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Abstract. Let q be an odd prime power. A cap of the hyperbolic quadric Qþð5; qÞ is a set of
points of Qþð5; qÞ that does not contain three collinear points. It is called maximal, if it is
not contained in a larger cap. It is easy to see that a cap has size at most q3 þ q2 þ qþ 1 with
equality if and only if it meets every plane of Qþð5; qÞ in a conic. Caps of this size do exist. The
largest known maximal cap with less than q3 þ q2 þ qþ 1 points has size q3 þ q2 þ 1. In this
paper it is shown that for large odd q all caps with more than q3 þ q2 þ 2 points are contained
in a cap of size q3 þ q2 þ qþ 1. Also, some structural information is given on a hypothetical
maximal cap of size q3 þ q2 þ 2. This result is an analogue of an extension result in the case
that q is even. In contrast to the even case, the odd case heavily relies on algebraic arguments.

1 Introduction

For background on plane arcs, conics in planes, and quadrics of projective spaces we
refer to the book of J. Hirschfeld [4] on Galois geometries.

Consider the hyperbolic quadric Qþð5; qÞ of PGð5; qÞ. A cap of Qþð5; qÞ is a set
of points of Qþð5; qÞ that does not contain three collinear points. A cap C is called
maximal, if it is not contained in larger cap, that is, if every point of Qþð5; qÞnC lies
on a line that meets C in two points.

If q is odd, then a cap of Qþð5; qÞ has at most q3 þ q2 þ qþ 1 points. This can
be seen by a simple counting argument using that an arc of the plane PGð2; qÞ, q
odd, has at most qþ 1 points. Caps of size q3 þ q2 þ qþ 1 have the property that
they meet every plane of Qþð5; qÞ in a conic. Glynn [3] constructed caps of size
q3 þ q2 þ qþ 1 as the intersection of Qþð5; qÞ with another quadric of PGð5; qÞ.
L. Storme [5] described the caps of size q3 þ q2 þ qþ 1 for large odd q. More pre-
cisely, he shows for q > 3138 that such a cap is the intersection of Qþð5; qÞ with an-
other quadric.

Now suppose that q is even. Then arcs in planes PGð2; qÞ can have qþ 2 points, so
the same counting argument shows that a cap of Qþð5; qÞ has at most ðq2 þ 1Þðqþ 2Þ
points. For q ¼ 2, one can easily construct a cap of size ðqþ 2Þðq2 þ 1Þ ¼ 20 as the
image under the Klein-correspondence of the set of the nonabsolute lines of a sym-
plectic polarity in PGð3; qÞ. However, for q > 2, q even, the largest known caps have



qþ 1 points less; it is also known that every cap with more than ðq2 þ 1Þðqþ 2Þ�
q� 1 points can be extended to a cap with ðq2 þ 1Þðqþ 2Þ points. This extension
result has been proved by Ebert, Szönyi and Metsch [2]. So, for q > 2 even the open
question is whether or not there exists a cap with ðq2 þ 1Þðqþ 2Þ points.

It is the purpose of this paper to prove an extension result for caps in the case q

odd, which is in a way similar to the one in the even case. It was my hope to deter-
mine the largest size of a cap that is not contained in a cap of size q3 þ q2 þ qþ 1.
There exists an example with q3 þ q2 þ 1 points, which is due to L. Storme. The fol-
lowing theorem, which will be proved in this paper, misses this example only by one.

Theorem 1.1. Every cap of Qþð5; qÞ, q odd, q > 4363, with more than q3 þ q2 þ 2
points is contained in a cap of size q3 þ q2 þ qþ 1 of Qþð5; qÞ.

The methods developed to prove this theorem give a lot of information on the
structure of a hypothetical maximal cap with q3 þ q2 þ 2 points. The information is
collected in the next result.

Theorem 1.2. Suppose that there exists a maximal cap C of Qþð5; qÞ, q odd, with
q3 þ q2 þ 2 points. If q > 4363, then one of the following two cases occurs.

(a) There exists a line h of Qþð5; qÞ with jhVCj ¼ 2. The two planes of Qþð5; qÞ on
h meet C only in the two points of hVC. Every other plane of Qþð5; qÞ on one of

the q� 1 points P of hnC meets C in a q-arc that can be extended to a conic by

adjoining P. All other planes of Qþð5; qÞ meet C in a conic.

(b) There exists a point P A C with the following properties. A plane p of Qþð5; qÞ that
contains P meets C in two points. The other planes of Qþð5; qÞ meet C in a conic.

The proof of the second theorem shows even more, which might be used to show
that C is almost (that is except for some points) the intersection of Qþð5; qÞ with
another quadric Q. Some local results in the present paper in combination with the
techniques developed by L. Storme in [5] might show this. I did not try to do so, since
I was neither able to show that such an intersection of quadrics leads to a maximal
cap with q3 þ q2 þ 2 points, nor could I show that this is not possible.

We remark that both theorems can be translated via the Klein-correspondence to
results in PGð3; qÞ. We also like to mention that the proof of the above mentioned
extension result in the even case uses purely combinatorial arguments, whereas the
proofs of these two theorems rely on algebraic arguments. The arguments in Section
3 are inspired by the method L. Storme used in [5].

2 The example

The example discussed below is due to L. Storme. Consider in PGð3; qÞ the two
ovoids O and E defined by the following quadratic forms:

fO ¼ x2
0 þ bx0x1 þ x2

1 þ x2x3;

fE ¼ x2
0 þ bx0x1 þ x2

1 þ x2x3 þ x2
3 :
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These are two ovoids from a pencil of ovoids of type 1(i) given in Table 2 of [1].
The two quadrics share exactly one point Q, namely the one generated by ð0; 0; 1; 0Þ.
They also have the same tangent plane in Q. While these two ovoids have all their
tangents in common when q is even, they share only the qþ 1 tangents in Q when
q is odd. In any case, there exists exactly one plane that is a tangent plane to both
ovoids, and this is the tangent plane on Q. Using these properties, it is easy to see
that every point P with P B O lies on a line l that is a secant of O but not a secant
of E.

Now we go to the hyperbolic quadric Qþð5; qÞ defined by a quadratic form in
PGð5; qÞ. Choose a solid G such that E :¼ GVQþð5; qÞ is an ovoid of G. Let O be
an ovoid such that E and O are related as above. Then jOVEj ¼ 1 and every point of
GnO lies on a line that meets O in two points and in E in at most one point.

Let t be the polarity associated to Qþð5; qÞ. Then h :¼ Gt is a line that is skew to
G and has no point in Qþð5; qÞ. For points P A E, the plane hP; hi meets Qþð5; qÞ
only in P, while for points P A GnE, the plane hP; hi meets Qþð5; qÞ in a conic. Let
Q be the point of OVE. Let C be the set consisting of the point Q and of the points
of the conics Qþð5; qÞV p for the planes p ¼ hP; hi with P A OnfQg. Then jCj ¼
1þ q2ðqþ 1Þ. As O is an ovoid, no three of the planes hh;Pi with P A O are con-
tained together in a 3-space. This implies that C is a cap of Qþð5; qÞ.

Now we show that C is a maximal cap of Qþð5; qÞ. To see this, consider a point X
of Qþð5; qÞnC. We show that X lies on a line that meets C in two points. The plane
t :¼ hh;Xi meets G in a point R that is not in O. Then R lies on a line l of G that
meets O in two points P1 and P2, and that meets E in at most one point. If s is the
polarity of G associated with the ovoid E, then l s ¼ l t VG, as E ¼ GVQþð5; qÞ. As l
is not a secant of E, the line l 0 :¼ l s is a tangent or a secant of E. As l 0 J l t and h ¼
Gt J ðl 0Þt, the solid S :¼ hl; hi is contained in ðl 0Þt. Thus ðl 0Þt ¼ S. As P1;P2 A l,
the conics C1 :¼ hP1; hiVQþð5; qÞ and C2 :¼ hP2; hiVQþð5; qÞ are contained in
S. Note that these two conics are disjoint. From X A hR; hi and R A l we have
X A hl; hi ¼ S.

First consider the case that l 0 is a tangent of E. Then S ¼ ðl 0Þt meets Qþð5; qÞ in a
cone with a point vertex over a Qð2; qÞ. As the conics C1 and C2 are contained in S

and are disjoint, it follows that every point of the cone S VQþð5; qÞ lies on a line that
meets C1 and C2 in distinct points. This applies to X .

