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A FUNCTIONAL MODEL FOR A FAMILY OF

OPERATORS INDUCED BY LAGUERRE OPERATOR

HATAMLEH RA’ED
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The paper generalizes the instruction, suggested by B. Sz.-Nagy and C.

Foias, for operatorfunction induced by the Cauchy problem

Tt :

{
th′′(t) + (1− t)h′(t) +Ah(t) = 0

h(0) = h0(th′)(0) = h1

A unitary dilatation for Tt is constructed in the present paper. then a translational

model for the family Tt is presented using a model construction scheme, suggested
by Zolotarev, V., [3]. Finally, we derive a discrete functional model of family Tt and
operator A applying the Laguerre transform

f(x)→

∫
∞

0

f(x)Pn(x) e
−xdx

where Pn(x) are Laguerre polynomials [6, 7]. We show that the Laguerre transform
is a straightening transform which transfers the family Tt (which is not semigroup)
into discrete semigroup e−itn.

Introduction

Functional models for contraction semigroups Zt = exp(itA) and T
n, (t ≥

0, n ∈ Z+) have been constructed by B. Sz.-Nagy and C. Foias [2] at the beginning
of 70-s. The bases of this method is a significant concept of dilatation of contraction
semigroup. A spectral realization of the dilatation and subsequent narrowing upon
the original space leads to a functional model of the contraction semigroup. As
a result an operator A(T ) in this case is realized by operators which carry out
multiplication by independent variable in a specific functional space. The basis of
the concept is the Fourier transform of space L2.
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1. Preliminary information on the functional

model in a Fourier representation

1.1. We recall [1] that operator collegation ∆,

(1) ∆ = (A,H, φ,E, σ)

is a collection of Hilbert spaces H and E and of linear operators A : H → H ,
φ : H → E, σ : E → E (σ∗ = σ) where the collegation condition holds:

(2) A−A∗ = iφ∗ σφ .

It is customary to associate with the collegation (1) an open system [1] which is
defined by relations

{
i d

dt
h(t) +Ah(t) = φ∗σu(t) ;

h(0) = h0, (t ≥ 0) ;

v(t) = u(t)− iφh(t)(3)

where h(t), u(t), v(t) are vector functions from Hilbert spaces H and E respec-
tively. An important role in the further construction of the model representation
plays the conservation Law [1].

Theorem 1.1. For the open system (3) associated with the collegation ∆ (1) the
conservation Law holds

(4) ‖h0‖
2 +

∫ T

0

〈σu(ζ) , u(ζ)〉 dζ = ‖h(T )‖2 +

∫ T

0

〈σv(ζ), v(ζ)〉 dζ

for any T , 0 ≤ T ≤ ∞.

If operator A is selfadjoint then φ = 0, σ = 0, and Cauchy problem (3) in
induced by the semigroup

Zt = exp(itA) , i.e. h(t) = Zth0

and the conservation Law (4) yields Zt.

1.2. Let us consider a contractive semigroup Zt = exp(itA) (t ≥ 0), which has a
property ‖Zth‖ ≤ ‖h‖ for all h ∈ H .
A unitary dilatation of contractive semigroup Zt in H is said to be a unitary

semigroup Ut in H [2] such that the following relation holds:

(5) H ⊇ H ; PHUt|H = Zt (t ≥ 0)

where PH is an orthoprojector on H . The dilatation Ut in H is said to be minimal
if

(6) H = span{Uth; t ∈ R, h ∈ H}

where span in (6) denotes a closed linear span of the vectors Uth for any t ∈ R

and any h ∈ H .
A significant role in the theory of dilatation of contractive semigroup Zt plays

the following Theorem 1.2.
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Theorem 1.2. Any contracting semigroup Zt in H has a unitary dilatation Ut

in H. Moreover the minimal dilatation Ut is defined up to isomorphism.

