
ARCHIVUM MATHEMATICUM (BRNO)

Tomus 39 (2003), 27 – 36

SELF–CORRECTING ITERATIVE METHODS

FOR COMPUTING {2}–INVERSES

PREDRAG S. STANIMIROVIĆ

����������	�
����
In this paper we construct a few iterative processes for computing {2}-

inverses of a linear bounded operator. These algorithms are extensions of the corre-
sponding algorithms introduced in [11] and a method from [8]. A few error estimates
are derived.

1. Introduction and preliminaries

Let Cm×n be the set of m × n complex matrices and Cm×n
r denote the set of

m× n complex matrices whose rank is r. By I we denote an appropriate identity
matrix.
There are well–known properties of generalized inverses of A:

(1) AXA=A, (2) XAX=X, (3) (AX)∗=AX, (4) (XA)∗=XA.

For a subset S of the set {1, 2, 3, 4}, the set of operators obeying the conditions
contained in S is denoted by A{S}. An operator in A{S} is called an S-inverse of
A and is denoted by A(S). In particular, for any A, the set A{1, 2, 3, 4} consists
of a single element, the Moore-Penrose inverse of A, denoted by A†. Any element
from the class A{1, 2} is also called the reflexive generalized inverse of A.

Let A be m × n matrix and rank(A) = r. Then all {2}-inverses of A can be
represented in the form [15]

(1.1) A{2}={X : X=W1(W2AW1)
−1W2, W1∈C

n×s, W2∈C
s×m, s=1, . . . , r} .

In the literature it is known a great number of iterative methods for computation
of the usual matrix inverse and the Moore-Penrose inverse.
One class of these methods is based on the hyper-power iterative method. An

application of the hyper-power method of the order 2 in usual matrix inversion

2000 Mathematics Subject Classification: 15A09, 65F20.
Key words and phrases: generalized inverses, Moore–Penrose inverse, error matrix.
Received December 13, 1999.

28 P. S. STANIMIROVIĆ

dates back to the paper of Schulz [12]. The hyper-power method of the order 2
coincides with the Newton iteration and it is investigated in [2–4] and [8]:

(1.2) Xk+1 = Xk(2I − AXk) = (2I − XkA)Xk .

Ben-Israel and Cohen shown that the iteration (1.2) converges to A† provided that

(1.3) X0 = αA∗,

where α is a positive and sufficiently small [2–4]. Altman devised the hyper-power
method of an arbitrary order q ≥ 2, for inverting a nonsingular bounded operator
on a Banach space [1]. In [9] the convergence of this method is proved under
a weaker condition and some better error estimates are derived. Zlobec [20] and
Petryshyn [10] shown that the q-th order hyper-power iterative method, with q ≥ 2,
can be used in computation of the Moore-Penrose inverse of an arbitrary matrix or
a bounded linear operator with closed range. The hyper-power iterative method
of the order 2 is studied in [13] in view of the singular value decomposition of a
matrix. In [6] it is introduced a modification of the hyper-power iterative method
which can be used in computation of the matrix product A†B, where A and B are
arbitrary complex matrices with equal number of rows.

Also, a few iterative methods for computing the Moore-Penrose inverse are
introduced and investigated in [11] and [8].

If L is the limit matrix and Xk is the k-th approximation of L, defined by an
algorithm, then the convergence properties of the algorithm can be studied using
the error matrix Ek = Xk − L, [11]. The matrix formula representing Ek+1 is
a sum of possible zero-order term consisting of a matrix which does not depend
upon Ek, one or more first-order matrix terms in which Ek or E∗

k appears only
once, and higher-order terms in which Ek and E∗

k appears at least twice [11]. All
suitable algorithms have a zero-order term identical to 0, so that the first-order
terms determine the convergence properties of the algorithm. Also, the method is
self-correcting if the first-order terms are equal to 0.

Known iterative algorithms for inverting of nonsingular matrices have the first-
order term equal to zero. However, iterative algorithms for computing the Moore-
Penrose inverse have nonzero first-order term [11].

The paper is organized as follows. In Section 2 we construct several iterative
methods for computing {2}-inverses of a singular complex matrix, generalizing
iterative methods from [11], [8], using principles from [14] and the full-rank rep-
resentation of {2}-inverses from [15]. In Section 3 we investigate error estimates
of these methods. In view of these estimates we present a comparative study of
introduced methods. Three of these methods are self-correcting.