Now consider the case when l 0 is a secant of E. Then S ¼ ðl 0Þt meets Qþð5; qÞ in a
hyperbolic quadric H ¼ Qþð3; qÞ. As C1 and C2 are disjoint conics of this hyperbolic
quadric H, every ruling line of H meets these conics in di¤erent points. Hence every
point of S VQþð5; qÞ ¼ H lies on a line that meets C in two points. Again this applies
to X .

Remark. If q is even, then almost all of the above argument applies. There is a dif-
ference, when the plane hh;Xi meets G in a point of E. Then R ¼ X and X is a point
of E. In this case, every line of G on R that is not a secant of E is a tangent of E and
hence a tangent of O. Thus, it is not possible to find a line l on R that is a secant of O
but not of E. In fact, the q2 points of EnO can be adjoined to C, and the set C UE is
a partial ovoid with q2 extra points: jC UEj ¼ q2 þ 1þ q2ðqþ 1Þ. It was shown in [2]
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that this cap is maximal. In fact, this is the largest cap of Qþð5; qÞ that is known in
the case when q > 2 is even, cf. the introduction.

3 Results on conics

An arc of the plane PGð2; qÞ is a set of points such that every line contains at most
two of the points in the set. A secant of an arc is a line that meets it in two points. A
tangent of an arc is a line that meets it in exactly one point.

A conic of PGð2; qÞ can be defined by a quadratic form (see [4] for a precise defi-
nition). When q is odd, then every point P that is not in the conic C of PGð2; qÞ either
lies on two tangents and 1

2 ðq� 1Þ secants and is called an external point of C, or lies
on no tangent and 1

2 ðqþ 1Þ secants and is called an internal point of C. The following
two famous theorems are due to Segre. A proof may be found in Hirschfeld [4].

Result 3.1. An arc of PGð2; qÞ, q odd, has at most qþ 1 points with equality if and only

if it is a conic.

Result 3.2. Every arc of PGð2; qÞ, q odd, with more than q� 1
4

ffiffiffi
q

p þ 7
4 points is con-

tained in a conic.

Lemma 3.3. (a) Two di¤erent conics of PGð2; qÞ share at most four points.
(b) Let C be a conic and B an arc of PGð2; qÞ. If jBVCj > 1

2 ðqþ 3Þ, then BJC.

Proof. For (a) see [4]. For (b) suppose that B contains a point P that is not in C. Then
P lies on 1

2 ðq� 1Þ or 1
2 ðqþ 1Þ secants of C. As P A B, we find on each of these secants

a point of C that is not in B. Thus jBVCjc jCj � 1
2 ðq� 1Þ ¼ 1

2 ðqþ 3Þ. r

Consider a conic C of PGð2; qÞ, q odd. Embed PGð2; qÞ in PGð2; q2Þ. Then C lies
in a unique conic C of PGð2; q2Þ. This conic may defined in PGð2; q2Þ by the qua-
dratic form that defines C in PGð2; qÞ. Consider a point R of PGð2; qÞ that is not in
C. Then R might be an external or internal point of C. However in PGð2; q2Þ, the
point R is an external point of C and thus lies on two tangents t1 and t2 of C. These
lines belong to PGð2; qÞ if and only if R is an external point of C. In the case when R

in an internal point of C, these lines do not belong to PGð2; qÞ; we call them the
tangents of C to R in a quadratic extension of PGð2; qÞ.

The next result can be deduced from a paper of L. Storme [5].

Lemma 3.4. Let C and C 0 be two conics of PGð2; qÞ, q > 16, and let R be a point not

contained in C UC 0. Then the number s of lines on R that are secant to both conics

satisfies one of the following:

(i) s ¼ 0, s ¼ ðq�1Þ
2 or s ¼ ðqþ1Þ

2 ,

(ii)
q�3

ffiffi
q

p

4 c sc
qþ3

ffiffi
q

p

4 .

Moreover, the first case can occur only if R is an external point of both conics and if
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both conics have the same tangents through R, or if R is internal point of both conics

and if the conics have the same tangents in a quadratic extension of PGð2; qÞ.

We will need this result in the following situation. Consider in PGð4; qÞ a cone with
a point vertex R over a Qþð3; qÞ. We denote this quadric by RQþð3; qÞ. It contains
2ðqþ 1Þ planes that can be called Greek and Latin planes, such that there are qþ 1
Greek planes and qþ 1 Latin planes, such that di¤erent planes of the same type meet
in R, while planes of di¤erent types meet in a line on R. Consider two Greek planes p
and p 0, a conic C of p with R B C, and a conic C 0 of p 0 with R B C 0.

Consider a projective collineation k of PGð4; qÞ with pk ¼ p 0 and tk ¼ t for all
Latin planes t. Then for every Latin plane t the line tV p is mapped to the line tV p 0.

Extend PGð4; qÞ to PGð4; q2Þ. The form that defines RQþð3; qÞ defines in PGð4; q2Þ
a quadric RQþð3; q2Þ with RQþð3; q2ÞVPGð4; qÞ ¼ RQþð3; qÞ. This quadric has
q2 þ 1 Latin and Greek planes. The projective collineation k extends uniquely to a
projective collineation k of PGð4; q2Þ. Also k fixes each of the q2 þ 1 Latin planes of
RQþð3; q2Þ.

In PGð4; q2Þ, the plane p spans a plane p, and the conic C is contained in a unique
conic C of p. Though R may be an internal or external point of C, it is always an
external point of C. Thus, it lies on two tangents of C. These tangents lie in unique
Latin planes of RQþð3; q2Þ. We call these the two Latin tangent planes of the conic C.
Denote by EðpÞ the set consisting of those of the qþ 1 the Latin planes of RQþð3; qÞ
for which tV p is a secant of C. Then jEðpÞj ¼ 1

2 ðq� 1Þ or jEðpÞj ¼ 1
2 ðqþ 1Þ. Use the

same notation and teminology for E 0.
Using the above isomorphism k from p onto p 0, Lemma 3.4 gives the following.

Lemma 3.5. In the above situation, if the two Latin tangents planes of C coincide

with those of C 0, then EðpÞ ¼ Eðp 0Þ or EðpÞVEðp 0Þ ¼ q. If they do not coincide, then
q�3

ffiffi
q

p

4 c jEðpÞVEðp 0Þjc qþ3
ffiffi
q

p

4 .

Lemma 3.6. Consider in PGð4; qÞ a quadric that is a cone with a point vertex R over a

quadric Qþð3; qÞ; call its planes Greek and Latin planes as above.
Let Q be a second quadric of PGð4; qÞ with R B Q. Suppose that p1; p2; . . . ; ps, sd 3,

are Greek planes such the sets Ci :¼ pi VQ are conics with the same Latin tangent

planes.
(a) Suppose that R is an external point of each conic pi VQ. Then there exist two

skew lines that both meet each conic Ci.
(b) Suppose that R is an internal point of each conic pi VC. Then there does not exist

a Greek plane p on R for which pVQ is a conic such that R is an external point of

pVC.

Proof. (a) In this part, we do not need to go to the quadratic extension. Let T be the
subspace of PGð4; qÞ that is perpendicular to R with respect to the quadric Q. As
R B Q, the subspace T has dimension three and R B T . Let t1 and t2 be the common
Latin tangent planes of all conics Ci. Then each line t1 V pi meets Q in a unique point
Ai. As RAi is a tangent, Ai lies in T . Thus all points Ai lie on the line t1 VT . Similar,
we find points Bi on the line t2 VT .
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(b) Now we have to go to the quadratic extension. The form defining Q defines
in PGð4; q2Þ a quadric Q with QVPGð4; qÞ ¼ Q. Consider the 3-space T of PGð4; q2Þ
that is perpendicular to R with respect to the quadric Q. As R B Q, then T has dimen-
sion three and R B T . The Greek planes pi span Greek planes pi of Q. As Ci ¼ pi VQ

is a conic, Ci :¼ pi VQ is a conic of pi.
Let t1 and t2 be the two common Latin tangent planes of the conics Ci. As in Part

(a), the lines h1 :¼ t1 VT and h2 :¼ t2 VT contain at least s points of Q. As sd 3, it
follows that h1 and h2 are contained in Q.