We present a construction of the dilatation Ut according to the paper [3].
A contractibility of the semigroup Zt means [2, 3] that A is dissipative, i.e.
−i(A − A∗) ≥ 0. Consequently including A into the collegation ∆ (1) we can
assume that σ = I . Therefore the conservation law (4) has the form

(7) ‖h20‖+

∫ T

0

‖u(ζ)‖2dζ = ‖h(T )‖2 +

∫ T

0

‖v(ζ)‖ dζ

We defined [3] a dilatation space H, which forms vector-functions f(ζ) =(
u+(ζ), h, u−(ζ)

)
so that u±(ζ) ∈ E and Supp u±(ζ) ∈ R∓ for a finite norm

(8) ‖f‖2 =

∫ 0

−∞

‖u+(ζ)‖
2 dζ + ‖h‖2 +

∫ ∞

0

‖u−(ζ)‖
2 dζ <∞ .

We define a dilatation Ut in H by the formula

(9) (Utf)(ζ) =
(
u+(t, ζ), ht, u−(t, ζ)

)

where u−(t, ζ) = PR+
u−(ζ + t); ht = yt(0), and yt(ζ) is a solution of the Cauchy

problem {
i d
dζ
yt(ζ) +Ayt(ζ) = φ∗u−(ζ + t) ;

yt(−t) = 0 , ζ ∈ (−t, 0) ;

and at last u+(t, ζ) = u+(t + ζ) + P(−t,0){u−(ζ + t) − iφyt(ζ)} where PR+
and

P(−t,0) are operators of narrowing (projection operators at set R+ and (−t, 0)
respectively), t ≥ 0.
It is not difficult to show that unitary of Ut (9) in H is a consequence of the

conservation law (1). By the dilatation construction Ut one can see that the space
H has the form

(10) H = D+ ⊕H ⊕D−

where the subspace D+ is found by vector-function of the form
(
u+(ζ), 0, 0

)
∈ H

and the subspace D− is formed by vector-function
(
0, 0, u−(ζ)

)
from H, respec-

tively.
The subspaces D± have the following properties:

(11)
UtD+ ⊆ D+ (t ≥ 0) ,

UtD− ⊆ D− (t ≤ 0) .

Thus D+ is outgoing subspace and D− is incomming subspace in the sense of
P.D. Lax and R. S. Phillips [4]. In accordance with the paper [3], we define a free
unitary group Vt in the space L

2
R
(E), which will act as

(12) (Vtg)(ζ) = g(ζ + t)



14 H. RA’ED

and vector-function g(ζ) ∈ E, ζ ∈ R is such that

∫ ∞

−∞

‖g(ζ)‖2 dζ <∞ .

It is evidently that D± after identification belongs to L
2
R
(E) also.

Wave operators W± play a significant role in the scattering theory. They are
defined [3, 4] as

(13) W± = s− lim
t→∓∞

U+PD±V−t

where PD± are orthoprojectors on subspaces D±. The following theorem holds [3].

Theorem 1.3. The wave operators W± exist as strong limits (13) are isometries
from L2

R
(E) to H, and the relations

(14) W±Vt = UtW± , (∀t) , W±PD± = PD±

are valid.

The scattering operator S is defined by the wave operatorW± in a conventional
way [3, 4]:

(15) S =W ∗
+W− .

From Theorem 1.3 there follows a proposition.

Theorem 1.4. The operator S (15) is a contraction, i.e. ‖S‖ ≤ 1 and has the
properties:

(16)
SVt = VtS ; SL2

R+
⊆ L2

R+
(E) ;

SL2
R
(E) = L2

R
(E)

1.3. We recall that the collegation ∆ (1) is simple [1–3] if H = span{Anφ∗g; n ∈
Z+, g ∈ E}. Let us define the following subspaces in H,

<± =W±L
2
R
(E) .

The following theorem gives a sufficient condition for the completeness of the wave
operators W±, [3].

Theorem 1.5. If the collegation ∆ is simple then the relation H = span{f+ +
f−; f± ∈ <±} holds.