In certain cases we get iterative methods for computation of the Drazin inverse

and the generalized inverse A
(2)
T,S .

SELF–CORRECTING ITERATIVE METHODS FOR COMPUTING {2}–INVERSES 29

2. Iterative methods

In the following lemma we introduce a modification of the hyper-power iterative
method of the order q ≥ 2 which can be used in the construction of {2}-inverses.

Lemma 2.1. Let A ∈ Cm×n, rank(A)=r≥2, s ≤ r, and W1∈Cn×s, W2∈Cs×m

are two arbitrary matrices, such that the matrix W2AW1 is invertible. If q ≥ 2 is
an integer, then the following two iterative processes:

Y0 = Y ′
0 = α(W2AW1)

∗, 0 < α ≤
2

tr((W2AW1)∗W2AW1)
,

Tk = I − YkW2AW1 ,

Yk+1 = (I + Tk + · · ·+ T
q−1
k)Yk ,

Xk+1 =W1Yk+1W2 k = 0, 1 , . . .

T ′
k = I − W2AW1Y

′
k ,

Y ′
k+1 = Y ′

k(I + T ′
k + · · ·+ T ′

k
q−1
) ,

X ′
k+1 =W1Y

′
k+1W2 k = 0, 1, . . . , s = 1, . . . , r

generate {2}-inverses of A.

Proof. Follows from Yk → (W2AW1)
−1 and the general representation (1.1) of

{2}-inverses. �

Remark 2.1. In the case s = r the result of Lemma 2.1 reduces to known result,
stated for {1, 2}-inverses in [14, Lemma 2.1].

In the following lemma we introduce a few iterative methods for computing
{2}-inverses.

Lemma 2.2. Let A be m × n matrix of rank rank(A) = r ≥ 2 and W1 ∈ Cn×s,

W2 ∈ Cs×m are two arbitrary matrices, such that W = W2AW1 is an s × s

invertible matrix. where 1 ≤ s ≤ r. If converges, any of the following iterative

processes

Yk+1=Yk(2I − WYk) , Xk+1 =W1Yk+1W2 ,(2.1)

Yk+1=YkWYk , Xk+1 =W1Yk+1W2 ,(2.2)

Yk+1=YkWYk(2I − WYk) , Xk+1 =W1Yk+1W2 ,(2.3)

Yk+1=YkWYk(2I − WYkWYk) , Xk+1 =W1Yk+1W2 ,(2.4)

Yk+1=Yk(WYk)
∗, Xk+1 =W1Yk+1W2 ,(2.5)

Yk+1=(WYk)
∗Yk , Xk+1 =W1Yk+1W2 ,(2.6)

Yk+1=YkWYk(4I − 4WYk+(WYk)
2), Xk+1=W1Yk+1W2 ,(2.7)

k = 0, 1, . . .

30 P. S. STANIMIROVIĆ

generates {2}-inverse of A.

Proof. Equation (2.1) is a partial case q = 2 of Lemma 2.1. In the rest of the
proof it is sufficient to prove Yk → W−1 = W †. Then the proof follows from the
general representation (1.1) of {2}-inverses.
The first equation in (2.2) is an iterative method for approximation of the

Penrose’s equation Y = Y WY . The first equation (2.3) is an application of the
Algorithm ζ from [11] in computation of the inverseW−1 =W †. The first equation
in (2.4) can be generated applying Algorithm θ from [11] in computation of the
inverse W−1. Similarly, (2.5) and (2.6) are derived as analogous adaptations of
the algorithms γ and δ, respectively, established in [11]. Finally, algorithm (2.7)
is derived from the following iterative process, investigated in [8]:

Yk+1/2 = (2I − YkA)Yk , Yk+1 = Yk+1/2AYk+1/2.

Indeed, in this case we get the following approximation Yk+1 of the matrix W−1:

Yk+1=(2I−YkW)YkW (2I−YkW)Yk=YkWYk(4I−4WYk + (WYk)
2) . �

Corollary 2.2. (a) Let A be square matrix of the order n, l ≥ ind(A) and
Al = PAlQAl be a full-rank factorization of Al. Then in the case W1 = PAl ,

W2 = QAl , each of the iterative processes (2.1)–(2.7) generates the Drazin inverse
of A.

