cap with less than ¢* + ¢ + ¢ + 1 points has size ¢ + ¢> + 1. In this
paper it is shown that for large odd ¢ all caps with more than ¢* + ¢> + 2 points are contained
in a cap of size ¢> + ¢*> + g + 1. Also, some structural information is given on a hypothetical
maximal cap of size ¢* + g% + 2. This result is an analogue of an extension result in the case
that ¢ is even. In contrast to the even case, the odd case heavily relies on algebraic arguments.

1 Introduction

For background on plane arcs, conics in planes, and quadrics of projective spaces we
refer to the book of J. Hirschfeld [4] on Galois geometries.

Consider the hyperbolic quadric Q" (5,q) of PG(5,¢). A cap of O™ (5,q) is a set
of points of Q1 (5,¢) that does not contain three collinear points. A cap C is called
maximal, if it is not contained in larger cap, that is, if every point of Q1 (5, ¢)\C lies
on a line that meets C in two points.

If ¢ is odd, then a cap of Q*(5,¢) has at most ¢* + ¢*> + ¢ + 1 points. This can
be seen by a simple counting argument using that an arc of the plane PG(2,¢), ¢
odd, has at most ¢ + 1 points. Caps of size ¢°> + ¢> + ¢ + 1 have the property that
they meet every plane of Q" (5,¢) in a conic. Glynn [3] constructed caps of size
¢ +¢*+ g+ 1 as the intersection of Q*(5,q) with another quadric of PG(5,q).
L. Storme [5] described the caps of size ¢ + ¢> 4+ g + 1 for large odd g. More pre-
cisely, he shows for ¢ > 3138 that such a cap is the intersection of Q" (5, ¢) with an-
other quadric.

Now suppose that ¢ is even. Then arcs in planes PG(2, ¢) can have ¢ + 2 points, so
the same counting argument shows that a cap of Q7 (5, ¢) has at most (¢> + 1)(g + 2)
points. For ¢ = 2, one can easily construct a cap of size (¢ +2)(g> + 1) = 20 as the
image under the Klein-correspondence of the set of the nonabsolute lines of a sym-
plectic polarity in PG(3, ¢). However, for ¢ > 2, ¢ even, the largest known caps have
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g + 1 points less; it is also known that every cap with more than (¢* + 1)(q +2) —
g — 1 points can be extended to a cap with (¢ + 1)(g + 2) points. This extension
result has been proved by Ebert, Szényi and Metsch [2]. So, for ¢ > 2 even the open
question is whether or not there exists a cap with (¢*> + 1)(¢ + 2) points.

It is the purpose of this paper to prove an extension result for caps in the case ¢
odd, which is in a way similar to the one in the even case. It was my hope to deter-
mine the largest size of a cap that is not contained in a cap of size ¢° + ¢> + ¢ + 1.
There exists an example with ¢* 4+ ¢*> 4 1 points, which is due to L. Storme. The fol-
lowing theorem, which will be proved in this paper, misses this example only by one.

Theorem 1.1. Every cap of Q% (5,q), q odd, q > 4363, with more than ¢ + q* +2
points is contained in a cap of size ¢* + q¢* +q+ 1 of 0*(5,q).

The methods developed to prove this theorem give a lot of information on the
structure of a hypothetical maximal cap with ¢> + ¢> + 2 points. The information is
collected in the next result.

Theorem 1.2. Suppose that there exists a maximal cap C of Q*(5,q), q odd, with
q> + q* + 2 points. If g > 4363, then one of the following two cases occurs.

(@) There exists a line h of Q*(5,q) with |hN C| = 2. The two planes of Q% (5,q) on
h meet C only in the two points of h\ C. Every other plane of O (5,q) on one of
the ¢ — 1 points P of h\C meets C in a g-arc that can be extended to a conic by
adjoining P. All other planes of Q™ (5,q) meet C in a conic.

(b) There exists a point P € C with the following properties. A plane 7 of Q" (5, q) that
contains P meets C in two points. The other planes of Q" (5, q) meet C in a conic.

The proof of the second theorem shows even more, which might be used to show
that C is almost (that is except for some points) the intersection of Q" (5,¢) with
another quadric Q. Some local results in the present paper in combination with the
techniques developed by L. Storme in [5] might show this. I did not try to do so, since
I was neither able to show that such an intersection of quadrics leads to a maximal
cap with ¢* + ¢> + 2 points, nor could I show that this is not possible.

We remark that both theorems can be translated via the Klein-correspondence to
results in PG(3, ¢g). We also like to mention that the proof of the above mentioned
extension result in the even case uses purely combinatorial arguments, whereas the
proofs of these two theorems rely on algebraic arguments. The arguments in Section
3 are inspired by the method L. Storme used in [5].

2 The example

The example discussed below is due to L. Storme. Consider in PG(3,¢) the two
ovoids ¢ and E defined by the following quadratic forms:

fo= xé + bxox) + xl2 + X2X3,

fE= xé + bxox1 + xlz + xox3 + x%.
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These are two ovoids from a pencil of ovoids of type 1(i) given in Table 2 of [1].
The two quadrics share exactly one point Q, namely the one generated by (0,0, 1,0).
They also have the same tangent plane in Q. While these two ovoids have all their
tangents in common when ¢ is even, they share only the ¢ 4+ 1 tangents in Q when
g is odd. In any case, there exists exactly one plane that is a tangent plane to both
ovoids, and this is the tangent plane on Q. Using these properties, it is easy to see
that every point P with P ¢ ( lies on a line / that is a secant of ¢ but not a secant
of E.

Now we go to the hyperbolic quadric O (5,¢) defined by a quadratic form in
PG(5, ¢). Choose a solid T such that E:=TNQ"(5,¢q) is an ovoid of T'. Let @ be
an ovoid such that E and O are related as above. Then |¢ N E| = 1 and every point of
I'\0 lies on a line that meets ¢ in two points and in E in at most one point.

Let 7 be the polarity associated to Q" (5,¢). Then i :=T'" is a line that is skew to
I' and has no point in Q" (5, ¢). For points P € E, the plane {P,h) meets Q" (5, ¢q)
only in P, while for points P € T'\ E, the plane (P, /) meets Q" (5, ¢) in a conic. Let
Q be the point of O N E. Let C be the set consisting of the point Q and of the points
of the conics Q7 (5,q) N= for the planes = = {P,h) with P e O\{Q}. Then |C| =
1 +¢*(g+1). As O is an ovoid, no three of the planes <k, P) with P e (© are con-
tained together in a 3-space. This implies that C is a cap of Q7 (5, q).

Now we show that C is a maximal cap of Q1 (5, ). To see this, consider a point X
of 0% (5,¢)\C. We show that X lies on a line that meets C in two points. The plane
7:= {(h, X) meets I' in a point R that is not in (/. Then R lies on a line / of T" that
meets @ in two points P; and P,, and that meets E in at most one point. If ¢ is the
polarity of T associated with the ovoid E, then I =/"NT,as E=TNQ"(5,q). As!
is not a secant of E, the line /' := [? is a tangent or a secant of E. As !’ = [ and h =
' < (1), the solid S := </, k) is contained in (/')". Thus (I')* = S. As P, P, €,
the conics Cj := <P, hyN Q7 (5,q9) and G, := (Pp,hyN Q" (5,4q) are contained in
S. Note that these two conics are disjoint. From X € (R,h) and Rel we have
Xellhy=S.

First consider the case that I’ is a tangent of E. Then S = (/)" meets Q% (5,¢) in a
cone with a point vertex over a Q(2, ). As the conics C; and C; are contained in S
and are disjoint, it follows that every point of the cone SN Q1 (5, ¢) lies on a line that
meets C; and C, in distinct points. This applies to X.