Let p be any Greek plane of RQþð3; qÞ for which C :¼ pVQ is a conic. Extend
p and C as above to p and the conic C :¼ pVQ. Then pVT contains the point
A :¼ h1 V p of T . Hence RA is a tangent of C. As the Latin plane t1 ¼ hh1;Ri does
not belong to PGð4; qÞ but only to PGð4; q2Þ, it follows that R is an internal point of
the conic C ¼ pVQ. r

4 A local result

In the next section we shall study large caps in the hyperbolic quadric Qþð5; qÞ.
We shall see there that many tangent hyperplanes of Qþð5; qÞ have the property that
they meet the cap in a lot of points. It is the purpose of this section to derive local
information on the intersection of the cap with such a tangent hyperplane.

Throughout this section, we consider in PGð4; qÞ a degenerate quadric that is
a cone with a point vertex R over a Qþð3; qÞ. We denote this quadric by RQþð3; qÞ.
As in the last section we call the 2ðqþ 1Þ planes contained in RQþð3; qÞ Greek or
Latin planes. Notice that every 3-space of PGð4; qÞ not containing R meets Q in a
hyperbolic quadric Qþð3; qÞ. A cap of RQþð3; qÞ is a set of points of RQþð3; qÞ
that does not contain three collinear points. We shall prove the following propo-
sition.

Proposition 4.1. Suppose that C is a cap of RQþð3; qÞ, q odd, with at least q2 þ qþ 2
points and R B C. Suppose that some Greek or Latin plane meets C in a conic and

that R is an external point of this conic. If q > 4363, then there exists a quadric Q of

PGð4; qÞ with R B Q such that one of the following cases occurs.

(a) CJQ. Also, every Greek and Latin plane on R meets Q in a conic.

(b) CJQ. There is one Greek or Latin plane (w.l.o.g. a Greek plane) p0 such that

jp0 VCj ¼ 2 and such that h :¼ p0 VQ is a line. The other q Greek planes meet C

in a conic. The two Latin planes that contain a point of hVC meet C in a conic.
For the q� 1 Latin planes that meet h in point P with P B C, the set pVC is a

q-arc and the set ðpVCÞU fPg is a conic. Every Greek and Latin plane other than

p0 meets Q in a conic.

(c) We have jCjc q2 þ qþ 3. One Latin plane t0 and one Greek plane p0 meet Q in

exactly one point. These two planes meet C in at most three points. Every other

Greek and Latin plane s has the properties that jsVCj A fq; qþ 1g, that sVCJ
sVQ, and that sVQ is a conic.
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(d) We have jCjc q2 þ qþ 12. Also R lies on a Greek plane p that satisfies
1
2 ðq� 5Þc jpVCjc 1

2 ðqþ 7Þ and for which the arc pVC is not contained in a

conic.

The proof of this proposition is divided into several lemmas. Throughout this sec-
tion we suppose that the hypotheses of the proposition are satisfied.

For every Greek or Latin plane p, the set pVC is an arc of p. Hence, by Result
3.1, we have jpVCjc qþ 1 with equality if and only if pVC is a conic. We put
dp :¼ qþ 1� jpVCj and call dp the deficiency of p. Define

e :¼ 1

4
ð ffiffiffi

q
p � 3Þ and D :¼ 4

ffiffiffi
q

p þ 13:

Lemma 4.2. The sum of the deficiencies of the Greek planes is at most q� 1. More than

qþ 1�D Greek planes meet C in more than qþ 1� e points. For these Greek planes

p, the arc pVC is contained in a unique conic of p, which will be denoted by Cp. The
same statement is true for the Latin planes, and also the same notation is used for the

Latin planes.

Proof. If pi, i ¼ 0; . . . ; q, are the Greek planes, then jCj ¼
P

jpi VCj ¼ ðqþ 1Þ2 �P
dpi , since R B C. As jCjd q2 þ qþ 2, this gives

P
dpi c q� 1. Since ðq� 1Þ=e <

D (use q > 4363), it follows that less than D Greek planes meet C in qþ 1� e or less
points. If the Greek plane p meets C in more than qþ 1� e points, then Lemmas 3.2
and 3.3 show that pVC is contained in a unique conic. r

If p is a Greek plane, then we denote by SðpÞ the set consisting of all Latin planes t
for which tV p is a secant of C, that is for which the line tV p meets C in two points.
If jpVCj > qþ 1� e, so that pVC is contained in the conic Cp, then we denote by
EðpÞ the set consisting of all Latin planes t for which the line tV p meets Cp in two
points. Clearly SðpÞJEðpÞ. For Latin planes t, the same notation is used; of course,
SðtÞ and EðtÞ (if defined) are sets of Greek planes.

Lemma 4.3. Let M be the set of all Greek planes (or all Latin planes) p that satisfy

jpVCj > qþ 1� e and R B Cp. Let p; p
0; pi A M.

(a) We have jSðpÞj > jEðpÞj � e.

(b) Either EðpÞ ¼ Eðp 0Þ, or EðpÞVEðp 0Þ ¼ q, or ðq� 3
ffiffiffi
q

p Þ=4c jEðpÞVEðp 0Þjc
ðqþ 3

ffiffiffi
q

p Þ=4.

(c) If Eðp1ÞVEðp2Þ ¼ q and Eðp1ÞVEðp3Þ ¼ q, then Eðp2Þ ¼ Eðp3Þ.

Proof. Part (a) follows from jpVCj > qþ 1� e and jCpj ¼ qþ 1. Part (b) follows
from Lemma 3.5. Part (c) follows from (b) using that jEðpiÞj A 1

2 ðq� 1Þ; 12 ðqþ 1Þ
� �

for i ¼ 1; 2; 3. r
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Lemma 4.4. Let Q be a quadric of PGð4; qÞ. Suppose that p is a Greek or Latin plane

with jpVCj > qþ 1� e. If Q contains five points of pVC, then pVCJCp JQ. If in
addition R B Q, then Cp ¼ pVQ.

Proof. As pVQ contains five points of an arc, pVQ ¼ p or pVQ is a conic of p. In
the first case we are done. Suppose then that pVQ is a conic. As this conic shares five
points with the conic Cp, we have pVQ ¼ Cp by Result 3.3 (a). r

Lemma 4.5. Let Q be a quadric of PGð4; qÞ with R B Q. Let g (or l ) be the number

of Greek (or Latin) planes p that satisfy pVCJQ and jpVCj > qþ 1� e. If ld 6,
then g; ld 1

2 ðq� 7Þ �D.

Proof. Let S be the set consisting of the points of C that lie in the l Latin planes t that
satisfy tVCJQ and jtVCj > qþ 1� e. As the sum of the deficiencies of the Latin
planes is at most q� 1, we have jSjd lðqþ 1Þ � qþ 1. Clearly SJQ.

Consider a Greek plane p with jpVCj > qþ 1� e. If the set pVC contains at least
five points of S, then pVCJQ by Lemma 3.3. As there are at most D Greek planes
that meet C in qþ 1� e or less points, it follows that at most gþD Greek planes
have more than four points in S; these planes have of course at most 2l points in
S, since they meet each of the l Latin planes that define S in a line. The remaining
qþ 1� g�D Greek planes have at most four points in S. As every point of S lies on
a unique Greek plane, it follows that

ðqþ 1� g�DÞ � 4þ ðgþDÞ2ld jSjd ðqþ 1Þl � qþ 1:

This gives

g� 2d
1

2
ðq� 3Þ �D� 3qþ 1

2ðl � 2Þ :

As ld 6 and q > 4363, this implies that gd 6 and we obtain in the same way

l � 2d
1

2
ðq� 3Þ �D� 3qþ 1

2ðg� 2Þ :

Combine both bounds to

g� 2d
1

2
ðq� 3� 2DÞ � ð3qþ 1Þ q� 3� 2D� 3qþ 1

g� 2

� ��1

:

This is equivalent to

ðq� 3� 2DÞðg� 2Þ2 d 1

2
ðq� 3� 2DÞ2ðg� 2Þ � 1

2
ðq� 3� 2DÞð3qþ 1Þ:
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Divide this by q� 3� 2D and check that the resulting inequality can be written in
the form

0d ðg� 6Þðq� 7� 2D� 2gÞ þ q� 45� 8D:

As q > 45þ 8D (this follows from q > 4363) and gd 6, this implies that 2g >
q� 7� 2D. The same bound holds for l. r

Lemma 4.6. There exists a ( possibly degenerate) quadric Q of PGð4; qÞ with R B Q

and the following properties. At least 1
2 ðq� 7Þ �D Greek planes p and at least

1
2 ðq� 7Þ �D Latin planes p satisfy pVCJQ and jpVCj > qþ 1� e.