(b) Let A ∈ Cm×n
r , let T be a subspace of Cn of dimension s ≤ r and S

be a subspace of Cm of dimension m − s, such that AT ⊕ S = Cm. In the case

R(W1) = T , N (W2) = S each of the iterative methods (2.1)-(2.7) generates the

generalized inverse A
(2)
T,S.

Proof. (a) After a comparison of the general representation (1.1) of {2}-inverses
and the full-rank representation of the Drazin inverse from [15], we conclude that
the Drazin inverse AD is an element from A{2} which satisfies W1 = PAl , W2 =
QAl .

(b) The condition AT ⊕S = Cm ensures the existence of the generalized inverse

A
(2)
T,S , [5]. This part of the proof follows from the representation of the generalized

inverse A
(2)
T,S which is introduced in [17]. �

Introduced methods are implemented by means of the following functions in
the package MATHEMATICA.

Tr[g List]:=

Block[{s1=0,i,n1,m1},
{n1,m1}=Dimensions[g];
If[n1=!=m1, s1={},
s1=Sum[g[[i,i]], {i,n}]

];

s1

SELF–CORRECTING ITERATIVE METHODS FOR COMPUTING {2}–INVERSES 31

]

Hermit[a]:=Conjugate[Transpose[a]]

norma[m]:=

Block[{k1,k2,i,j,u},
{k1,k2}=Dimensions[m];
u=Sqrt[Sum[m[[i,j]]^2,{i,k1},{j,k2}]];
Return[N[u]]

]

L2i[a List, w1 List, w2 List,i , e]:=

Block[{y0,y1,n,w,alfa,eps=e,nor,k=0},
w=w2.a.w1;

{n,n}=Dimensions[w];
If[(i==1) || (i==3) ,

alfa=2/Tr[Hermit[w].w],

alfa=1/Tr[Hermit[w].w]

];

y0=alfa*Hermit[w];

Switch[i,

1,y1=N[y0.(2*IdentityMatrix[n]-w.y0)],

2,y1=N[y0.w.y0],

3,y1=N[y0.(2*IdentityMatrix[n]-w.y0)],

4,y1=N[y0.w.y0.(2*IdentityMatrix[n]-w.y0.w.y0)],

5,y1=N[y0.Hermit[w.y0]],

6,y1=N[Hermit[w.y0].y0],

7,y1=N[y0.w.y0.(4*IdentityMatrix[n]-4*w.y0+(w.y0)^2)]

];

nor=norma[y1-y0];

While[nor>=eps,

y0=y1; k++;

Switch[i,

1,y1=N[y0.(2*IdentityMatrix[n]-w.y0)],

2,y1=N[y0.w.y0],

3,y1=N[y0.(2*IdentityMatrix[n]-w.y0)],

4,y1=N[y0.w.y0.(2*IdentityMatrix[n]-w.y0.w.y0)],

5,y1=N[y0.Hermit[w.y0]],

6,y1=N[Hermit[w.y0].y0],

7,y1=N[y0.w.y0.(4*IdentityMatrix[n]-4*w.y0+(w.y0)^2)]

];

nor=norma[y1-y0];

];

Return[Simplify[w1.y1.w2]]

]

32 P. S. STANIMIROVIĆ

Example 2.1. Consider the matrix

a =















−1 0 1 2
−1 1 0 −1
0 −1 2 3
0 1 −1 −3
1 −1 0 1
5 0 −1 −2















of rank 3. Let us choose the following matrices of rank 2:

w1 =







2 0
0 1
1 0
4 2






, w2 =

[

3 1 3 1 2 −1
0 −1 0 0 −2 1

]

.