Now consider the case when /' is a secant of E. Then S = (/)" meets Q" (5,¢) ina
hyperbolic quadric H = Q" (3,¢). As C; and G, are disjoint conics of this hyperbolic
quadric H, every ruling line of H meets these conics in different points. Hence every
point of SN O (5,¢) = H lies on a line that meets C in two points. Again this applies
to X.

Remark. If ¢ is even, then almost all of the above argument applies. There is a dif-
ference, when the plane <4, X» meets I' in a point of E. Then R = X and X is a point
of E. In this case, every line of I on R that is not a secant of E is a tangent of £ and
hence a tangent of @. Thus, it is not possible to find a line / on R that is a secant of ¢
but not of E. In fact, the ¢ points of E\( can be adjoined to C, and the set CUE is
a partial ovoid with ¢? extra points: |CUE| = ¢> + 1 + ¢*(q + 1). It was shown in [2]
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that this cap is maximal. In fact, this is the largest cap of Q" (5, ¢) that is known in
the case when ¢ > 2 is even, cf. the introduction.

3 Results on conics

An arc of the plane PG(2, ¢) is a set of points such that every line contains at most
two of the points in the set. A secant of an arc is a line that meets it in two points. A
tangent of an arc is a line that meets it in exactly one point.

A conic of PG(2, ¢g) can be defined by a quadratic form (see [4] for a precise defi-
nition). When ¢ is odd, then every point P that is not in the conic C of PG(2, ¢) either
lies on two tangents and 4 (¢ — 1) secants and is called an external point of C, or lies
on no tangent and 1 (¢ + 1) secants and is called an internal point of C. The following
two famous theorems are due to Segre. A proof may be found in Hirschfeld [4].

Result 3.1. An arc of PG(2, q), q odd, has at most q + 1 points with equality if and only
if it is a conic.

Result 3.2. Every arc of PG(2,q), q odd, with more than g —}H/q—l—%poinls is con-
tained in a conic.

Lemma 3.3. (a) Two different conics of PG(2, q) share at most four points.
(b) Let C be a conic and B an arc of PG(2,q). If [BN C| > 1(q+ 3), then B = C.

Proof. For (a) see [4]. For (b) suppose that B contains a point P that is not in C. Then
Pliesoni(q—1)ori(g+1) secants of C. As P € B, we find on each of these secants
a point of C that is not in B. Thus |[BNC| < [C| —1(¢—1) =1(¢+3). O

Consider a conic C of PG(2,¢), ¢ odd. Embed PG(2, ¢) in PG(2, ¢?). Then C lies
in a unique conic C of PG(2,¢?). This conic may defined in PG(2, ¢?) by the qua-
dratic form that defines C in PG(2, ¢). Consider a point R of PG(2, g) that is not in
C. Then R might be an external or internal point of C. However in PG(2, ¢?), the
point R is an external point of C and thus lies on two tangents #; and #, of C. These
lines belong to PG(2, ¢) if and only if R is an external point of C. In the case when R
in an internal point of C, these lines do not belong to PG(2, q); we call them the
tangents of C to R in a quadratic extension of PG(2, q).

The next result can be deduced from a paper of L. Storme [5].

Lemma 3.4. Let C and C’ be two conics of PG(2,q), g > 16, and let R be a point not
contained in CU C'. Then the number s of lines on R that are secant to both conics
satisfies one of the following:

(i) s=0,s= —(qgl) ors = —(qzl) ,

. g3 +3
(ii) %q <s< ! 4\/(_1.

Moreover, the first case can occur only if R is an external point of both conics and if
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both conics have the same tangents through R, or if R is internal point of both conics
and if the conics have the same tangents in a quadratic extension of PG(2, q).

We will need this result in the following situation. Consider in PG(4, ¢) a cone with
a point vertex R over a Q" (3, ¢). We denote this quadric by RQ*1(3,¢). It contains
2(q + 1) planes that can be called Greek and Latin planes, such that there are g + 1
Greek planes and g + 1 Latin planes, such that different planes of the same type meet
in R, while planes of different types meet in a line on R. Consider two Greek planes 7
and 7', a conic C of 7= with R ¢ C, and a conic C’ of ' with R ¢ C’.

Consider a projective collineation x of PG(4,q) with n* =z’ and 7" = 7 for all
Latin planes 7. Then for every Latin plane 7 the line 7 Nz is mapped to the line N 7',

Extend PG (4, q) to PG(4, ¢*). The form that defines RQ* (3, q) defines in PG(4, ¢%)
a quadric RQ"(3,¢%) with RQO*(3,¢?)NPG(4,q) = RO (3,¢). This quadric has
¢”> + 1 Latin and Greek planes. The projective collineation x extends uniquely to a
projective collineation & of PG(4, ¢%). Also & fixes each of the ¢ + 1 Latin planes of
RO*(3,4%).

In PG(4, ¢?), the plane 7 spans a plane 7, and the conic C is contained in a unique
conic C of #. Though R may be an internal or external point of C, it is always an
external point of C. Thus, it lies on two tangents of C. These tangents lie in unique
Latin planes of RQ* (3, ¢?). We call these the two Latin tangent planes of the conic C.
Denote by E(r) the set consisting of those of the ¢ + 1 the Latin planes of RO (3, ¢)
for which 7 N7 is a secant of C. Then |E(n)| =1 (¢ — 1) or |[E(n)] =1(q+ 1). Use the
same notation and teminology for E’.

Using the above isomorphism x from 7 onto n’, Lemma 3.4 gives the following.

Lemma 3.5. In the above situation, if the two Latin tangents planes of C coincide
with those of C', then E(r) = E(n') or E(n) N E(n") = . If they do not coincide, then

L < |E(mNE(m)| < L34

Lemma 3.6. Consider in PG(4,q) a quadric that is a cone with a point vertex R over a
quadric Q" (3,q); call its planes Greek and Latin planes as above.

Let Q be a second quadric of PG(4, q) with R ¢ Q. Suppose that my, 7, ..., 7, s = 3,
are Greek planes such the sets C;:=m; N\ Q are conics with the same Latin tangent
planes.

(a) Suppose that R is an external point of each conic ©; N\ Q. Then there exist two
skew lines that both meet each conic C;.

(b) Suppose that R is an internal point of each conic ;N C. Then there does not exist
a Greek plane © on R for which n N\ Q is a conic such that R is an external point of
nNC.

Proof. (a) In this part, we do not need to go to the quadratic extension. Let T be the
subspace of PG(4, ¢) that is perpendicular to R with respect to the quadric Q. As
R ¢ Q, the subspace T has dimension three and R ¢ T. Let 7; and 7, be the common
Latin tangent planes of all conics C;. Then each line 7; N 7; meets Q in a unique point
A;. As RA; is a tangent, A; lies in T'. Thus all points A4; lie on the line t; N 7. Similar,
we find points B; on the line 7, N T'.
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(b) Now we have to go to the quadratic extension. The form defining Q defines
in PG(4, ¢%) a quadric Q with QN PG(4, q) = Q. Consider the 3-space T of PG(4, ¢%)
that is perpendicular to R with respect to the quadric 0. As R ¢ O, then T has dimen-
sion three and R ¢ T. The Greek planes 7; span Greek planes 7; of Q. As C; = ;N Q
is a conic, C; :== ;N Q is a conic of 7;.

Let 71 and 1, be the two common Latin tangent planes of the conics C;. As in Part
(a), the lines 4 := 7N T and h, := 7, N T contain at least s points of Q. As s > 3, it
follows that 4y and &, are contained in Q.