Now we construct a translational model [3]. Let fk(ζ) ∈ L2
R
(E), (k = 1, 2). We

define a mapping

(
f1(ζ)

f2(ζ)

)
→ Ψp(ζ) =W−f1(ζ) +W+f2(ζ) ∈ H .
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Then using isometry of W± and the form of operator S (15) it is not difficult to
show that

(17) ‖Ψp(ζ)‖
2 =

∫ ∞

−∞

<

[
I S∗

S I

](
f1(ζ)

f2(ζ)

)
,

(
f1(ζ)

f2(ζ)

)
> dζ ,

Using Theorem 1.5 we may assert, that space H is isomorphic to the space

L2
(
1 S∗

S 1

)
which is formed by vector-functions f(ζ) =

(
f1(ζ)

f2(ζ)

)
for which the

norm (17) is finite. By virtue of conditions (14) the dilatation Ut on Ψp will act

as a shift. Therefore if f(ζ) ∈ L2
(
1 S∗

S 1

)
then the dilatation Ut is transformed

into

(18) Ûtf(ζ) = f(ζ + t) .

Applying again (14), one can easily deduce that the spaces D± are realized now
in the form

(19) D̂− =

(
L2

R+
(E)

0

)
, D̂+ =

(
0

L2
R−
(E)

)
.

Thus the initial space H acquires such model form

(20)

Ĥp = L
2

(
1 S∗

S 1

)
	

(
L2

R+
(E)

L2
R−
(E)

)

= f =

((
f1

f2

)
∈ L2

(
1 S∗

S 1

)
;
f1 + S

∗f2 ∈ L2
R−
(E)

Sf1 + f2 ∈ L2
R+
(E)

)

and in the virtue of the dilatation the action of semigroup Zt is transformed to
the shift semigroup

(21) Ẑf(ζ) = P
ĤP
f(ζ + t)

where f(ζ) ∈ Ĥp (20). Thus the following theorem is proved.

Theorem 1.6. A minimal unitary dilatation Ut in H of the contraction semigroup
Zt = exp(itA) in H, where A is dissipative operator of a simple collegation ∆ is

unitary equivalent to a translation group Ût (18) in the space L
2

(
1 S∗

S 1

)
, and

the contraction semigroup Zt is unitary equivalent to the shift semigroup Ẑt (21)

in the space Ĥp respectively.

The Fourier transform by formula

(22) f̃(λ) =

∫ ∞

−∞

f(ζ) e−iλζ dζ
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in the virtue of Plancherel theorem [2, 3] is a unitary operator in L2
R
(E). By the

virtue of Wiener-Paley theorem

L̃2
R+
(E) = H2−(E) ; L̃2

R−
(E) = H2+(E)

where H2±(E) are Hardy spaces of E-value function from L2
R
(E) which are holo-

morphically continued into lower (upper) half-plane. Let us apply the Fourier
transform (22) to translational model (18) – (21) and take advantage of the fol-
lowing Theorem 1.7

Theorem 1.7. The Fourier transform of the scattering operator S (15) transfers
the operator S into operator performing multiplication by characteristic function

(23)
S∆(λ) = I − φ(A − λI)−1φ∗ , i.e.

(S̃f)(λ) = S∆(λ)f̃ (λ) .

As it is known f̃(λ+ t) = eiλtf̃(λ), therefore we derive such functional model.

Theorem 1.8. A minimal unitary dilatation Ut in H of the contraction semigroup
Zt = exp(itA) in H, where A is dissipative operator of a simple collegation ∆ is
unitary equivalent to the group

(24) Ũtf(λ) = e
iλtf(λ)

where f(λ) ∈ L2
(

I S∗
∆(λ)

S∆(λ) I

)
and contraction semigroup Zt is unitary equiv-

alent to semigroup Z̃tf(λ) = PH̃p
eiλtf(λ), where f(λ) belongs to the space

H̃p =

{
f =

(
f1

f2

)
(λ) ∈

(
I S∗

∆(λ)
S∆(λ) I

)
; f1 + S

∗
∆(λ)f2 ∈ H2+(E)

; S∆(λ)f1 + f2 ∈ H2−(E)

}

Here the main operator Ã in H̃p act as multiplication operator by independent
variable

(26) Ãf(la) = P
H̃p
λf(λ) , f(λ) ∈ H̃p .