Various {2}-inverses of the matrix a are generated as follows:

x=L2i[a,w1,w2,1,0.00000000001]

{{0.214286,-0.314286,0.214286,0.0714286,-0.628571,0.314286},
{-0.107143,0.357143,-0.107143,-0.0357143,0.714286,-0.357143},
{0.107143,-0.157143,0.107143,0.0357143,-0.314286,0.157143},
{0.214286,0.0857143,0.214286,0.0714286,0.171429,-0.0857143}}
x=L2i[a,w1,w2,2,0.0001]

{{0.0862259,0.0318854,0.0862259,0.028742,0.0637708,-0.0318854},
{0.0213806,0.00790632,0.0213806,0.00712687,0.0158126,-0.00790632},
{0.043113,0.0159427,0.043113,0.014371,0.0318854,-0.0159427},
{0.215213,0.0795834,0.215213,0.0717377,0.159167,-0.0795834}}
x=L2i[a,w1,w2,3,0.00000000001]

{{0.214286,-0.314286,0.214286,0.0714286,-0.628571,0.314286},
{-0.107143,0.357143,-0.107143,-0.0357143,0.714286,-0.357143},
{0.107143,-0.157143,0.107143,0.0357143,-0.314286,0.157143},
{0.214286,0.0857143,0.214286,0.0714286,0.171429,-0.0857143}}
x=L2i[a,w1,w2,4,0.000000000000000001]

{{0.0866953,0.032059,0.0866953,0.0288984,0.064118,-0.032059},
{0.021497,0.00794936,0.021497,0.00716567,0.0158987,-0.00794936},
{0.0433477,0.0160295,0.0433477,0.0144492,0.032059,-0.0160295},
{0.216385,0.0800167,0.216385,0.0721282,0.160033,-0.0800167}}
x=L2i[a,w1,w2,5,0.0001]

{{0.0862259,0.0318854,0.0862259,0.028742,0.0637708,-0.0318854},
{0.0213806,0.00790632,0.0213806,0.00712687,0.0158126,-0.00790632},
{0.043113,0.0159427,0.043113,0.014371,0.0318854,-0.0159427},
{0.215213,0.0795834,0.215213,0.0717377,0.159167,-0.0795834}}
x=L2i[a,w1,w2,6,0.01]

{{0.0810205,0.0293177,0.0810205,0.0270068,0.0586355,-0.0293177},
{-0.00439517,-0.00158945,-0.00439517,-0.00146506,-0.0031789,0.00158945},
{0.0405102,0.0146589,0.0405102,0.0135034,0.0293177,-0.0146589},
{0.153251,0.0554566,0.153251,0.0510835,0.110913,-0.0554566}}
x=L2i[a,w1,w2,7,0.000000000000001]

{{0.0877326,0.0292442,0.0877326,0.0292442,0.0584884,-0.0292442},
{0.0217539,0.00725129,0.0217539,0.00725129,0.0145026,-0.00725129},
{0.0438663,0.0146221,0.0438663,0.0146221,0.0292442,-0.0146221},
{0.218973,0.072991,0.218973,0.072991,0.145982,-0.072991}}

SELF–CORRECTING ITERATIVE METHODS FOR COMPUTING {2}–INVERSES 33

3. Calculating errors of algorithms

All of the algorithms described in the previous section are of the general form
Xk+1 = W1Yk+1W2, where Yk is the k-th approximation of the inverse matrix
W−1 = (W2AW1)

−1. Since the iterative methods for computing the inverse
(W2AW1)

−1 are self-correcting, it seems interesting to investigate self-correctness
of the iterative methods (2.1)–(2.7).

Theorem 3.1. Let A ∈ Cm×n be of rank r and s ≤ r be an arbitrary positive

integer. Assume thatW1 ∈ Cn×s andW2 ∈ Cs×m are chosen so thatW =W2AW1
is an invertible matrix, and Yk = W−1 + E is the k-th estimate of an algorithm

for computing W−1. Consider the iterative methods (2.1)-(2.7) for generating the
class A{2}. Denote by error0, error1 and error2 the zero-order, first-order and

the second-order terms, respectively, in the error estimates Xk+1−A(2). All these

algorithms have zero-order terms equal to 0. Also, performances of these methods
are represented in the following Table 1.

Formula for Xk+1 error1 error2

W1Yk(2I − WYk)W2 0 −W1EWEW2

W1YkWYkW2 2W1EW2 W1EWEW2

W1YkWYk(2I − WYk)W2 W1EW2 −W1EWEW2

W1YkWYk(2I − WYkWYk)W2 0 −4W1EWEW2

W1Yk(WYk)
∗W2 W1(W

−1E∗W ∗ +E)W2 W1EE∗W ∗W2

W1(WYk)
∗YkW2 W1(W

∗E∗W−1 +E)W2 W1W
∗E∗EW2

W1YkWYk(4I−4WYk+(WYk)
2)W2 0 −2W1EWEW2

Table 1.