Let 7 be any Greek plane of RQ™(3,¢) for which C := 7N Q is a conic. Extend
7 and C as above to 7 and the conic C := 7N Q. Then 7N T contains the point
A:=h; N7 of T. Hence RA is a tangent of C. As the Latin plane 7; = (A, R) does
not belong to PG(4, ¢) but only to PG(4, ¢?), it follows that R is an internal point of
the conic C =z N Q. |

4 A local result

In the next section we shall study large caps in the hyperbolic quadric Q" (5, ¢).
We shall see there that many tangent hyperplanes of Q" (5, ¢) have the property that
they meet the cap in a lot of points. It is the purpose of this section to derive local
information on the intersection of the cap with such a tangent hyperplane.

Throughout this section, we consider in PG(4,¢) a degenerate quadric that is
a cone with a point vertex R over a Q7 (3,¢). We denote this quadric by RQ" (3, q).
As in the last section we call the 2(¢ + 1) planes contained in RQ™(3,q) Greek or
Latin planes. Notice that every 3-space of PG(4,¢) not containing R meets Q in a
hyperbolic quadric 0*(3,¢). A cap of RQO"(3,q) is a set of points of RQO'(3,¢q)
that does not contain three collinear points. We shall prove the following propo-
sition.

Proposition 4.1. Suppose that C is a cap of RQ"(3,q), q odd, with at least ¢*> + q + 2
points and R ¢ C. Suppose that some Greek or Latin plane meets C in a conic and
that R is an external point of this conic. If g > 4363, then there exists a quadric Q of
PG(4, q) with R ¢ Q such that one of the following cases occurs.

(@) C < Q. Also, every Greek and Latin plane on R meets Q in a conic.

(b) C = Q. There is one Greek or Latin plane (w.lo.g. a Greek plane) my such that
|70 N C| = 2 and such that h := o N Q is a line. The other q Greek planes meet C
in a conic. The two Latin planes that contain a point of h(\ C meet C in a conic.
For the q — 1 Latin planes that meet h in point P with P ¢ C, the set tNC is a
g-arc and the set (n N\ C)U{P} is a conic. Every Greek and Latin plane other than
o meets Q in a conic.

(c) We have |C| < ¢* + q + 3. One Latin plane vy and one Greek plane o meet Q in
exactly one point. These two planes meet C in at most three points. Every other
Greek and Latin plane o has the properties that |o N C| e {q,q+ 1}, that N C =
oNQ, and that o N Q is a conic.
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(d) We have |C| < q*+q+12. Also R lies on a Greek plane m that satisfies
g —=15)<|nNC| < Y(q+7) and for which the arc nN\ C is not contained in a
conic.

The proof of this proposition is divided into several lemmas. Throughout this sec-
tion we suppose that the hypotheses of the proposition are satisfied.

For every Greek or Latin plane =#, the set zN C is an arc of n. Hence, by Result
3.1, we have |z N C| < g+ 1 with equality if and only if zN C is a conic. We put
d, = q+1—|zNC| and call d, the deficiency of n. Define

e =

(vVg—3) and D:=4,/q+13.

S —

Lemma 4.2. The sum of the deficiencies of the Greek planes is at most ¢ — 1. More than
q + 1 — D Greek planes meet C in more than q + 1 — e points. For these Greek planes
7, the arc N C is contained in a unique conic of ©, which will be denoted by C,. The
same statement is true for the Latin planes, and also the same notation is used for the
Latin planes.

Proof. If m;, i =0,...,q, are the Greek planes, then |C| =3 |m,NC| = (¢ +1)* —
> dy,, since R¢ C. As |C| = ¢* + ¢ + 2, this gives > d,, < g — 1. Since (¢ — 1)/e <
D (use g > 4363), it follows that less than D Greek planes meet C in g + 1 — e or less
points. If the Greek plane 7 meets C in more than ¢ + 1 — e points, then Lemmas 3.2
and 3.3 show that #N C is contained in a unique conic. |

If 7 is a Greek plane, then we denote by S(n) the set consisting of all Latin planes t
for which 7N 7 is a secant of C, that is for which the line 7Nz meets C in two points.
If N C| > g+ 1— e, so that 7N C is contained in the conic C,, then we denote by
E(n) the set consisting of all Latin planes 7 for which the line Nz meets C, in two
points. Clearly S(n) < E(n). For Latin planes 7, the same notation is used; of course,
S(z) and E(7) (if defined) are sets of Greek planes.

Lemma 4.3. Let M be the set of all Greek planes (or all Latin planes) n that satisfy
[TNC|>g+1—eand R¢ C,. Let m,n’',m; € M.
(a) We have |S(n)| > |E(n)| — e.

(b) Either E(n) = E(n'), or E(m)NE(n') = &, or (¢ —3/9)/4 < |E(r) NE(n")| <
(¢ +3vq)/4.

(C) IfE(m) ﬂE(T[z) = & and E(m) ﬂE(n’g) = (¥, then E(?Iz) = E(T[3).

Proof. Part (a) follows from |#NC|>¢g+1—e and |C,;| = ¢+ 1. Part (b) follows

from Lemma 3.5. Part (c) follows from (b) using that |E(7;)| € {3(¢ —1),3(¢+ 1)}
fori=1,2,3. O
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Lemma 4.4. Let Q be a quadric of PG(4, q). Suppose that 7 is a Greek or Latin plane
with [t N C| > g+ 1 — e. If Q contains five points of N C, then tN C = C, < Q. If in
addition R ¢ Q, then C, = nN Q.

Proof. As nN Q contains five points of an arc, N Q = or N Q is a conic of 7. In
the first case we are done. Suppose then that 7N Q is a conic. As this conic shares five
points with the conic C,, we have 7N Q = C, by Result 3.3 (a). O

Lemma 4.5. Let Q be a quadric of PG(4,q) with R¢ Q. Let g (or ) be the number
of Greek (or Latin) planes ©t that satisfy tNC < Q and |[tNC|>qg+1—e. If[ =6,
then g,1 > 1(q—17) — D.

Proof. Let S be the set consisting of the points of C that lie in the / Latin planes 7 that
satisfy 1N C = Q and [tN C| > g + 1 — e. As the sum of the deficiencies of the Latin
planes is at most ¢ — 1, we have |S| > I(¢+ 1) — ¢+ 1. Clearly S < Q.

Consider a Greek plane 7 with [z N C| > ¢+ 1 — e. If the set N C contains at least
five points of S, then zN C = QO by Lemma 3.3. As there are at most D Greek planes
that meet C in ¢ + 1 — e or less points, it follows that at most g + D Greek planes
have more than four points in S; these planes have of course at most 2/ points in
S, since they meet each of the / Latin planes that define S in a line. The remaining
q+ 1 — g — D Greek planes have at most four points in S. As every point of S lies on
a unique Greek plane, it follows that

(q+1—g—D)-4+(g+D)2=2|S|=(g+1)—q+1
This gives

1 3g+1
g—2>§(q—3)—D—2(1_2).

As ] = 6 and g > 4363, this implies that g > 6 and we obtain in the same way

1 3g+1
[-2>-(q—3)—D - .
5(@=3) )
Combine both bounds to
1 !
g—2> E(61—3—20)—(3q+1)((1—3—2D—3g‘f’—+2) .

This is equivalent to

—_—

(g-3-2D)g-2) —L(g-3-2D)(3g +1).

(g—3-2D)(g—2)" > 5

~2
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Divide this by ¢ — 3 — 2D and check that the resulting inequality can be written in
the form

0= (g—6)(q—7—2D—2g)+q—45—8D.

As ¢ > 45+ 8D (this follows from ¢ > 4363) and ¢ > 6, this implies that 2g >
q — 7 —2D. The same bound holds for /. O

Lemma 4.6. There exists a (possibly degenerate) quadric Q of PG(4,q) with R ¢ Q
and the following properties. At least %(q— 7) — D Greek planes © and at least
(¢ —7) — D Latin planes = satisfy N C = Q and |[rNC| > g+ 1 —e.