Proof. (1) Consider the set G consisting of the Greek planes that meet C in more than
qþ 1� e points. Then jGjd qþ 1�Dd 15 by Lemma 4.2.

(2) In this part of the proof we show that there exist three planes p1; p2; p3 A G such
that jSðp1ÞVSðp2ÞVSðp3Þjd 6þD.

As the sum of the deficiencies of the Latin planes is at most q� 1, there exists
a Latin plane t for which tVC is a conic. As R B C, then R lies on at least 1

2 ðq� 1Þ
secant lines of this conic. Each of these secant lines lies in a Greek plane, and at most
D of the Greek planes obtained in this way do not lie in G. As 1

2 ðq� 1Þ �Dd 5, we
then find five Greek planes p1; . . . ; p5 A G such that pi V t is a secant line. As R lies on
the secant line tV pi of pi VC, then R is not a point of the conic Cpi . Also t A SðpiÞJ
EðpiÞ. Then, by Lemma 4.3 (b), any two of the sets EðpiÞ share at least 1

4 ðq� 3
ffiffiffi
q

p Þ
Latin planes.

Put Ti :¼ Eðp1ÞVEðpiÞ for i ¼ 2; . . . ; 5. Then jTijd 1
4 ðq� 3

ffiffiffi
q

p Þ. Also T2 UT3 U
T4 UT5 JEðp1Þ and jEðp1Þjc 1

2 ðqþ 1Þ. Thus, if u is the largest intersection any
two of the sets T2;T3;T4;T5 have, then 1

2 ðqþ 1Þd q� 3
ffiffiffi
q

p � 6u. Using q > 4363,
this implies that ud 1

12 ðq� 1� 6
ffiffiffi
q

p Þd 3eþ 6þD. We may assume that jT2 VT3jd
3eþ 6þD. As T2 VT3 ¼ Eðp1ÞVEðp2ÞVEðp3Þ, then Lemma 4.3 (a) proves (2).

(3) Let p1; p2; p3 be as in (2). As jtVCjc qþ 1� e for at most D Latin planes t,
we find six Latin planes t1; . . . ; t6 in Sðp1ÞVSðp2ÞVSðp3Þ that have each more than
qþ 1� e points in C. Then each of the 18 lines pi V tj is a line that meets C in two
points.

Choose five points from p1 VC, five points from p2 VC, and from each of the three
planes ti, i ¼ 1; 2; 3, one point of ti VC that does not lie in p1 U p2. Since quadrics
in PGð4; qÞ are determined by 14 points, these 13 points lie on at least a pencil of
quadrics of PGð4; qÞ. Hence these 13 points are contained in a quadric Q with
Q0PGð4; qÞ and Q0RQþð3; qÞ.

Lemma 4.4 shows that p1 VCJCp1 JQ and that p2 VCJCp2 JQ. As ti,
i ¼ 1; 2; 3, shares two points with p1 VC, two points with p2 VC, and one more point
with Q, the same lemma shows that ti VCJCti JQ. As p3 VC shares two points
with each of the arcs t1 VC, t2 VC and t3 VC, the same lemma shows p3 VCJ
Cp3 JQ. Finally, for ti, i ¼ 4; 5; 6, we now also see that six points of ti VC are con-
tained in Q. Hence ti VCJCti JQ, i ¼ 4; 5; 6.

Above we have seen that R does not belong to the conics Cp1 , Cp2 and Cp3 . Assume
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that R A Q. Then Q meets pi, i ¼ 1; 2; 3, in a conic and at least one more point. This
implies that the planes p1; p2; p3 are contained in Q. Then every Latin plane contains
three lines of Q. Hence Q contains all Latin planes, that is Q contains RQþð3; qÞ. But
this implies that Q ¼ RQþð3; qÞ or that Q ¼ PGð4; qÞ. This contradicts our choice of
Q. Hence R B Q.

As Q contains the six arcs ti VC, 1c ic 6, Lemma 4.5 completes the proof. r

From now on, we denote by Q the quadric constructed in Lemma 4.6.

Lemma 4.7. Let G be the set consisting of the Greek planes p that satisfy pVCJQ

and jpVCj > qþ 1� e. Let p 0 be a Greek plane with jp 0 VCj > qþ 1� e.

(a) The point R is not in the conic Cp 0 .

(b) If p 0 B G, then more than 2
3 jGj planes p of G satisfy EðpÞVEðp 0Þ ¼ q.

Proof. (a) Assume that R A Cp 0 . As Cp 0 is a conic containing the arc p 0 VC and as
R B C, then R lies on jp 0 VCj > qþ 1� e lines of p 0 that meet C. Thus, all but at
most e Latin planes have the property that they meet p 0 VC. Then Lemma 4.6 shows
that we can find five Latin planes t that meet p 0 VC and satisfy tVCJQ. Thus Q
shares five points with p 0 VC. Then Cp 0 JQ (Lemma 4.4). But R B Q, a contradic-
tion.

(b) Let L be the set consisting of the Latin planes that meet C in more than
qþ 1� e points. We first show indirectly that for any three di¤erent planes p1; p2;
p3 A G, the set Sðp 0ÞVSðp1ÞVSðp2ÞVSðp3Þ contains at most two Latin planes of L.
Assume that this is not true, so that this set contains three Latin planes t of L. These
planes t would have two points of C in common with each plane pi. As pi VCJQ

for i ¼ 1; 2; 3, then tVC has six points in Q. Then tVCJQ (Lemma 4.4). As there
are three such planes t, also six points of p 0 VC are in Q and therefore p 0 VCJQ, a
contradiction.

Consider the 3-subsets T of Sðp 0ÞVL. We have just shown that every set T is
contained in at most two sets SðpÞ with p A G. As R is an internal or external point of
Cp 0 , then jSðp 0Þjc 1

2 ðqþ 1Þ. Thus, if s is the number of planes of Sðp 0Þ that do not

lie in L, then there are at most
1
2
ðqþ1Þ�s

3

� �
sets T . From Lemma 4.2 we have scD.

If p A G with EðpÞVEðp 0Þ0q, then jEðpÞVEðp 0Þjd 1
4 ðq� 3

ffiffiffi
q

p Þ and therefore
jSðpÞVSðp 0Þjd c :¼ 1

4 ðq� 3
ffiffiffi
q

p Þ � 2e (Lemma 4.3). Therefore SðpÞ contains at least
c� s

3

� 	
sets T .

Count in two ways the pairs ðp;TÞ of Greek planes p A G and 3-subsets T

of Sðp 0ÞVL that satisfy T JSðpÞ. If a is the number of planes p A G that satisfy

EðpÞVEðp 0Þ0 0, then a c�s
3

� 	
c 2

1
2
ðqþ1Þ�s

3

� �
. As scD and cc 1

2 ðqþ 1Þ, this implies

a c�D
3

� 	
c 2

1
2
ðqþ1Þ�D

3

� �
. Using q > 4363, it follows that a < 34. As jGjd 1

2 ðq� 7Þ �D,

this gives jGj � ad 2
3 jGj. r

Lemma 4.8. Suppose that there exists a Greek plane that meets C in a conic and such

that R is an external point of this conic. Then every Greek plane p0 with jp0 VCj >
qþ 1� e satisfies p0 VCJQ.
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Proof. Let G be the set consisting of the Greek planes p that satisfy jpVCj >
qþ 1� e and pVCJQ, and let G 0 be the set consisting of the Greek planes p that
satisfy jpVCj > qþ 1� e but not pVCJQ. From Lemma 4.2 we have jGj þ jG 0jd
qþ 1�D, and Lemma 4.6 we have jGjd 1

2 ðq� 7� 2DÞ. From the previous lemma
we also know that R B pVC for all p A GUG 0. Lemma 4.4 shows that Cp ¼ pVQ

for all p A G. We have to show that G 0 ¼ q.
Assume this is not true and let p0 A G 0. By the previous lemma, there exists a subset

S of G with jSj > 2
3 jGj such that Eðp0ÞVEðpÞ ¼ q for all p A S. Lemma 4.3 implies

that all sets EðpÞ with p A S are the same. If p 0 A G 0, then the preceding lemma gives
Eðp 0ÞVEðpÞ ¼ q for at least one plane p A S, and then Lemma 4.3 implies that
Eðp 0Þ ¼ Eðp0Þ. Thus any two planes p of S UG 0 give the same or disjoint sets EðpÞ.
Therefore R is an external point of all conics Cp, or it is an internal point of all conics
Cp, p A S UG 0, cf. Lemma 3.5.