Proof. For the iterative process (2.1) we can write

Xk+1 =W1Yk(2I − WYk)W2.

Since Yk =W−1 +E, we get

Xk+1 =W1(W
−1 +E)

(

2I − W (W−1 +E)
)

W2

= A(2) − W1EWEW2.

This is a verification of the first row in the table.

The iterative process (2.2) satisfies

Xk+1 =W1(W
−1 +E)W (W−1 +E)W2

= A(2) + 2W1EW2 +W1EWEW2

which confirms the second row of the table.

For the iterative process (2.3) have

Xk+1 =W1YkWYk(2I − WYk)W2,

34 P. S. STANIMIROVIĆ

Xk+1 =W1(W
−1 +E)W (W−1 +E)

(

2I − W (W−1 +E)
)

W2

= A(2) +W1EW2 − W1EWEW2 − W1EWEWEW2

which completes the third row of the table.
The fourth row of the table can be verified from the following:

Xk+1 =W1(W
−1 +E)W (W−1 +E)W2

(

2I − W (W−1 +E)W (W−1 +E)
)

= A(2) +W1(−4EWE − 4EWEWE − 4EWEWEWE)W2.

The rest of the proof can be verified in a similar way. �

In the following table we present the number of basic matrix operations, required
in each iteration of the introduced methods.

Formula for Xk+1 multiplications other operations

W1Yk(2I − WYk)W2 6 2

W1YkWYkW2 6 0

W1YkWYk(2I − WYk)W2 8 2

W1YkWYk(2I − WYkWYk)W2 10 2

W1Yk(WYk)
∗W2 6 1

W1(WYk)
∗YkW2 6 1

W1YkWYk(4I−4WYk+(WYk)
2)W2 10 3

Table 2.

4. Conclusion

We introduce a few iterative methods for computing {2}-inverses, which repre-
sent extensions of analogous algorithms from [11], [8] and [14]. Error estimates of
these methods are investigated. In view of these results, we give a few concluding
remarks.

Remark 4.1. It is known that an algorithm is self-correcting if it first-order
error is 0 [13]. Consequently, between the iterative methods for computing {2}-
inverses, the methods (2.1), (2.4) and (2.7) are self–correcting. Note that in [14]
an algorithm similar to the algorithm (2.1) is established. This algorithm is ap-
plicable in construction of {1, 2}-inverses, and it is also self-correcting. Between
the self-correcting methods (2.1), (2.4) and (2.7), the method (2.1) has a smaller
absolute value of the second-order error term. Also, (2.1) requires a smallest num-
ber of matrix multiplications per iteration with respect to (2.4) and (2.7). For
this purpose, we recommend usage of the algorithm (2.1). Between the methods
(2.2), (2.3), (2.5) and (2.6) which are not self-correcting, the algorithm (2.3) has
minimal first-order term.

Remark 4.2. It is well-known that the hyper–power method for computing the
inverse of an invertible operator is self–correcting, but it is not self–correcting

SELF–CORRECTING ITERATIVE METHODS FOR COMPUTING {2}–INVERSES 35

for computing generalized inverses [18], [19]. There is the well-known Zielke’s
iterative refinement process which solves the self-correcting problem. Namely,
the iterative refinement of the k-th order hyper-power method for computing the
Moore–Penrose inverse of A has the following form [18], [19]:

X̃k = A∗X∗
kXkX∗

kA∗

Xk+1 = X̃k(2I − AX̃k) .

This modification is not necessary in each step.
Consequently, the following iterative refinements for the iterative processes

(2.2), (2.3), (2.5) and (2.6) are available:

Ỹk =W ∗Y ∗
k YkY ∗

k W ∗

Xk+1 =W1ỸkWỸkW2,(2.2’)

Xk+1 =W1ỸkWỸk(2I − WỸk)W2,(2.3’)

Xk+1 =W1Ỹk(WỸk)
∗W2,(2.5’)

Xk+1 =W1(WỸk)
∗ỸkW2.(2.6’)

Remark 4.3. Tanabe in [16] generalized the iterative methods based on the
hyper-power iterative method for computing reflexive g-inverses. Advantages of
the method which is introduced in [14], analogous to the representation (2.1), with
respect to Tanabe’s method [16], are discussed in [14]. Over all of these advan-
tages, the method (2.1) is more general, and can be used in the construction of
{2}-inverses.