Proof. (1) Consider the set G consisting of the Greek planes that meet C in more than
g+ 1 — e points. Then |G| = g+ 1 — D > 15 by Lemma 4.2.

(2) In this part of the proof we show that there exist three planes n;, 72, 73 € G such
that |S(z1) N S(m2) N S(n3)| = 6 + D.

As the sum of the deficiencies of the Latin planes is at most ¢ — 1, there exists
a Latin plane 7 for which 7N C is a conic. As R ¢ C, then R lies on at least 1 (¢ — 1)
secant lines of this conic. Each of these secant lines lies in a Greek plane, and at most
D of the Greek planes obtained in this way do not lie in G. As % (g—1)=D =5, we
then find five Greek planes 7y, ..., 75 € G such that z; N 7 is a secant line. As R lies on
the secant line N 7; of 7; N C, then R is not a point of the conic C,,. Also 7 € S(n;) =
E(m;). Then, by Lemma 4.3 (b), any two of the sets E(;) share at least % (¢ — 3,/7)
Latin planes.

Put 7; := E(m) N E(m;) for i =2,...,5. Then |Tj| > (¢ —3,/4). Also T,UT3U
T4UTs < E(m) and |E(m )| < $(g¢+1). Thus, if u is the largest intersection any
two of the sets 7, T3, Ty, Ts have, then 1(¢+ 1) > g — 3,/g — 6u. Using ¢ > 4363,
this implies that u > 5 (¢ — 1 — 6,/9) > 3e + 6 + D. We may assume that |7, N T3] >
3¢+ 6+ D.As TN T3 = E(n1) N E(ny) N E(7n3), then Lemma 4.3 (a) proves (2).

(3) Let @y, m2, 3 be as in (2). As [N C| < g+ 1 — e for at most D Latin planes ,
we find six Latin planes ty,...,7¢ in S(z;) N S(n2) N S(73) that have each more than
g+ 1 —e points in C. Then each of the 18 lines 7; N 7; is a line that meets C in two
points.

Choose five points from 7; N C, five points from 7, N C, and from each of the three
planes 7;, i = 1,2, 3, one point of 7; N C that does not lie in 7; Un,. Since quadrics
in PG(4, ¢) are determined by 14 points, these 13 points lie on at least a pencil of
quadrics of PG(4,¢). Hence these 13 points are contained in a quadric Q with
0 # PG(4,q) and Q # RQO"(3,9q).

Lemma 4.4 shows that nyNC < C;, € Q and that ;mNC < Cp, < Q0. As 1,
i =1,2,3, shares two points with ; N C, two points with 7, N C, and one more point
with Q, the same lemma shows that 7, C < C;, < Q. As 73N C shares two points
with each of the arcs 71N C, 70N C and 73N C, the same lemma shows 73N C =
Cr, < Q. Finally, for 7;, i = 4, 5,6, we now also see that six points of 7; N C are con-
tained in Q. Hence 7; N C = C;, = 0, i =4,5,6.

Above we have seen that R does not belong to the conics Cy,, C;, and C,,. Assume
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that R e Q. Then Q meets 7;, i = 1,2, 3, in a conic and at least one more point. This
implies that the planes 71, 7>, 73 are contained in Q. Then every Latin plane contains
three lines of Q. Hence Q contains all Latin planes, that is Q contains RQ" (3, ¢). But
this implies that Q = RQ" (3, ¢) or that Q = PG(4, ¢). This contradicts our choice of
0. Hence R ¢ Q.

As Q contains the six arcs 7; N C, 1 < i < 6, Lemma 4.5 completes the proof. []

From now on, we denote by Q the quadric constructed in Lemma 4.6.

Lemma 4.7. Let G be the set consisting of the Greek planes n that satisfy tNC < Q
and |nN C| > g+ 1 —e. Let ' be a Greek plane with |r' NC| > g+ 1 —e.

(a) The point R is not in the conic Cy.
(b) If n' ¢ G, then more than 3 |G| planes m of G satisfy E(nr) NE(n') = .

Proof. (a) Assume that R e C,.. As Cp/ is a conic containing the arc #’ N C and as
R ¢ C, then R lies on [7'NC| > g+ 1 — e lines of n’ that meet C. Thus, all but at
most e Latin planes have the property that they meet z’ N C. Then Lemma 4.6 shows
that we can find five Latin planes t that meet 7’ N C and satisfy TN C = Q. Thus Q
shares five points with 7’ N C. Then C,» = Q (Lemma 4.4). But R ¢ O, a contradic-
tion.

(b) Let L be the set consisting of the Latin planes that meet C in more than
q + 1 — e points. We first show indirectly that for any three different planes 7, 7,
73 € G, the set S(n') N S(7;) N S(my) N S(73) contains at most two Latin planes of L.
Assume that this is not true, so that this set contains three Latin planes 7 of L. These
planes t would have two points of C in common with each plane n;. As r, N C = Q
for i = 1,2,3, then 7N C has six points in Q. Then 1N C = Q (Lemma 4.4). As there
are three such planes 7, also six points of 7z’ N C are in Q and therefore 7’ NC = Q, a
contradiction.

Consider the 3-subsets T' of S(z') N L. We have just shown that every set T is
contained in at most two sets S(x) with 7 € G. As R is an internal or external point of
Cp, then [S(7)] < $(g+ 1). Thus if s is the number of planes of S(z’) that do not
lie in L, then there are at most (qﬂl) sets T. From Lemma 4.2 we have s < D.

If 7 e G with E(zr) N E(zn') # &, then |E(n) NE(n')| = 1 (¢ — 3,/q) and therefore
IS(r)NS(n')| = ¢ :=1(9 — 3/7) — 2¢ (Lemma 4.3). Therefore S(n) contains at least
c— (3) sets 7.

Count in two ways the pairs (7, 7) of Greek planes 7 e G and 3-subsets T
of S(z")N L that satisfy T < S(n). If o is the number of planes 7 € G that satisfy
E(m)NE(n') # 0, then o(%,*) < 2( ‘H; ) As s < D and ¢ < 1(g+ 1), this implies

a(5P) < 2( (a+1) D) Using ¢ > 4363, it follows that o < 34. As |G| > (¢ —7) — D,

this gives |G| — o > 2|G|. O

Lemma 4.8. Suppose that there exists a Greek plane that meets C in a conic and such
that R is an external point of this conic. Then every Greek plane my with |my N C| >
q+ 1 — e satisfies iy N C < Q.
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Proof. Let G be the set consisting of the Greek planes 7 that satisfy |z C| >
g+1—cand zNC <= Q, and let G’ be the set consisting of the Greek planes z that
satisfy [tNC| > g+ 1 —ebutnot N C = Q. From Lemma 4.2 we have |G| + |G'| =
g+ 1— D, and Lemma 4.6 we have |G| > (g — 7 — 2D). From the previous lemma
we also know that R¢ N C for all ze GUG’'. Lemma 4.4 shows that C, =zNQ
for all = € G. We have to show that G’ = (.

Assume this is not true and let 7y € G’. By the previous lemma, there exists a subset
S of G with |S| > 2|G| such that E(m) N E(r) = & for all 7 € S. Lemma 4.3 implies
that all sets E(x) with 7 € S are the same. If 7’ € G’, then the preceding lemma gives
E(n')NE(n) = & for at least one plane 7 € S, and then Lemma 4.3 implies that
E(n') = E(np). Thus any two planes 7 of SU G’ give the same or disjoint sets E(n).
Therefore R is an external point of all conics Cy, or it is an internal point of all conics
Cy,me SUG, cf. Lemma 3.5.