In the next section we will generalize this construction on the case of the La-
querre transform.

2. A functional model for the Laguerre representation

2.1. Let us consider a differential operator

(27) ` = t
d2

dt2
+ (1− t)

d

dt

in what follows called the Laguerre operator; it acts on functions form C2 = (R+).
We denote by L2

R+
(e−t dt) the following space:

(28) L2
R+
(eitdt) =

{
f(t), t ∈ R+;

∫ ∞

0

|f(t)|2e−t dt <∞
}
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Proposition 2.1. An operator ` is symmetric in the space L2
R+
(e−tdt) under the

self-adjoint boundary conditions, i.e. 〈`x, y〉 = 〈y, `y〉 for all x, y ∈ C2(R+) such
that tx(t)|t=0 = 0, ty(t)|t=0 = 0 and ty

′(t)|t=0 <∞, tx′(t)|t=0 <∞.

Proof. We calculate

〈`x, y〉 − 〈x, `y〉 =

∫ ∞

0

{
(tx′′ + (1− t)x′)y − x(ty′′ + (1− t)y′)

}
e−t dt

=

∫ ∞

0

{
te−t(x′y − y′x)

}′
dt =

{
te−t(x′y − y′x)

}
|∞0 = 0

by virtue of the boundary conditions. �

Let us consider now an open system of special form, generated by the Laguerre
operator (27) and corresponding to the collegation ∆ (1):

(29)





`h(t) +Ah(t) = φ∗σu(t) ;

h(0) = h0(th
′)(0) = h1 ;

v(t) = u(t)− iφh(t) .

The following assertion is valid, similar to Theorem (1.1).

Theorem 2.1. For the open system (29) associated with collegation ∆ the law of
conservation of energy is valid, i.e.

(30)

∫ T

0

〈σu(ζ), u(ζ)〉e−ζ dζ + 〈Iĥ0, ĥ0〉

=

∫ T

0

〈σv(ζ), v(ζ)〉e−ζ dζ + 〈IĥT , ĥT 〉

where I =

(
0 −i
i 0

)
and h0 =

(
h0
ht

)
, hT =

(
h(T )

e−TTh′(T )

)
for any finite T > 0.

Proof. We calculate

〈`h, h〉 − 〈h, `h〉 = 〈φ∗σu−Ah, h〉 − 〈h, ψ∗σu−Ah〉

= 〈σu,
u− v

i
〉 − 〈

u− v

i
, σu〉 − 〈(A−A∗)h, h〉

= i〈σu, u− v〉+ i〈u− v, σu〉 − i〈φ∗σφh, h〉

= i〈σu, u− v〉+ i〈u− v, σu〉 − i〈σ(u− v), u− v〉

= i〈σu, u〉 − i〈σv, v〉 .

Now we integrate the derived equality:
∫ T

0

〈σv, v〉e−t dt−

∫ T

0

〈σu, u〉e−t dt

= i

∫ T

0

[
〈`h, h〉 − 〈h, `h〉

]
e−t dt

= i
{
e−tt

[
〈h′′, h〉 − 〈h, h′〉

]}
|T0

= 〈Iĥ0, ĥ0〉 − 〈IĥT , ĥT 〉
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which proves our assertion. �

2.2. Let us make use of the energy conservation law (30) to construct a dilatation
for operator Tt generated by the Cauchy problem

(31)

{
`h(t) +Ah(t) = 0 ;

h(0) = h0 ; (th
′)(0) = h1 ;

where Tt(h0, h1) =
(
h(t), th′(t)

)
. We will call an unitary operator-function Ut in

H a dilatation of family Tt in H , if H ⊇ H , Tt = PHUt|H .
Here we do not suppose that Tt and Ut is semigroup. Moreover, the unitary

property of Ut may hold not necessarily in Hilbert metric but in indefinite one.
The following analog of Theorem 1.2 is valid.

Theorem 2.2. The operator-function Tt generated by the Cauchy problem (31)
with dissipative operator A of collegation ∆ (1) (i.e. σ = I) possesses the unitary
(in indefinite metric) dilatation Ut, where the minimal dilatation is determined up
to isomorphism.