First consider the case when R is an internal point of all conics Cp with p A S UG 0.
In this case, we consider three planes p1; p2; p3 A S. Then R is an internal point of the
conics Cpi ¼ pi VQ. By hypotheses, R lies on a Greek plane s for which sVC is a
conic and R is an external point of this conic. As R is an internal point of all conics
Cp with p A G 0, then s A G. Thus Cs ¼ sVQ. Then Lemma 3.6 (b) gives a contra-
diction.

Now consider the case when R is an external point of all conics Cp with p A S UG 0.
Then Lemma 3.6 (a) shows that we find two skew lines l1 and l2 such that li, i ¼ 1; 2,
meets all conics Cp with p A S. As l1 as well as l2 can contain at most two points of
the cap C, we have thus found at least w :¼ 2ðjSj � 2Þ points that belong to one of
the conics Cp with p A S but that do not lie in C. Thus, the sum of the deficiencies
of the planes p A S is at least w. If w 0 denotes the sum of the deficiencies of the planes
in G 0, then Lemma 4.2 gives wþ w 0 c q� 1. We show next that this implies w 0 c
jG 0j � 3.

Assume on the contrary that w 0 d jG 0j � 2. Using wd 2jSj � 4 and jSjd 2jGj=3
and jGj þ jG 0jd qþ 1�D, it follows that

wþ w 0
d

4

3
jGj � 4þ jG 0j � 2d q� 5�Dþ jGj

3
:

As wþ w 0 c q� 1, we conclude that jGjc 3Dþ 12. Combining this with jGjd
1
2 ðq� 7� 2DÞ, it follows that qc 8Dþ 31. But q > 8Dþ 45 (this was already veri-
fied in the proof of Lemma 4.5), contradiction.

Then w 0 c jG 0j � 3. Hence G 0 contains three planes p1; p2; p3 of deficiency zero.
Then SðpiÞ ¼ EðpiÞ, and as we have seen above, EðpiÞ ¼ Eðp0Þ for i ¼ 1; 2; 3. As
in Part (3) of the proof of Lemma 4.6, we see that there exists a quadric Q 0 with
Q 0 0PGð4; qÞ and Q 0 0RQþð3; qÞ such that the conics pi VC ¼ Cpi JQ 0 are con-
tained in Q 0. As R does not lie in C and thus R does not belong to the conics Cpi ,
we see as in Part (3) of the proof of Lemma 4.6 that R B Q 0, so that pi VQ 0 ¼ Cpi .
Lemma 3.6 (a) shows that there exist lines l 01; l

0
2 such that l 0i meets the conics Cp1 , Cp2 ,

and Cp3 . As Cpi ¼ pi VC, it follows that C contains three collinear points. Contra-
diction. r
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Lemma 4.9. For every Greek and Latin plane p with more than 1
2 ðqþ 11Þ points in C,

the set pVQ is a conic and pVCJQ. There are at least q� 1 such Greek and at least

q� 1 such Latin planes.

Proof. Let g be the number of Greek planes that do not satisfy pVCJQ, and let
l be the number of Latin planes t that do not satisfy tVCJQ. By hypothesis
of Proposition 4.1 we may assume that R lies on a Greek plane that meets C in a
conic and such that R is an external point of this conic. Then the preceding lemma
shows that all Greek planes p on R with jpVCj > qþ 1� e satisfy pVCJQ. Then
Lemma 4.2 gives gcD ¼ 4

ffiffiffi
q

p þ 13.
Consider a Latin plane t. Of the qþ 1 lines of t on R, only g lie in Greek planes

p that do not satisfy pVCJQ, and only these lines can contain points of C that
do not lie in Q. Hence, all but at most 2g points of tVC lie in Q. Suppose that
jtVCj > 1

2 ðqþ 3Þ þ 2g. Then tVQ contains more than 1
2 ðqþ 3Þ points of the arc

tVC. As R B Q, it follows that tVQ is a conic. Lemma 3.3 implies that tVCJQ.
Thus, every Latin plane t that meets C in more than ðqþ 3Þ=2þ 2g points satisfies

tVCJQ. As the sum of the deficiencies of the Latin planes is at most q� 1 (Lemma
4.2), it follows that at most two Latin planes do not have this property. Hence lc 2.
The same argument shows then gc 2. r

Lemma 4.10. At most eight points of C do not lie in Q. In every Greek and Latin plane

lie at most four points that are in C but not in Q.

Proof. Let p be a Greek plane. Then p is the union of the lines pV t for the Latin
planes t. By Lemma 4.9, at most two Latin planes can contain points of CnQ. Hence,
at most two of the lines pV t contain points of CnQ; clearly on every such line there
are at most two points of C. Hence, p has at most four points in CnQ. Also, by
Lemma 4.9, at most two Greek planes can contain points of CnQ, so jCnQjc 8.

r

Lemma 4.11. Every Latin or Greek plane p meets Q is a point, a line, or a conic.

Proof. As Q is a quadric with R B Q, the set pVQ is a point, a line, a conic, or the
union of two lines. We just have to exclude the last possibility. We may assume that p
is a Greek plane.

Assume that pVQ is a union of two lines h1 and h2. Then at most four points of
pVQ can be in the cap C. By Lemma 4.9, there exists q� 1 Latin planes t for which
tVCJ tVQ and for which tVQ is a conic. For at most four of these, the line tV p

contains a point of C, and exactly one of these contains the point h1 V h2. Thus, at
least q� 6 of these planes t have the properties that the line tV p meets tVQ ¼
h1 U h2 in two points and that these two points are not in C. As tVQ is a conic, it
follows that jtVCjc jtVQj � 2 ¼ q� 1. Thus the sum of the deficiencies of these
q� 6 planes t is at least 2ðq� 6Þ. This contradicts Lemma 4.2. r

Lemma 4.12. If some Greek or Latin plane meets Q in a line, then conclusion (b) of
Proposition 4.1 holds.
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Proof. We may assume that a Greek plane p meets Q in a line h. Consider the Latin
planes t with the properties that tVCJ tVQ and that tVQ is a conic. All these
conics contain a point of h, but only two points of h can be in the cap C. So, at most
two of these planes t have deficiency zero. Then, by Lemma 4.9, at least q� 3 Latin
planes have positive deficiency. Then Lemma 4.2 shows that every Latin plane has
deficiency at most three, so Lemma 4.9 implies that all Latin planes t on R have the
property that tVCJ tVQ and that tVQ is a conic. Thus CJQ.

It follows that h meets C in two points, that the two Latin planes on the points
of hVC have deficiency zero, and that the q� 1 remaining Latin planes t on R have
deficiency one. Also, for the latter planes t, the unique point of the conic tVQ that is
not in the q-arc tVC is the point tV h.

As CJQ, we have jpVCj ¼ jhVCj ¼ 2. Hence, p has deficiency q� 1 and con-
sequently every other Greek plane has have deficiency zero, which implies that it
meets C in a conic. r

Lemma 4.13. If some Greek or Latin plane meets Q in one point, then conclusion (c) of
Proposition 4.1 holds.

Proof. We may assume that a Greek plane p0 meets Q in only one point. From
Lemma 4.10 we obtain jp0 VCjc 5, that is p0 has deficiency at least q� 4. If p is any
other Greek plane, then p has deficiency at most d � ðq� 4Þc 3, so Lemma 4.9 shows
that pVCJQ and that pVQ is a conic. Thus, exactly qðqþ 1Þ þ 1 points of Q lie in
the Greek planes. Then also exactly qðqþ 1Þ þ 1 points of Q lie in the Latin planes.