First consider the case when R is an internal point of all conics C, with z € SU G’.
In this case, we consider three planes 7y, 7;, 73 € S. Then R is an internal point of the
conics Cp, = ;N Q. By hypotheses, R lies on a Greek plane ¢ for which 6N C is a
conic and R is an external point of this conic. As R is an internal point of all conics
C, with 7 € G', then g € G. Thus C, = ¢ N Q. Then Lemma 3.6 (b) gives a contra-
diction.

Now consider the case when R is an external point of all conics C, with z € SU G'.
Then Lemma 3.6 (a) shows that we find two skew lines /; and / such that /;, i = 1,2,
meets all conics C, with 7 € S. As [} as well as /, can contain at most two points of
the cap C, we have thus found at least w := 2(|S| — 2) points that belong to one of
the conics C, with 7= € S but that do not lie in C. Thus, the sum of the deficiencies
of the planes 7 € S is at least w. If w’ denotes the sum of the deficiencies of the planes
in G’, then Lemma 4.2 gives w +w’ < ¢ — 1. We show next that this implies w’ <
|G'| - 3.

Assume on the contrary that w' > |G'| — 2. Using w > 2|S| — 4 and |S| = 2|G|/3
and |G| + |G| = ¢+ 1 — D, it follows that

wH+w' = §|G| —4+ |G| —2>q—5—D+@.

As w+w' < ¢g—1, we conclude that |G| < 3D + 12. Combining this with |G| >
%(q — 7 —2D), it follows that ¢ < 8D + 31. But ¢ > 8D + 45 (this was already veri-
fied in the proof of Lemma 4.5), contradiction.

Then w' < |G'| — 3. Hence G’ contains three planes 7, 7,73 of deficiency zero.
Then S(7;) = E(n;), and as we have seen above, E(n;) = E(np) for i =1,2,3. As
in Part (3) of the proof of Lemma 4.6, we see that there exists a quadric Q' with
Q' #PG(4,q9) and Q' # RQ"(3,q) such that the conics 7, C = C,, = Q' are con-
tained in Q’. As R does not lie in C and thus R does not belong to the conics C,,
we see as in Part (3) of the proof of Lemma 4.6 that R ¢ Q’, so that 7;N Q' = Cy,.
Lemma 3.6 (a) shows that there exist lines /{, /5 such that /! meets the conics Cy,, C,,
and C,,. As C,, = ;N C, it follows that C contains three collinear points. Contra-
diction. |
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Lemma 4.9. For every Greek and Latin plane © with more than %(q + 11) points in C,
the set n N Q is a conic and N C < Q. There are at least ¢ — 1 such Greek and at least
q — 1 such Latin planes.

Proof. Let g be the number of Greek planes that do not satisfy # N C < Q, and let
/ be the number of Latin planes 7 that do not satisfy 1N C < Q. By hypothesis
of Proposition 4.1 we may assume that R lies on a Greek plane that meets C in a
conic and such that R is an external point of this conic. Then the preceding lemma
shows that all Greek planes z on R with [N C| > ¢ + 1 — e satisfy z N C = Q. Then
Lemma 4.2 gives g < D = 4,/q + 13.

Consider a Latin plane 7. Of the ¢ + 1 lines of 7 on R, only g lie in Greek planes
7 that do not satisfy #N C < Q, and only these lines can contain points of C that
do not lie in Q. Hence, all but at most 2g points of 7N C lie in Q. Suppose that
[tNC| > 1(g+3) +2g. Then TN Q contains more than } (¢ + 3) points of the arc
tNC. As R ¢ Q, it follows that 1N Q is a conic. Lemma 3.3 implies that 1N C < Q.

Thus, every Latin plane  that meets C in more than (¢ + 3)/2 + 2g points satisfies
7N C = Q. As the sum of the deficiencies of the Latin planes is at most ¢ — 1 (Lemma
4.2), it follows that at most two Latin planes do not have this property. Hence / < 2.
The same argument shows then g < 2. O

Lemma 4.10. At most eight points of C do not lie in Q. In every Greek and Latin plane
lie at most four points that are in C but not in Q.

Proof. Let n be a Greek plane. Then 7z is the union of the lines 7z N7 for the Latin
planes 7. By Lemma 4.9, at most two Latin planes can contain points of C\ Q. Hence,
at most two of the lines 7N 7 contain points of C\Q; clearly on every such line there
are at most two points of C. Hence, # has at most four points in C\Q. Also, by
Lemma 4.9, at most two Greek planes can contain points of C\Q, so |C\Q| < 8.

]

Lemma 4.11. Every Latin or Greek plane m meets Q is a point, a line, or a conic.

Proof. As Q is a quadric with R ¢ Q, the set N Q is a point, a line, a conic, or the
union of two lines. We just have to exclude the last possibility. We may assume that z
is a Greek plane.

Assume that 7N Q is a union of two lines /#; and /. Then at most four points of
7N Q can be in the cap C. By Lemma 4.9, there exists ¢ — 1 Latin planes 7 for which
7N C < N Q and for which 7N Q is a conic. For at most four of these, the line t N7
contains a point of C, and exactly one of these contains the point 4 N/,. Thus, at
least ¢ — 6 of these planes 7 have the properties that the line 7Nz meets tNQ =
hy Uhy in two points and that these two points are not in C. As 1 Q is a conic, it
follows that |[tN C| < [tN Q| — 2 = ¢ — 1. Thus the sum of the deficiencies of these
¢ — 6 planes 7 is at least 2(¢ — 6). This contradicts Lemma 4.2. O

Lemma 4.12. If some Greek or Latin plane meets Q in a line, then conclusion (b) of
Proposition 4.1 holds.
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Proof. We may assume that a Greek plane 7 meets Q in a line /. Consider the Latin
planes 7 with the properties that 1N C < 7N Q and that 7N Q is a conic. All these
conics contain a point of /, but only two points of / can be in the cap C. So, at most
two of these planes 7 have deficiency zero. Then, by Lemma 4.9, at least ¢ — 3 Latin
planes have positive deficiency. Then Lemma 4.2 shows that every Latin plane has
deficiency at most three, so Lemma 4.9 implies that all Latin planes 7 on R have the
property that 1N C = 7N Q and that tN Q is a conic. Thus C = Q.

It follows that & meets C in two points, that the two Latin planes on the points
of 4N C have deficiency zero, and that the ¢ — 1 remaining Latin planes 7 on R have
deficiency one. Also, for the latter planes 7, the unique point of the conic 7N Q that is
not in the g-arc tN C is the point 7N A.

As C < Q, we have |#N C| = |hN C| = 2. Hence, 7 has deficiency ¢ — 1 and con-
sequently every other Greek plane has have deficiency zero, which implies that it
meets C in a conic. |

Lemma 4.13. If some Greek or Latin plane meets Q in one point, then conclusion (c) of
Proposition 4.1 holds.

Proof. We may assume that a Greek plane 7y meets Q in only one point. From
Lemma 4.10 we obtain |ry N C| < 5, that is 7y has deficiency at least ¢ — 4. If 7 is any
other Greek plane, then 7 has deficiency at most d — (¢ — 4) < 3, so Lemma 4.9 shows
that 7N C = Q and that 7N Q is a conic. Thus, exactly ¢(¢ + 1) + 1 points of Q lie in
the Greek planes. Then also exactly ¢(¢ + 1) + 1 points of Q lie in the Latin planes.

Then Lemma 4.11 implies that there is a Latin plane 7y that meets Q in one point.
As for the Greek planes, it follows for the other ¢ Latin planes 7 that thesettN Qisa
conic that contains the arc 7N C.

All points of C that do not lie in Q lie in 7y and 7y and thus on the line 7o N 7y. As
there can be at most two points of C on this line, if follows that 7y and 7y have at
most three points in C. The ¢ other Greek planes must thus together contain at least
|C| —3 > ¢* +q— 1 points of C. Thus, all these meet C in ¢ or ¢ + 1 points (in fact
at most one of these meets C in ¢ points). The same holds for the Latin planes. This is
the situation described in (c) of Proposition 4.1. O

Lemma 4.14. If every Greek and Latin plane meets Q in a conic, then one of the con-
clusions (a) and (d) of Proposition 4.1 hold.