Proof. To prove the theorem we bring a construction of dilatation Ut by analog
with (8), (9).
Let us consider a Hilbert space

(32)

H =
{
f =

(
u(ζ), ĥ, v(ζ)

)
; u(ζ), v(ζ) ∈ E , supp v ∈ R− , suppu ∈ R+ ,

ĥ =

(
h0

h1

)
, hk ∈ H ; ‖f‖2 =

∫ 0

−∞

‖v(ζ)‖2e−ζ dζ + ‖ĥ‖2

+

∫ ∞

0

‖u(ζ)‖2e−ζ dζ <∞
}
.

We set indefinite metric H

(33) 〈f〉2I =

∫ 0

−∞

‖v(ζ)‖2e−ζ dζ + 〈Iĥ, ĥ〉+

∫ ∞

0

‖u(ζ)‖2e−ζ dζ

where I has the form indicated in Theorem 2.1.

We construct the dilatation Ut in H,

(34) Utf = ft

(
u(t, ζ), ĥt, v(t, ζ)

)
.

Let us consider further the Cauchy problem

(35)

{ (
i ∂

∂t
+ `ζ

)
û(t, ζ) = 0 ;

û(0, ζ) = u(ζ) ; ζ ∈ R+ ;

where `ζ is operator ` (27) with respect to ζ.
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Solution of the problem is easily obtained. In fact, let

û(t, ζ) =
∑

n∈z+

e−itnCngn(ζ)

where gn(ζ) are the Laguerre polynomials [5] which are the solutions of equation
`ζgn(ζ) + ngn(ζ) = 0 and have the form

gn(ζ) =
1

n!
eζ d

n

dζn
(ζe−ζ)

and make a complete system of orthogonal polynomials in L2
R+
(e−ζ dζ). The coef-

ficients Cn are obtained from the initial condition
∑
Cngn(ζ) = u(ζ).

Therefore û(t, ζ) possesses the property supp û(t, ζ) = supp û(ζ) ⊆ R+. Now we
determine u(t, ζ) in (34) by the formula

(36) u(t, ζ) = PR+
û(t, ζ + t)e−

t
2 .

To set ĥt (34), we consider the following Cauchy problem

(37)





`ζy(ζ) +Ay(ζ) = φ
∗û(t, ζ + t)e−

t
2 ; ζ ∈ (−t, 0) ;

y(−t) = h0 ;

(−t)et y(−t) = h1 ;

and put ĥt =

(
y(0)
(ty′)(0)

)
.

Finally, to set v(t, ζ) (34) we consider the similar equation

(38)

{
(i ∂

∂t
+ `ζ) v̂(t, ζ) = 0 ;

v̂(0, ζ) = v(ζ) ; ζ ∈ R− ;

and put v(t, ζ) = e−
t
2 v̂(t, ζ + t) + PR−{û(t, ζ + t)e

− t
2 − iφy(ζ)}. We show that Ut

(34) has property of isometry in the metric (33). To this end we calculate,

〈ft〉
2
I =

∫ 0

−∞

‖v(t, ζ)‖2e−ζ dζ + 〈Iĥt, ĥt〉+

∫ ∞

0

‖u(t, ζ)‖2e−ζ dζ

=

∫ −t

−∞

‖v̂(t, ζ + t)‖2e−ζ−t dζ +

∫ 0

−t

‖û(t, ζ + t)e−
t
2 − iφy(ζ)‖2eζ dζ

+ 〈Iĥt, ĥt〉+

∫ ∞

0

‖u(t, ζ + t)‖2e−ζ−tdζ

=

∫ −t

−∞

‖v̂(t, ζ + t)‖2e−ζ−t dζ + 〈Iĥ0, ĥ0〉+

∫ ∞

−t

‖û(t, ζ + t)‖2e−ζ−t dζ

=

∫ 0

−∞

‖v̂(t, ζ)‖2e−ζ dζ + 〈Iĥ0, ĥ0〉+

∫ ∞

0

‖û(t, ζ)‖2e−ζ dζ

= 〈f〉2I
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In this calculation we have made use of the conservation law (30) and of the fact
that norms of solutions of Cauchy problems û(t, ζ), v̂(t, ζ) (35) and (38) coincide
with norms of initial data u(ζ) and v(ζ) in the spaces L2