Then Lemma 4.11 implies that there is a Latin plane t0 that meets Q in one point.
As for the Greek planes, it follows for the other q Latin planes t that the set tVQ is a
conic that contains the arc tVC.

All points of C that do not lie in Q lie in p0 and t0 and thus on the line t0 V p0. As
there can be at most two points of C on this line, if follows that p0 and t0 have at
most three points in C. The q other Greek planes must thus together contain at least
jCj � 3d q2 þ q� 1 points of C. Thus, all these meet C in q or qþ 1 points (in fact
at most one of these meets C in q points). The same holds for the Latin planes. This is
the situation described in (c) of Proposition 4.1. r

Lemma 4.14. If every Greek and Latin plane meets Q in a conic, then one of the con-

clusions (a) and (d) of Proposition 4.1 hold.

Proof. If every Greek or every Latin plane p satisfies pVCJQ, then CJQ and
conclusion (a) of Proposition 4.1 holds. We may thus assume that there exists a Latin
plane t0 and a Greek plane p0 such that t0 VC is not contained in the conic t0 VQ,
and that p0 VC is not contained in the conic p0 VQ.

Let V be the variety in which the quadrics RQþð3; qÞ and Q meet. As every Greek

plane meets Q in a conic, then jV j ¼ ðqþ 1Þ2. Let n be the number of points of
C that are not in V . We have nc 8 from Lemma 4.10. Also jV VCj ¼ jCj � nd

q2 þ qþ 2� n. Hence, at most q� 1þ n points of V do not lie in C, that is
jVnCjc q� 1þ n.
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If s is a Greek or a Latin plane with jsVCj > 1
2 ðqþ 3Þ þ n, then the conic

sVQ ¼ sVV shares more than 1
2 ðqþ 3Þ points with the arc sVC. In this case,

Result 3.3 shows that sVCJ sVQ.
Now consider a Greek or a Latin plane s for which sVC is not contained in the

conic sVQ. Then jsVCjc 1
2 ðqþ 3Þ þ n and hence sVC shares at most 1

2 ðqþ 1Þ þ n

points with Q. In this case, at least 1
2 ðqþ 1Þ � n points of the conic sVQ ¼ sVV do

not lie in C. As two di¤erent planes s share at most two points of V (and this
of course only when one is a Greek and the other a Latin plane), and as jVnCjc
q� 1þ nc qþ 7, it follows that there can be at most two such planes.

Hence t0 and p0 are the only planes s, for which sVC is not contained in V . Then
t0 V p0 is the only line of RQþð3; qÞ that contains points of C that are not in V . As
this line meets C in at most two points, this gives nc 2. Then jVnCjc qþ 1.

As t0 contains at least 1
2 ðqþ 1Þ � n points of VnC, then t0 contains at least

1
2 ðqþ 1Þ � n� 2d 1

2 ðqþ 1Þ � 4 points of VnC that do not lie in p0. As jVnCjc
qþ 1, it follows that p0 contains at most 1

2 ðqþ 1Þ þ 4 points of VnC. Since jp0 VV j ¼
qþ 1, it follows that jp0 VC VV jd 1

2 ðqþ 1Þ � 4. Thus jp0 VCjd 1
2 ðqþ 1Þ � 3.

Above we have seen that jp0 VCjc 1
2 ðqþ 3Þ þ nc 1

2 ðqþ 7Þ. Of course, the same
bounds hold for jt0 VCj.

Recall that t0 and similarly p0 contain each at least 1
2 ðqþ 1Þ � 4 points of VnC. As

p0 V t0 can have up to two points in Q, it follows that jVnCjd ðqþ 1Þ � 4� 4� 2 ¼
q� 9. Then jV VCjc jV j � ðq� 9Þ ¼ q2 þ qþ 10. As jCnV j ¼ nc 2, this gives
jCjc q2 þ qþ 12.

Finally, as p0 VC is not contained in the conic p0 VQ, it is not possible that p0 VC

is contained in any conic, since otherwise we would have two di¤erent conics that
share at least jp0 VV VCjd 1

2 ðqþ 1Þ � 4 > 4 points (see Part (a) of Lemma 3.3).
r

5 Proofs of the theorems

In this section, we consider Qþð5; qÞ embedded in PGð5; qÞ, and a cap C of Qþð5; qÞ.
For every Greek or Latin plane p, the set pVC is an arc of p. Hence, by Result
3.1, we have jpVCjc qþ 1 with equality if and only if pVC is a conic. We put
dp :¼ qþ 1� jpVCj and call dp the deficiency of p. It is easy to see (see Part (a)
of the following lemma) that jCjc q3 þ q2 þ qþ 1 with equality i¤ and only if every
Greek or Latin plane meets C in a conic. In this section, we suppose that C is a maxi-
mal cap satisfying q3 þ q2 þ 2c jCjc q3 þ q2 þ q, that is

jCj ¼ q3 þ q2 þ qþ 1� d with 1c dc q� 1:

We also assume that q > 4363. We shall see that this implies that d ¼ q� 1 and that
one of the conclusions of Theorem 1.2 is satisfied.

Lemma 5.1. (a) The sum of the deficiencies of the Greek planes is dðqþ 1Þ. The sum of

the deficiencies of the Latin planes is dðqþ 1Þ.
(b) If p is a Greek plane, then the sum of the deficiencies of the q2 þ qþ 1 Latin
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planes that meet p in a line is qdp þ d. An equivalent statement holds for the Latin

planes p.
(c) Every Greek and Latin plane has deficiency at most d.
(d) If R is a point of Qþð5; qÞ, then the sum of the deficiencies of the Latin planes on

R is equal to the sum of the deficiencies of the Greek planes on R.

Proof. (a) Each point of C lies in qþ 1 Greek planes. Thus, if F is the set of Greek
planes, then

P
p AF jpVCj ¼ jCjðqþ 1Þ. Using jCj ¼ q3 þ q2 þ qþ 1� d and jF j ¼

q3 þ q2 þ qþ 1, this proves (a) for the Greek planes. The argument for the Latin
planes is the same.

(b) Let ti, i ¼ 1; . . . ; q2 þ qþ 1, be the Latin planes that meet p in a line. Each
point of C V p lies in qþ 1 planes ti, and each point of Cnp lies on one plane ti. Thus

X
ðqþ 1� dtiÞ ¼ ðjCj � jC V pjÞ þ jC V pjðqþ 1Þ:

As jC V pj ¼ qþ 1� dp, this proves the (b).
(c) This follows immediately from (a) and (b).
(d) Let p0; . . . ; pq be the Greek planes on R. If R B C, then jR? VCj ¼

P
jpi VCj.

If R A C, then jR? VCj ¼ 1þ
P

ðjpi VCj � 1Þ. As the same holds for the Latin
planes on R, this proves (d). r

Let ? be the polarity of PGð5; qÞ related to Qþð5; qÞ. If R A Qþð5; qÞ, then R?

is the tangent hyperplane of R. It is a subspace of dimension four that contains R,
and that meets Qþð5; qÞ in a cone RQþð3; qÞ with vertex R over a Qþð3; qÞ. The set
R? VC is of course a cap of this cone. If R B C and if some Greek (or Latin) plane p
on R meets C is a conic, then Lemma 5.1 (b) shows that the sum of the deficiencies of
the qþ 1 Latin planes on R is at most dc q� 1, that is that jR? VCjd q3 þ q2 þ 2.
If in addition R is an external point of the conic pVC, then Proposition 4.1 can be
applied to the quadric RQþð3; qÞ and its cap R? VC. Then there exists a quadric of
R? satisfying one of the conclusion (a)–(d) of Proposition 4.1. We always denote this
quadric by QR. We first show that conclusion (d) does not occur.

Lemma 5.2. Conclusion (d) of the Proposition 4.1 does not occur.