Proof. 1If every Greek or every Latin plane = satisfies N C < Q, then C = Q and
conclusion (a) of Proposition 4.1 holds. We may thus assume that there exists a Latin
plane 7y and a Greek plane 7 such that 7o N C is not contained in the conic 7o N Q,
and that 7y N C is not contained in the conic 7y N Q.

Let V be the variety in which the quadrics RO"(3,¢) and Q meet. As every Greek
plane meets Q in a conic, then |V| = (¢ + 1)2. Let n be the number of points of
C that are not in V. We have n < 8 from Lemma 4.10. Also |[VNC|=|C|—n >
q> +q+2—n. Hence, at most ¢ — 1 +n points of ¥ do not lie in C, that is
I"\C| <q—1+n.
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If ¢ is a Greek or a Latin plane with [¢NC|>1(g+3)+n, then the conic
oNQ =0cNV shares more than §(g+ 3) points w1th the arc ¢N C. In this case,
Result 3.3 shows that sNC =g N Q

Now consider a Greek or a Latin plane ¢ for which ¢ N C is not contained in the
conic 6N Q. Then |[cN C| < 3 (g + 3) + n and hence ¢ N C shares at most (¢ + 1) +n
points with Q. In this case, at least 3 (¢ + 1) — n points of the conic g N Q =ogNV do
not lie in C. As two different planes o share at most two points of V' (and this
of course only when one is a Greek and the other a Latin plane), and as |\ C| <
q—14n<gq+7, it follows that there can be at most two such planes.

Hence 7y and 7y are the only planes o, for which ¢ N C is not contained in V. Then
79 N7y is the only line of RQ™(3,¢) that contains points of C that are not in V. As
this line meets C in at most two points, this gives n < 2. Then |V\C| < ¢+ 1.

As 7 contains at least 1(¢+ 1) —n points of V\C, then 7y contains at least
Hg+1)—=n—2=1(g+1)—4 points of V\C that do not lic in mp. As [V'\C| <
¢ + 1, it follows that 7y contains at most 5 (¢ + 1) + 4 points of ¥\ C. Since |z N V| =
g+ 1, it follows that |zgNCNV|=> 2( 1) —4. Thus lmoNC| = 1(g+1)—3.
Above we have seen that 7o N C| < 3(¢+3) +n < 1(g+7). Of course, the same
bounds hold for |zo N C|.

Recall that 7 and similarly 7 contain each at least 1 (¢ + 1) — 4 points of V'\C. As
7o N 79 can have up to two points in Q, it follows that [V'\C| > (¢+1) -4 -4 -2 =
g—9. Then |[VNC|<|V|-(¢g—9)=¢*>+q+10. As |C\V|=n <2, this gives
IC] < q*+q+12.

Finally, as 7y N C is not contained in the conic 7y N Q, it is not possible that 7y N C
is contained in any conic, since otherwise we would have two different conics that
share at least [tgN VN C| > 1(g+ 1) —4 > 4 points (see Part (a) of Lemma 3.3).

O

5 Proofs of the theorems

In this section, we consider Q" (5, ¢) embedded in PG(5, ¢), and a cap C of Q7 (5, q).
For every Greek or Latin plane 7z, the set zN C is an arc of n. Hence, by Result
3.1, we have |#N C| < g+ 1 with equality if and only if zN C is a conic. We put
d,=q+1—|zNC| and call d, the a’eﬁciency of 7. It is easy to see (see Part (a)
of the following lemma) that |C| < ¢* + ¢* + ¢ + 1 with equality iff and only if every
Greek or Latin plane meets C in a conic. In this section, we suppose that C is a maxi-
mal cap satisfying ¢° + ¢*> +2 < |C| < ¢* + ¢ + ¢, that is

ICl=¢*+¢*+q+1—d withl <d<gq-1.

We also assume that ¢ > 4363. We shall see that this implies that d = ¢ — 1 and that
one of the conclusions of Theorem 1.2 is satisfied.

Lemma 5.1. (a) The sum of the deficiencies of the Greek planes is d(q + 1). The sum of
the deficiencies of the Latin planes is d(q + 1).
(b) If = is a Greek plane, then the sum of the deficiencies of the q* +q+ 1 Latin
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planes that meet n in a line is qd, + d. An equivalent statement holds for the Latin
planes .

(c) Every Greek and Latin plane has deficiency at most d.

(d) If R is a point of Q1 (5, q), then the sum of the deficiencies of the Latin planes on
R is equal to the sum of the deficiencies of the Greek planes on R.

Proof. (a) Each point of C lies in ¢ + 1 Greek planes. Thus, if F is the set of Greek
planes, then Y _,|[xNC|=|C|(g+1). Using |C|=¢* +¢*> +g+1—d and |F| =
q*> + g%+ g+ 1, this proves (a) for the Greek planes. The argument for the Latin
planes is the same.

(b) Let t;, i=1,...,4*> + ¢+ 1, be the Latin planes that meet 7 in a line. Each
point of C N lies in g + 1 planes 7;, and each point of C\x lies on one plane 7;. Thus

Y (q+1—d)=(Cl—|CNal)+|CNxr|(g+1).

As |CNxn| =q+ 1 —dy, this proves the (b).

(c) This follows immediately from (a) and (b).

(d) Let 7o, ..., m, be the Greek planes on R. If R ¢ C, then |R*NC| =" |z N C|.
If ReC, then |[R*NC|=1+>(Jr;NC|—1). As the same holds for the Latin
planes on R, this proves (d). O

Let | be the polarity of PG(3,¢) related to Q" (5,q). If Re Q7 (5,¢), then R+
is the tangent hyperplane of R. It is a subspace of dimension four that contains R,
and that meets Q% (5,¢) in a cone RQ" (3, ¢) with vertex R over a Q" (3,¢). The set
RN Cis of course a cap of this cone. If R ¢ C and if some Greek (or Latin) plane 7
on R meets C is a conic, then Lemma 5.1 (b) shows that the sum of the deficiencies of
the ¢ + 1 Latin planes on R is at most d < ¢ — 1, that is that |[R* N C| = ¢ + ¢* + 2.
If in addition R is an external point of the conic 7N C, then Proposition 4.1 can be
applied to the quadric RQ" (3, ¢q) and its cap R N C. Then there exists a quadric of
R* satisfying one of the conclusion (a)—(d) of Proposition 4.1. We always denote this
quadric by Qg. We first show that conclusion (d) does not occur.

Lemma 5.2. Conclusion (d) of the Proposition 4.1 does not occur.

Proof. Assume that R is a point of O (5, ¢)\C that satisfies the hypotheses and con-
clusion (d) of Proposition 4.1. Then there exists a Greek plane 7y on R for which the
arc moN C cannot be completed to a conic and such that 1(¢—5) <|mNC| <
1(g+7). Thus, if § is the deficiency of 7y, then (¢ — 5) <5 < $(¢+7).

We shall obtain a contradiction in the following way. We show that there exists
a point R’ € mp\C to which Proposition 4.1 can also be applied and such that
IR*FNC| > ¢>+¢g+12. Thus one of (a), (b), (c), (d) of 4.1 must hold. But
IR*FNC| > ¢*>+ g+ 12 excludes (d) and the fact that the arc 7pN C cannot be
extended to a conic excludes (a), (b) and (c). This is the desired contradiction.