R+
(e−t dt) and L2

R−
(e−t dt)

by virtue of selfadjointness of operators `ζ in the spaces.
In order to prove that Ut has the property of being unitary, it is necessary to

ascertain that from U∗
t f = 0 implies f = 0. It is easy to show that U

∗
t will act by

the formula

(39) U∗
t f =

(
u(t, ζ), ĥt, v(t, ζ)

)
.

Here v(t, ζ) = PR− v̂(t, ζ − t)e
t
2 where v̂(t, ζ) is a solution of problem (38).

In order to obtain ĥt, it is necessary to consider dual to (37) problem

(40)





`ζy(ζ) +A
∗y(ζ) = φ∗v̂(ζ, ζ − t)e

t
2 ;

y(t) = h0 ;

e−tty′(t) = h1 ;

and put ĥt =

(
y(0)
(ty′)(0)

)
. Finally,

u(t, ζ) = û(t, ζ − t)e
t
2 + PR+

{v̂(t, ζ − t)e
t
2 + iφy(ζ)} ,

where û(t, ζ) is the solution of Cauchy problem (35).

Thus let U∗
t f = 0, then û(t, ζ) = 0 and so û(t, ζ) = 0 and v̂(t, ζ−t)e

t
2 +iφy(ζ) =

0 therefore u(ζ) ≡ 0. Now, by substituting v̂(t, ζ − t) = −iφy(ζ)e−
t
2 in (40) we

obtain a homogeneous equation

`ζy +A
∗y + iφ∗φy = 0

with zero condition in the origin ĥt = 0. By virtue of uniqueness of Cauchy problem
solution, this yields that y(ζ) ≡ 0, therefore v̂(t, ζ − t) = 0 on interval (0, t).
Accounting that v̂(t, ζ − t) = 0 with (−∞, 0), finally we conclude that v(ζ) = 0.
Thus f = 0. This proves the property of being unitary for Ut (34) and completes
the proof of the theorem. �

2.3. Let us pass to constructing wave operators. To this end we define a “free”
group by analogy with (38)

(41) Vtg(ζ) = g(t, ζ) ,

where g(t, ζ) is a solution of Cauchy problem

(42)

{ (
i ∂

∂t
+ `ζ

)
g(t, ζ) = 0 ;

g(0, ζ) = g(ζ) ∈ L2
R
(e−ζ dζ) .

It is evident that Vt (41) is unitary. Now we define the operators

(43)

W− = s− lim
t→+∞

UtPR+
V−t ,

W+ = s− lim
t→−∞

U∗
t PR−V

∗
−t .

By analogy with Theorem 1.3 we have
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Theorem 2.3. The wave operators W± exist as strong limits (43), are isometries
from L2

R
(e−ζ dζ) to H, and the following relations are valid:

(44)
UtW− =W−Vt, U

∗
t W+ =W+V

∗
t , (t ≥ 0)

W±PR∓ = PR∓

Proof. We prove the assertion of the theorem forW− (forW+ the proof is similar).
The main matter of the theorem consists of existence proof ofW− since the relation
(44) is proved by analogy with arguments given in Section 1; sec [2, 3]. Let

ft = UtPR+
V−tg =

(
v(t, ζ), ht, u(t, ζ)

)

then u(t, ζ) = PR+
g(ζ). We consider the Cauchy problem

(45)

{
`ζy(ζ) +Ay(ζ) = φ

∗g(ζ) ;

y(−t) = 0 ; y′(−t) = 0 , ζ ∈ (−t, 0) .

Then ĥt =

(
y(0)
(ty′)(0)

)
.