Proof. Assume that R is a point of Qþð5; qÞnC that satisfies the hypotheses and con-
clusion (d) of Proposition 4.1. Then there exists a Greek plane p0 on R for which the
arc p0 VC cannot be completed to a conic and such that 1

2 ðq� 5Þc jp0 VCjc
1
2 ðqþ 7Þ. Thus, if d is the deficiency of p0, then

1
2 ðq� 5Þc dc 1

2 ðqþ 7Þ.
We shall obtain a contradiction in the following way. We show that there exists

a point R 0 A p0nC to which Proposition 4.1 can also be applied and such that
jR 0? VCj > q2 þ qþ 12. Thus one of (a), (b), (c), (d) of 4.1 must hold. But
jR 0? VCj > q2 þ qþ 12 excludes (d) and the fact that the arc p0 VC cannot be
extended to a conic excludes (a), (b) and (c). This is the desired contradiction.

Consider a Latin plane t on R that has deficiency zero. Then tVC ¼ tVQR and
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this set is a conic. At least 1
2 ðq� 1Þ points of the line g :¼ tV p0 are external points of

this conic. Let Ri, i ¼ 1; . . . ; 12 ðq� 1Þ, be points of g that are external points of the
conic tVQR. The point Ri lies on p0 and on q further Greek planes; let di be the sum
of the deficiencies of these q Greek planes. Then the sum of the deficiencies of all
Greek planes that contain a point Ri is dþ

P
di. As all these planes meet t in a point

and thus even in a line, we obtain dþ
P

di c dc q� 1 from Lemma 5.1 (b). As there
are 1

2 ðq� 1Þ di¤erent points Ri and as d > 0, then di ¼ 1 for some i. We may assume
that d1 c 1.

Put R 0 :¼ R1. The sum of the deficiencies of the Greek planes on R 0 is d or dþ 1.
Counting the points of C in the qþ 1 Greek planes on R 0, we obtain
jR 0? VCjd ðqþ 1Þ2 � 1� d. Using the upper bound for d, we obtain jR 0? VCj >
q2 þ qþ 12, as desired. Notice that Proposition 4.1 can be applied to R 0, since R 0 is
an external point of the conic tVC. r

Lemma 5.1 shows that at least one Greek and one Latin plane has positive defi-
ciency. From now on, we denote by d0 the smallest positive deficiency of all Greek
and Latin planes.

Lemma 5.3. Let p be a Greek or Latin plane of deficiency d0. Then there exists a plane

t of Qþð5; qÞ of deficiency zero such that pV t is a line that meets C in a unique point.

Proof. We may assume that p is a Greek plane. As pVC is an arc with qþ 1� d0
points, there exist ðqþ 1� d0Þðd0 þ 1Þ lines in p that meet C in a unique point. Each
of these lines lies in a unique Latin plane. As d0 is the smallest positive deficiency,
Lemma 5.1 (b) implies that at most ðqd0 þ dÞ=d0 of these Latin planes have positive
deficiency. It su‰ces therefore to verify that

ðqþ 1� d0Þðd0 þ 1Þ > ðqd0 þ dÞ=d0:

This follows from 1c d0 c dc q� 1. r

Lemma 5.4. (a) If d0 < d, then d0 ¼ 1.
(b) Suppose that d0 ¼ 1 and that p is a Greek or Latin plane of deficiency one. Then

the q-arc pVC can be extended to a conic by adjoining a point P. All Greek and Latin

planes on P have positive deficiency, and P is the only point of p with this property.

Proof. (a) Let p be any plane of deficiency d0. We may assume that p is a Greek
plane. From Lemma 5.3 we see that there exists a Latin plane t of deficiency zero
such that pV t is a line that meets C in a unique point. By Lemma 5.1 (b), the sum of
the deficiencies of all Greek planes that meet t in a line is d. The plane p0 contributes
d0 and the remaining ones contribute d � d0. As d0 is the smallest positive deficiency,
it follows that d � d0 ¼ 0 or d � d0 d d0, that is d0 ¼ d or d0 c d=2.

Suppose that d0 < d. Then d0 c d=2c ðq� 1Þ=2. Let R be a point of the line pV t
that is not the point of C on this line. As tVC is a conic and R is an external point of
this conic, we can apply Proposition 4.1 to R. Then (a), (b) or (c) of 4.1 is satisfied,
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since (d) is excluded by Lemma 5.2. As jpVCj ¼ qþ 1� d0 and 2d0 c q� 1, Prop-
osition 4.1 shows that pVQR is a conic containing the arc pVC.

Exactly ðqþ 1� d0Þd0 lines of p0 meet C in one and QR in two points. Assume
that one of these lines has the property that the Latin plane t0 on this line has defi-
ciency zero. Then let R 0 be the point on the line pV t0 that lies in QR but not in
C. Then R 0 B C and R 0 is an external point of the conic t0 VC. We can thus apply
Proposition 4.1 and obtain a quadric QR 0 of R 0? with R 0 B QR 0 . As p has deficiency
d0 c d=2, the same proposition shows that pVQR 0 is a conic containing pVC. Then
pVQR and pVQR 0 are conics containing the arc pVC. As jpVCj ¼ qþ 1� d0 d 5,
then both conics share five points and hence they are equal. However, by the choice
of R 0, the point R 0 lies in pVQR, and as R 0 B QR 0 , the point R 0 does not lie in
pVQR 0 , contradiction.

Hence, the ðqþ 1� d0Þd0 lines that meet pVC in one and pVQR in two points
have the property that the Latin plane on it has positive deficiency and thus defi-
ciency at least d0. The sum of the deficiencies of the Latin planes that meet p in a line
is thus at least ðqþ 1� d0Þd 2

0 . Then Lemma 5.1 (b) gives ðqþ 1� d0Þd 2
0 c d0qþ d.

As 2d0 c dc q� 1, it follows that d0 ¼ 1.
(b) We may assume that p is a Greek plane. As the arc pVC has q points, it can

uniquely be extended to a conic by adjoining a point P. The arguments of the proof
of Part (a) show that each of the q lines of p on P that meet pVC has the property
that the Latin plane on it has positive deficiency. Thus P lies on at least q Latin
planes of positive deficiency. As d < q, Lemma 5.1 (b) implies that every Greek and
Latin plane on P has positive deficiency. As the sum of the deficiencies of the Latin
planes that meet p in a line is qþ d (Lemma 5.1), at most qþ dc 2q� 1 Latin
planes of positive deficiency meet p in a line. This implies that P is unique. r

Lemma 5.5. Suppose that there exists a point R A Qþð5; qÞnC for which conclusion

(b) of Proposition 4.1 holds. Then jCj ¼ q3 þ q2 þ 2 and C satisfies conclusion (a) of
Theorem 1.2, which is the following:

There exists a line h of Qþð5; qÞ with jhVCj ¼ 2. The two planes of Qþð5; qÞ on

h meet C only in the two points of hVC. Every other plane of Qþð5; qÞ on one of the

q� 1 points P of hnC meets C in a q-arc that can be extended to a conic by adjoining

P. All other planes of Qþð5; qÞ meet C in a conic.

Proof. From (b) of Proposition 4.1 we find a plane p0 on R that meets C in exactly
two points P1 and P2 in C, such that the line h :¼ P1P2 has the following properties.
The point R does not lie on h (since R B Q and hJQ in (b) of Proposition 4.1). The
q� 1 Latin planes through R and one of the q� 1 points P of hnfP1;P2g meet C in a
q-arc, which can be completed to a conic by adjoining P.

For these q� 1 points P, Lemma 5.4 shows that all Greek and Latin planes on P

have positive deficiency. This gives apart from p0 another ðq� 1Þq Greek planes of
positive deficiency. As p0 has deficiency q� 1, and as the sum of the deficiencies of all
Greek planes is dðqþ 1Þc ðq� 1Þðqþ 1Þ (Lemma 5.1 (a)), it follows that d ¼ q� 1,
that these ðq� 1Þq Greek planes have deficiency one, and that every other Greek
plane except p0 has deficiency zero.
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Consider P A h with P0P1;P2. The sum of the deficiencies of the qþ 1 Greek
planes on P is 2q� 1. By Lemma 5.1 (b), the same is true for the Latin planes on
P. Thus, if t0 is the Latin plane on h, then the sum of the remaining q Latin
planes on P is 2q� 1� dt0 . As there are q� 1 choices for P, we obtain dt0 þ
ðq� 1Þð2q� 1� dt0Þc dðqþ 1Þ from Lemma 5.1 (a). This gives dt0 ¼ q� 1, and as
for the Greek planes, we see that the other ðq� 1Þq Latin planes on the points P have
deficiency one.