Consider a Latin plane 7 on R that has deficiency zero. Then 1N C = N Qg and
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this set is a conic. At least 3 (¢ — 1) points of the line g := t N are external points of
this conic. Let R;, i = 1,...,1(¢ — 1), be points of ¢ that are external points of the
conic 7N Q. The point R; lies on 7y and on ¢ further Greek planes; let J; be the sum
of the deficiencies of these g Greek planes. Then the sum of the deficiencies of all
Greek planes that contain a point R; is d + > J;. As all these planes meet 7 in a point
and thus even in a line, we obtaind + > ,9; < d < ¢ — 1 from Lemma 5.1 (b). As there
are § (¢ — 1) different points R; and as 6 > 0, then d; = 1 for some i. We may assume
that 9; < 1.

Put R’ := Ry. The sum of the deficiencies of the Greek planes on R’ is d or 6 + 1.
Counting the points of C in the g+ 1 Greek planes on R’, we obtain
IR-NC| > (qg+1)> —1—46. Using the upper bound for 5, we obtain |[R"* N C| >
g% + q + 12, as desired. Notice that Proposition 4.1 can be applied to R’, since R’ is
an external point of the conic 7N C. |

Lemma 5.1 shows that at least one Greek and one Latin plane has positive defi-
ciency. From now on, we denote by d the smallest positive deficiency of all Greek
and Latin planes.

Lemma 5.3. Let 7 be a Greek or Latin plane of deficiency dy. Then there exists a plane
7 of Q7 (5,q) of deficiency zero such that Nt is a line that meets C in a unique point.

Proof. We may assume that n is a Greek plane. As 7N C is an arc with ¢ + 1 — d
points, there exist (¢ + 1 — do)(do + 1) lines in = that meet C in a unique point. Each
of these lines lies in a unique Latin plane. As dj is the smallest positive deficiency,
Lemma 5.1 (b) implies that at most (gdy + d)/dy of these Latin planes have positive
deficiency. It suffices therefore to verify that

(¢ +1—do)(do+ 1) > (qdo + d)/dy.
This follows from 1 < dy <d <g-—1. |

Lemma 5.4. (a) If dy < d, then dy = 1.

(b) Suppose that dy = 1 and that 7 is a Greek or Latin plane of deficiency one. Then
the g-arc ©N C can be extended to a conic by adjoining a point P. All Greek and Latin
planes on P have positive deficiency, and P is the only point of T with this property.

Proof. (a) Let = be any plane of deficiency dy. We may assume that 7 is a Greek
plane. From Lemma 5.3 we see that there exists a Latin plane 7 of deficiency zero
such that 7N 7 is a line that meets C in a unique point. By Lemma 5.1 (b), the sum of
the deficiencies of all Greek planes that meet 7 in a line is d. The plane 7y contributes
dy and the remaining ones contribute d — dy. As dj is the smallest positive deficiency,
it follows that d — dy = 0 or d — dy = dy, thatis dy = d or dy < d/2.

Suppose that dy < d. Then dy < d/2 < (¢ — 1)/2. Let R be a point of the line 7Nt
that is not the point of C on this line. As 7N C is a conic and R is an external point of
this conic, we can apply Proposition 4.1 to R. Then (a), (b) or (c) of 4.1 is satisfied,
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since (d) is excluded by Lemma 5.2. As [#NC|=¢q+ 1 — dy and 2dy < g — 1, Prop-
osition 4.1 shows that 7N Qg is a conic containing the arc zN C.

Exactly (¢ + 1 — dy)dp lines of my meet C in one and Qg in two points. Assume
that one of these lines has the property that the Latin plane 7y on this line has defi-
ciency zero. Then let R’ be the point on the line z N7y that lies in Qx but not in
C. Then R’ ¢ C and R’ is an external point of the conic 79 N C. We can thus apply
Proposition 4.1 and obtain a quadric Qg of R™* with R’ ¢ Q.. As 7 has deficiency
dy < d/2, the same proposition shows that 7N Qg is a conic containing 7N C. Then
7N Qg and 7N Qg are conics containing the arc tNC. As [zNC|=qg+1—dy =5,
then both conics share five points and hence they are equal. However, by the choice
of R’, the point R’ lies in 7N Qg, and as R’ ¢ Qr:, the point R’ does not lie in
7N Qg, contradiction.

Hence, the (¢ + 1 — dy)dy lines that meet N C in one and zN Qg in two points
have the property that the Latin plane on it has positive deficiency and thus defi-
ciency at least dy. The sum of the deficiencies of the Latin planes that meet 7 in a line
is thus at least (¢ + 1 — do)d?. Then Lemma 5.1 (b) gives (¢ + 1 — do)d3 < dog + d.
As 2dy < d < q— 1, it follows that dy = 1.

(b) We may assume that 7 is a Greek plane. As the arc # N C has ¢ points, it can
uniquely be extended to a conic by adjoining a point P. The arguments of the proof
of Part (a) show that each of the ¢ lines of = on P that meet 7N C has the property
that the Latin plane on it has positive deficiency. Thus P lies on at least ¢ Latin
planes of positive deficiency. As d < ¢, Lemma 5.1 (b) implies that every Greek and
Latin plane on P has positive deficiency. As the sum of the deficiencies of the Latin
planes that meet 7z in a line is ¢ + d (Lemma 5.1), at most ¢ +d < 2¢g — 1 Latin
planes of positive deficiency meet 7 in a line. This implies that P is unique. O

Lemma 5.5. Suppose that there exists a point Re Q*(5,¢q)\C for which conclusion
(b) of Proposition 4.1 holds. Then |C| = ¢* + ¢ + 2 and C satisfies conclusion (a) of
Theorem 1.2, which is the following:

There exists a line h of Q" (5,q) with |hNC| = 2. The two planes of Q" (5,q) on
h meet C only in the two points of hN C. Every other plane of Q" (5,q) on one of the
q — 1 points P of h\C meets C in a g-arc that can be extended to a conic by adjoining
P. All other planes of Q" (5, q) meet C in a conic.

Proof. From (b) of Proposition 4.1 we find a plane 7y on R that meets C in exactly
two points P; and P; in C, such that the line 4 := P; P, has the following properties.
The point R does not lie on / (since R ¢ Q and 2 = Q in (b) of Proposition 4.1). The
¢ — 1 Latin planes through R and one of the ¢ — 1 points P of #\{P;, P} meet C ina
g-arc, which can be completed to a conic by adjoining P.

For these ¢ — 1 points P, Lemma 5.4 shows that all Greek and Latin planes on P
have positive deficiency. This gives apart from 7y another (¢ — 1)g Greek planes of
positive deficiency. As 7y has deficiency ¢ — 1, and as the sum of the deficiencies of all
Greek planesis d(¢+ 1) < (¢ — 1)(¢+ 1) (Lemma 5.1 (a)), it follows that d = g — 1,
that these (¢ — 1)¢ Greek planes have deficiency one, and that every other Greek
plane except 7y has deficiency zero.
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Consider P € h with P # Py, P,. The sum of the deficiencies of the ¢ + 1 Greek
planes on P is 2¢ — 1. By Lemma 5.1 (b), the same is true for the Latin planes on
P. Thus, if 7y is the Latin plane on /4, then the sum of the remaining ¢ Latin
planes on P is 2g — 1 —d,,. As there are ¢ — 1 choices for P, we obtain d;, +
(g—1)2¢g—1—-d,) <d(g+1) from Lemma 5.1 (a). This gives d;, = ¢ — 1, and as
for the Greek planes, we see that the other (¢ — 1)g Latin planes on the points P have
deficiency one.

Thus, 7y and 7y have deficiency ¢ — 1, the Greek and Latin planes other than 7
and 7y on a point P of #\{ Py, P} have deficiency one, and all other Greek and Latin
planes have deficiency zero.