References

[1] Altman, M., An optimum cubically convergent iterative method of inverting a linear

bounded operator in Hilbert space, Pacific J. Math. 10 (1960), 1107–113.
[2] Ben-Israel, A., An iterative method for computing the generalized inverse of an arbitrary

matrix, Math. Comp. 19 (1965), 452–455.
[3] Ben-Israel, A., A note on an iterative method for generalized inversion of matrices, Math.

Comp. 20 (1966), 439–440.
[4] Ben-Israel, A. and Cohen, D., On iterative computation of generalized inverses and asso-

ciated projectors, SIAM J. Numer. Anal. 3 (1966), 410–419.

[5] Chen, Y., Finite algorithms for (2)-generalized inverse A
(2)
T,S
, Linear and Multilinear Alge-

bra 40 (1995), 61–68.
[6] Garnett, J., Ben-Israel, A. and Yau, S. S., A hyperpower iterative method for computing

matrix products involving the generalized inverse, SIAM J. Numer. Anal. 8 (1971), 104–109.
[7] Herzberger, J., Using error-bounds hyperpower methods to calculate inclusions for the in-

verse of a matrix, BIT 30 (1990), 508–515.
[8] Pan, V. and Schreiber, R., An improved Newton iteration for the generalized inverse of a

matrix, with applications, SIAM. J. Sci. Stat. Comput. 12 (1991), 1109–1130.
[9] Petryshyn, W.V., On the inversion of matrices and linear operators, Proc. Amer. Math.

Soc. 16 (1965), 893–901.
[10] Petryshyn, W.V., On generalized inverses and on the uniform convergence of (I − βK)n

with application to iterative methods, J. Math. Anal. Appl. 18 (1967), 417–439.

36 P. S. STANIMIROVIĆ

[11] Pierce, W.H., A self-correcting matrix iteration for the Moore-Penrose inverse, Linear
Algebra Appl. 244 (1996), 357–363.

[12] Schulz, G., Iterative Berechnung der reziproken Matrix, Z. Angew. Math. Mech. 13 (1933),
57–59.

[13] Söderström, T. and Stewart, G.W., On the numerical properties of an iterative method

for computing the Moore-Penrose generalized inverse, SIAM J. Numer. Anal. 11 (1974),
61–74.

[14] Stanimirović, P. S. and Djordjević, D. S., Universal iterative methods for computing gener-

alized inverses, Acta Math. Hungar. 79(3) (1998), 253–268.
[15] Stanimirović, P. S., Block representation of {2}, {1, 2} inverses and the Drazin inverse,

Indian J. Pure Appl. Math. 29 (1998), 1159–1176.
[16] Tanabe, K., Neumann-type expansion of reflexive generalized inverses of a matrix and the

hyperpower iterative method, Linear Algebra Appl. 10 (1975), 163–175.

[17] Wang, G., The representations of the generalized inverses (A ⊗ B)
(1,2)
T,S

and (A ⊗ B)
(2)
T,S

and some applications, J. Shanghai Univ. (Natural Sciences) 24 (1995), 1–6.
[18] Zielke, G., Iterative refinement of generalized matrix inverses now practicable, SIGNUM

Newsletter 13.4 (1978), 9–10.
[19] Zielke, G., A survey of generalized matrix inverses, Computational Mathematics, Banach

center Publications 13 (1984), 499–526.
[20] Zlobec, S., On computing the generalized inverse of a linear operator, Glasnik Matematički

2(22) No 2 (1967), 265–271.

����� ��� � � � �	��

��� ����
� 	
���� ����

���
 �����
 �������� 	 � ��! ��� �"
��$# 	 ��% � ! 	 � �
 �
&��'�� ��(� 	�) �+* 	�,-,
.0/-1�1-1 � �'�� ��2 � (
��+� 	 �
� 	

E-mail 3 pecko@pmf.pmf.ni.ac.yu