Thus, p0 and t0 have deficiency q� 1, the Greek and Latin planes other than p0
and t0 on a point P of hnfP1;P2g have deficiency one, and all other Greek and Latin
planes have deficiency zero.

Consider any Greek or Latin plane s of deficiency one. Then s meets h in a point P
with P B C. We have seen that all Greek and Latin planes on P have positive defi-
ciency. Then Lemma 5.4 (b) shows that P extends the q-arc sVC to a conic. r

Lemma 5.6. If d0 ¼ 1, then jCj ¼ q3 þ q2 þ 2 and C satisfies conclusion (a) of Theo-
rem 1.2.

Proof. Suppose d0 ¼ 1 and consider a plane p that meets C in q points. We may
assume that p is a Greek plane. Then the q-arc pVC can be extended to a conic by
adjoining one point P and all Greek and Latin planes on P have positive deficiency
(Lemma 5.4).

Consider the q lines t1; . . . ; tq of p that are tangents to Cp in a point of pVC ¼
CpnfPg. By Lemma 5.1 (b), the sum of the deficiencies of the Latin planes that meet
p in a line is qþ dc 2q� 1. As the qþ 1 Latin planes on P have positive deficiency,
we see that at least two of lines ti have the property that the Latin planes on it have
deficiency zero.

As C is a maximal cap, the set C U fPg is not a cap. Hence, there exists a line g

of Qþð5; qÞ on P that meets C in two points. This line does not lie in p. Let t be the
Latin plane on g. Then p and t meet in a line l on P. This line meets pVC in at
most one point. Thus, at most one of the lines ti meets l in a point of C. From the
above arguments, it follows therefore that we find one line t ¼ ti such that the point
R :¼ tV l is not in C and such that the Latin plane t 0 on t has deficiency zero. Then
t 0 VC is a conic and, as jtVCj ¼ 1, the point R is an external point of this conic.

We can therefore apply Proposition 4.1 and obtain a quadric QR of R? that sat-
isfies one of the conclusions (a), (b), (c) of Proposition 4.1, since (d) is excluded by
Lemma 5.2. This shows that for every Greek and Latin planes s on R that meets C in
more than three points, the set sVQR is a conic that contains sVC. Thus pVQR is a
conic and therefore pVQR ¼ ðpVCÞU fPg. This shows that P A QR.

If conclusion (b) of Proposition 4.1 holds for R, then we are done by Lemma 5.5.
Now we complete the proof by showing that conclusions (a) and (c) of Proposition
4.1 for the point R cannot occur.

Assume it is (a). Then R? VCJQR. As jgVCj ¼ 2 and as the point P lies in
gVQR but not in C, then g has three points in QR. But in the situation of 4.1 (a),
every Greek and Latin plane on R (and thus the plane t) meets QR in a conic, a
contradiction.
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Assume that it is (c), that is R lies on a Latin plane t0 and on a Greek plane p0
that meet QR each in exactly one point, and every other Greek or Latin plane s on
R meets QR in a conic and satisfies sVCJ sVQR. This implies that every point of
R? VC that is not on the line p0 V t0 lies in QR. The line g of the plane t contains the
point P of QR and two more points of C. Thus it is not true that tVCJ tVQR and
that tVQR is a conic. Then t is not one of the planes s, so we must have t0 ¼ t ¼
hR; gi. Then P is the unique point of t0 VQR. Then the two points of gVC lie in
R? VC but not in QR, so they must both lie on the line p0 V t0. Hence p0 V t0 ¼ g.
But this is not possible, as the line p0 V t0 contains R and the line g does not. r

Lemma 5.7. If d0 > 1, then jCj ¼ q3 þ q2 þ 2 and C satisfies the conclusion (b) of

Theorem 1.2.

Proof. As d0 > 1, then d0 ¼ d by Lemma 5.4. Thus every plane s of Qþð5; qÞ has the
property that sVC is a conic, or that jsVCj ¼ qþ 1� d. Lemma 5.1 (a) shows then
that there are exactly qþ 1 Latin and qþ 1 Greek planes that have deficiency d. Let
p0; . . . ; pq and t0; . . . ; tq be the Greek and Latin planes of deficiency d. Lemma 5.1
(b) implies that every plane pi meets every plane tj in a line.

Lemma 5.1 (d) shows that every point of p0 lies on a Latin plane of positive defi-
ciency. Thus, the qþ 1 lines p0 V tj, j ¼ 0; . . . ; q, cover all points of p0. Thus, the
qþ 1 lines p0 V tj pass through a common point P of p0 (this can be seen as follows:
if P is the point of intersection of two of the lines, then every line l of p0 on P must be
one of the lines, since otherwise q more lines would be needed to cover l). Then all
Latin planes tj pass through P. Lemma 5.1 (d) shows then that also all Greek planes
pi pass through P. Hence all Greek and Latin planes on P have deficiency d while the
other Greek and Latin planes meet C in a conic.

We have jp0 VCj ¼ qþ 1� dd 2. Let X A p0 VC with X 0P. Then X lies on
d þ 1d 2 lines of p0 that contain no further point of C. Let l be a line of p0 on X

that contains no further point of C and that does not pass through P. As jp0 VCj ¼
qþ 1� dc q, there exists a line h of p0 on P that contains no point of C except
possibly P (we do not know whether or not P is in C). Let R be the point in which l

and h meet. We may assume that t0 is the Latin plane on h.
The Latin plane on l does not contain P and meets C therefore in a conic. Also,

since l VC ¼ X , the point R is an external point of this conic. Then we can apply
Proposition 4.1 and obtain a quadric QR of R?. For each of the 2q Greek and Latin
planes s on R di¤erent from p0 and t0 we know that sVC is a conic (since P B s)
and that sVC ¼ sVQR (Proposition 4.1). This gives ðp0nhÞVC ¼ ðp0nhÞVQR.
Recall that hVC ¼ q or hVC ¼ fPg. Also the point X lies in ðp0nhÞVC and thus
X belongs to QR. As QR is a quadric with R B QR, then p0 VQR is a point, a line, or
a conic. We show that the first case gives what we want, and that the two other cases
lead to a contradiction.

Case 1. p0 VQR is a point. This point must be X . Also p0 VC ¼ ðhVCÞU fXg,
since ðp0nhÞVC ¼ ðp0nhÞVQR. As jp0 VCjd qþ 1� dd 2, this gives the following.
We have jp0 VCj ¼ 2, the point P lies in C, and the two points of p0 VC are X and
P. Hence d ¼ q� 1 and P A C. This is what we wanted to show.
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Case 2. p0 VQR is a line. Since R B QR, this line is not h. Hence q points of this line
lie in p0nh and thus in ðp0nhÞVQR ¼ ðp0nhÞVC. But C does not contain three col-
linear points, a contradiction.

Case 3. p0 VQR is a conic. At least q� 1 points of this conic lie in p0nh and
hence in C. Thus jp0 VCjd q� 1 and hence dc 2. As d ¼ d0 > 1, then d ¼ 2 and
jp0 VCj ¼ q� 1. Thus p0 VC can be extended to the conic Cp0 by adjoining two
points. Let R 0 be one of these two points and such that R 0 0P. Then R 0 lies on q� 1
lines of p0 that meet p0 VC. Let l 0 be a line of p0 on R 0 such that P B l 0 and such that
l 0 meets p0 VC in a (necessarily unique) point X 0. As above, the Latin plane on l 0

meets C in a conic and R 0 is an external point of this conic. Thus, we can again apply
Proposition 4.1 and obtain a quadric QR 0 of R 0? with R 0 B QR 0 . As d ¼ 2 (so that
every Greek and Latin plane meets C in at least q� 1 points), only conclusion (a) of
4.1 is possible. Hence R 0? VCJQR 0 and all Greek and Latin planes on R 0 meet QR 0

in a conic. As R 0 A Cp0 and R 0 B QR 0 , then p0 VQR 0 and Cp0 are distinct conics that
share the q� 1 points of p0 VC. This contradicts Result 3.3. r

The preceding two lemmas show that jCj ¼ q3 þ q2 þ 2 and that C satisfies one of
the two conclusions of Theorem 1.2. This proves Theorem 1.1 and Theorem 1.2.
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