Consider any Greek or Latin plane ¢ of deficiency one. Then ¢ meets / in a point P
with P ¢ C. We have seen that all Greek and Latin planes on P have positive defi-
ciency. Then Lemma 5.4 (b) shows that P extends the ¢g-arc N C to a conic. O

Lemma 5.6. If dy = 1, then |C| = ¢ + ¢* + 2 and C satisfies conclusion (a) of Theo-
rem 1.2.

Proof. Suppose dy = 1 and consider a plane 7 that meets C in ¢ points. We may
assume that 7 is a Greek plane. Then the g-arc 7N C can be extended to a conic by
adjoining one point P and all Greek and Latin planes on P have positive deficiency
(Lemma 5.4).

Consider the ¢ lines ¢#,...,t, of = that are tangents to C, in a point of 7N C =
C,\{P}. By Lemma 5.1 (b), the sum of the deficiencies of the Latin planes that meet
nmin aline is ¢ +d < 2g — 1. As the ¢ + 1 Latin planes on P have positive deficiency,
we see that at least two of lines #; have the property that the Latin planes on it have
deficiency zero.

As C is a maximal cap, the set CU{P} is not a cap. Hence, there exists a line g
of 07 (5,¢q) on P that meets C in two points. This line does not lie in 7. Let 7 be the
Latin plane on g. Then 7 and 7 meet in a line / on P. This line meets 7N C in at
most one point. Thus, at most one of the lines #; meets / in a point of C. From the
above arguments, it follows therefore that we find one line # = ¢; such that the point
R :=tN/is notin C and such that the Latin plane 7’ on ¢ has deficiency zero. Then
7'M C is a conic and, as |tN C| = 1, the point R is an external point of this conic.

We can therefore apply Proposition 4.1 and obtain a quadric Qg of R* that sat-
isfies one of the conclusions (a), (b), (c) of Proposition 4.1, since (d) is excluded by
Lemma 5.2. This shows that for every Greek and Latin planes ¢ on R that meets C in
more than three points, the set 6N Ok is a conic that contains ¢ C. Thus 7N Qg is a
conic and therefore 7N Qg = (N C) U {P}. This shows that P € Q.

If conclusion (b) of Proposition 4.1 holds for R, then we are done by Lemma 5.5.
Now we complete the proof by showing that conclusions (a) and (c) of Proposition
4.1 for the point R cannot occur.

Assume it is (a). Then R*NC < Qg. As |[gNC| =2 and as the point P lies in
g N Qg but not in C, then g has three points in Qg. But in the situation of 4.1 (a),
every Greek and Latin plane on R (and thus the plane 7) meets Qg in a conic, a
contradiction.
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Assume that it is (c), that is R lies on a Latin plane 7y and on a Greek plane 7
that meet Qg each in exactly one point, and every other Greek or Latin plane ¢ on
R meets Qg in a conic and satisfies ¢ N C < ¢ N Qg. This implies that every point of
R+ N C that is not on the line 7y N 7 lies in Og. The line g of the plane 7 contains the
point P of Qg and two more points of C. Thus it is not true that 7N C = 7N Qg and
that N Qg is a conic. Then 7 is not one of the planes ¢, so we must have 79 = 7 =
{R,g>. Then P is the unique point of 7o N Qg. Then the two points of g N C lie in
R+ N C but not in Qg, so they must both lie on the line 7o N 9. Hence 7o N1 = g.
But this is not possible, as the line 7y N 7y contains R and the line g does not. O

Lemma 5.7. If dy > 1, then |C| = ¢* + ¢*> + 2 and C satisfies the conclusion (b) of
Theorem 1.2.

Proof. As dy > 1, then dy = d by Lemma 5.4. Thus every plane ¢ of Q7 (5, ¢) has the
property that ¢ N C is a conic, or that [N C| = ¢+ | — d. Lemma 5.1 (a) shows then
that there are exactly ¢ + 1 Latin and ¢ + 1 Greek planes that have deficiency d. Let
o, ..., my and 7y, ..., 7, be the Greek and Latin planes of deficiency d. Lemma 5.1
(b) implies that every plane 7; meets every plane 7; in a line.

Lemma 5.1 (d) shows that every point of 7 lies on a Latin plane of positive defi-
ciency. Thus, the ¢+ 1 lines myNz;, j=0,...,q, cover all points of my. Thus, the
g + 1 lines 7o N 7; pass through a common point P of 7 (this can be seen as follows:
if P is the point of intersection of two of the lines, then every line / of 7y on P must be
one of the lines, since otherwise ¢ more lines would be needed to cover /). Then all
Latin planes 7; pass through P. Lemma 5.1 (d) shows then that also all Greek planes
7; pass through P. Hence all Greek and Latin planes on P have deficiency d while the
other Greek and Latin planes meet C in a conic.

We have [ngNC|=¢g+1—d>2. Let X e nyN C with X # P. Then X lies on
d+1 =2 lines of 7y that contain no further point of C. Let / be a line of 7y on X
that contains no further point of C and that does not pass through P. As |7y N C| =
q+1—d < g, there exists a line & of 7y on P that contains no point of C except
possibly P (we do not know whether or not P is in C). Let R be the point in which /
and & meet. We may assume that o is the Latin plane on 4.

The Latin plane on / does not contain P and meets C therefore in a conic. Also,
since /N C = X, the point R is an external point of this conic. Then we can apply
Proposition 4.1 and obtain a quadric Qg of R*. For each of the 2¢ Greek and Latin
planes ¢ on R different from 7y and 79 we know that ¢N C is a conic (since P ¢ o)
and that ¢NC =0oN Qg (Proposition 4.1). This gives (mo\h)NC = (mo\h) N Q.
Recall that 1N C = & or hN C = {P}. Also the point X lies in (7p\4) N C and thus
X belongs to Qr. As Qg is a quadric with R ¢ Qg, then 7y N Qg 1s a point, a line, or
a conic. We show that the first case gives what we want, and that the two other cases
lead to a contradiction.

Case 1. o N Qg is a point. This point must be X. Also 7gNC = (AN C)U{X},
since (7o\h) N C = (mo\h) N Qr. As |rg N C| = ¢+ 1 — d = 2, this gives the following.
We have |zyg N C| = 2, the point P lies in C, and the two points of 7y N C are X and
P.Hence d = ¢ —1and P e C. This is what we wanted to show.
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Case 2. mp N Qg 1s a line. Since R ¢ Qg, this line is not 4. Hence ¢ points of this line
lie in 7o\ and thus in (7o\/1) N Qr = (mo\h) N C. But C does not contain three col-
linear points, a contradiction.

Case 3. myN Qg is a conic. At least ¢ — 1 points of this conic lie in 7\~ and
hence in C. Thus [7pN C| > ¢ — 1 and hence d <2. Asd =d, > 1, then d =2 and
|to N C] = g — 1. Thus 7y N C can be extended to the conic C,, by adjoining two
points. Let R’ be one of these two points and such that R’ # P. Then R’ lieson g — 1
lines of 7y that meet o N C. Let [’ be a line of 7y on R’ such that P ¢ [/’ and such that
" meets 7o N C in a (necessarily unique) point X’. As above, the Latin plane on /'
meets C in a conic and R’ is an external point of this conic. Thus, we can again apply
Proposition 4.1 and obtain a quadric Qg of R+ with R' ¢ Qgr.. As d =2 (so that
every Greek and Latin plane meets C in at least ¢ — 1 points), only conclusion (a) of
4.1 is possible. Hence R N C = Q' and all Greek and Latin planes on R’ meet Qg
in a conic. As R’ € Cy, and R’ ¢ Qg/, then 7y N Qg and Cy, are distinct conics that
share the ¢ — 1 points of 7y N C. This contradicts Result 3.3. O

The preceding two lemmas show that |C| = ¢* + ¢ + 2 and that C satisfies one of
the two conclusions of Theorem 1.2. This proves Theorem 1.1 and Theorem 1.2.
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