We denote by K(ζ, η) a Cauchy function of the problem (45) (i.e. K(ζ, ζ) = 0,
K ′(ζ, ζ) = I), then a solution y(ζ) of (45) has the form

yt(ζ) =

∫ ζ

−t

K(ζ, η)φ∗ g(η) dη .

Therefore V (t, ζ) has the form

V (t, ζ) = P(−t,0)

{
g(ζ)− iφy(ζ)

}
.

Thus,

ft =

(
P(−t,0)

{
g(ζ)− iφ

∫ 0

−t

K(ζ, η)φ∗g(η)dη
}
,

( ∫ 0
−t
K(0, η)φ∗g(η)dη∫ 0

−t
K ′(0, η)φ∗g(η)dη

)
, PR+

g(ζ)

)
.

We show that ft is a Cauchy sequence, i.e ‖ft+∆ − ft‖
2 → 0 as t→ ∞. Since

(46) ‖ft+∆ − ft‖
2 =

∫ 0

−∞

‖vt(t+∆, ζ) − v(t, ζ)‖2e−ζ dζ + ‖ĥt+∆ − ĥt‖
2 .

It is sufficient to show that each summand approaches to zero as t → ∞. We

show that ‖ĥt+∆−ĥ‖ → 0 when t→ ∞ and we will prove this property component
by component. It is obvious that

‖ĥt+∆ − ĥ‖2 −

∥∥∥∥∥

∫ −t

(−t−∆)

K(0, η)φ∗g(η) dη

∥∥∥∥∥

2

≤

∫ −t

−t−∆

‖K(0, η)‖2eη dη ·

∫ −t

−t−∆

e−η‖φ∗‖2 ‖g(η)‖2 dη
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and since the function K(0, η)eη is bounded (see [6, 7]), we obtain that

‖ht+∆ − ht‖
2 ≤ ∆C‖φ∗‖2

∫ −t

−t−∆

‖g(η)‖2e−η dη → 0 as t→ ∞

since g(η) ∈ L2
R
(e−η dη).

The convergence of second components ĥt+∆− ĥt to zero is proved in a similar
way. We show that the first summand in (46) approaches to zero too.
In fact,

A =

∫ 0

−∞

‖P(−t−∆,−t)g(ζ)− iP(−t−∆,0)φ

∫ ζ

−t−∆

K(ζ, η)φ∗g(η) dη

+ i

∫ ζ

−t

φK(ζ, η)φ∗g(η) dη‖2e−ζ dζ

=

∫ −t

−t−∆

‖g(ζ)‖2e−ζ dζ +

∫ 0

−∞

‖P(−t−∆,0)φyt+∆(ζ) − P(−t,0)φyt(ζ)‖
2e−ζ dζ

+ 2Im

∫ −t

−t−∆

〈g(ζ), P(−t−∆,0)φy(ζ) − P(−t,0)φy(ζ)〉e
−ζ dζ

It is obvious that the first and third summands in the given sum approaches to
zero as t→ ∞ because g(ζ) ∈ L2

R
(e−ζ dζ). We evaluate the second summand:

B =

∫ 0

−∞

‖P(−t−∆,0)φyt+∆(ζ)− P(−t,0))φyt(ζ)‖
2e−ζ dζ

=

∫ 0

−∞

〈φ∆y, φ∆y〉e−ζ dζ ,

where
∆y = P(−t−∆,0)yt+∆(ζ)− P(−t,0)y−t(ζ) .

Then

A =

∫ 0

−∞

〈φ∗φ∆y,∆y〉e−ζ dζ =

∫ 0

−∞

〈
A−A∗

i
∆y,∆y

〉
e−ζ dζ

= 2Im

∫ 0

−∞

〈φ∗g − `∆y,∆y〉e−ζ dζ

= 2Im

∫ 0

−∞

〈φ∗g,∆y〉e−ζ dζ + 2Im

∫ 0

−∞

〈`∆y,∆y〉e−ζ dζ

the first summand approaches to zero again on account of g(ζ) ∈ L2
R
(e−ζ dζ), and

the second one yields after integration by parts

‖ζe−ζ∆y‖ |ζ=0 → 0 (t → ∞)

since ∆ĥt → 0. The theorem is proved. �

As before, we define the operator S by the formula (15). Then the following
theorem holds.
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Theorem 2.4. The operator S (15) is a contraction from L2
R
(e−ζ dζ) to

L2
R
(e−ζ dζ) and possesses the following properties:

SVt = VtS ; SL
2
R+
(e−ζ dζ) ⊂ L2

R+
(e−ζ dζ) ;

SL2
R
(e−ζ dζ) = L2

R
(e−ζ dζ) .

2.4. Further we suppose that the collegation ∆ (1) is simple and as in subsection
1.3 we set a mapping

Ψp(ζ =W−f1(ζ)) +W+f2(ζ)

from L2
R
(e−ζ dζ) + L2

R
(e−ζ dζ) to H. It is obvious that

Ψp(ζ) ∈ L2
((

I S∗

S I

)
, e−ζ dζ

)

Action of dilatation in this space again reduces to a translation

(47) Ûtf(ζ) = f(ζ + t) ,

since

UtΨp(ζ) =W−f1(ζ + t) + UtW+f2(ζ)

=W−f1(ζ + t) + UtW+V
∗
t Vtf2(ζ)

=W−f1(ζ + t) + UtU
∗
t W+Vtf2(ζ) = ΨP (ζ + t) .

As earlier, it is obvious that

D− =

(
L2

R+
(e−ζ dζ)
0

)
, D+ =

(
0

L2
R−
(e−ζ dζ)

)

and the model space Hp has the form

(48) Hp = L
2

((
1 S∗

S 1

)
e−ζ dζ

)
	

(
L2

R+
(e−ζ dζ)

L2
R−
(e−ζ dζ)

)

and in addition Tt passes to shift semigroup

(49) T̂tf(ζ) = f(ζ + t) .

Now we consider a Laguerre transform

(50) Ln =

∫ ∞

0

e−xPn(x) f(x) dx

where Pn(x) =
1
n!e

−x dn

dxn (xe
−x) are a Laguerre polynomials, and f(x) ∈

L2
R+
(e−xdx). The transform (50) ascertains isomorphism between L2

R+
(e−xdx) and

`2.
We extend the Laguerre transform (50) on R− in a symmetric way. Then an

image of this map yields a space `2−. Let `
2
Z
= `2−+`

2
+ is a space of square summable

two-sided sequences. Just as for the case of Fourier transform (see Theorem 1.7 in
Section 1) a theorem the proof of which repeats the reasonings brought out in [3]
holds.
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Theorem 2.5. The Laguerre transform of scattering operator S transfers the
operator S into an operator of multiplication by a characteristic function S∆(n) =
I − iφ(A − nI)−1φ∗, n ∈ Z, i.e.

(51) Ln(Sg) = S∆(n)gn

where gn = Ln(g).

After realizing the Laguerre transform, the space L2
((

I S∗

S I

)
e−ζ dζ

)
passes

into the space `2
Z

(
I S∗

∆(n)
S∆(n) I

)
and dilatation Ût (47) is converted into

(52) Ût(n)fn = e
−itnfn .

Supspaces D± will have the form

D− =

(
`2−
0

)
, D+ =

(
0

`2+

)
.

Therefore Hp is converted to the form

(53) H̃p =

{
fn =

(
f1n
f2n

)
∈ `2

Z

(
I S∗

∆(n)
S∆(n) I

)
;
f1n + S

∗
∆(n)f

2
n ∈ `2+

S∆(n)f
1
n + f

2
n ∈ `2−

}

and a “semigroup” Tt will have the form

(54) T̃t(n)fn = PH̃p
e−itnfn .

Thus the following theorem is proved.

Theorem 2.6. The minimal unitary dilatation Ut (34) in H (32) of the family
of operators Tt (31) with a scattering operator A of collegation ∆ (1) is unitary

equivalent to Ũt(n) (52) in the space `
2
Z

(
I S∗

∆(n)
S∆(n) I

)
, and the family Tt (31)

is unitary equivalent to T̃t(n) (54) in the space H̃p.
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