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THE COMPLEX GEOMETRY OF AN INTEGRABLE SYSTEM

AHMED LESFARI

Abstract. In this paper, a finite dimensional algebraic completely integrable
system is considered. We show that the intersection of levels of integrals
completes into an abelian surface (a two dimensional complex algebraic torus)
of polarization (2, 8) and that the flow of the system can be linearized on it.

1. Introduction

Consider a hamiltonian vector fields

ż = J
∂H

∂z
, z ∈ R

n ,(1)

where J = J(z) is a skew-symmetric matrix with polynomial entries in z, for which
the corresponding Poisson bracket

{Hi, Hj} =

〈
∂Hi

∂z
, J

∂Hj

∂z

〉
,

satisfies the Jacobi identity.
The system (1) with polynomial right hand side will be called algebraic complete

integrable when:
a) the system is completely integrable with polynomial invariants, to be precise,

the system possesses k polynomial H1, . . . , Hk (functions whose gradients ∂Hi/∂z
are null vectors of J ) and m = (n − k)/2 polynomial first integrals Hk+1 =
H, . . . , Hk+m in involution ( {Hi, Hj} = 0), which give rise to m commuting
vector fields Xi generated by (1) applied to Hk+i, 1 ≤ i ≤ m; for generic ci, the
invariant manifolds

k+m⋂

i=1

{z ∈ R
n : Hi (z) = ci} ,
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are compact and connected and therefore there exists a diffeomorphism

k+m⋂

i=1

{z ∈ R
n : Hi (z) = ci} −→ R

m/Lattice (real tori) ,

according to the Arnold-Liouville theorem [3, 18].
b) The invariant manifolds, thought of as affine varieties in Cm (non-compact)

A =

k+m⋂

i=1

{z ∈ C
n : Hi (z) = ci} ,

can be completed into complex algebraic tori Ã (abelian varieties) as follows

A = Ã \ D ,

whereD is a divisor in Ã. In the natural coordinates (t1, . . . , tm) of Ã = Cm/Lattice
coming from Cm, the functions zi = zi(t1, . . . , tm) are meromorphic and in partic-

ular (1) defines straight line motion on Ã.
Adler and van Moerbeke [1] have developed and used the following algebraic

complete integrability criterion: If the hamiltonian system (1) is algebraic complete
integrable, then each zi blows up for some value of t ∈ C and whenever it blows
up, the solution z(t) behaves as a Laurent series

zi = t−ki

(
z
(0)
i + z

(1)
i t + z

(2)
i t2 + · · ·

)
, ki ∈ Z , some ki > 0 ,

which admits dim(phase space)−1 = n − 1 free parameters.

In this paper we consider the following system of differential equations in the
unknowns z1, . . . , z4 :

ż1 = z3 ,

ż2 = z4 ,

ż3 = Ωz1 − Ω0z2 − z2
1z2 ,

ż4 = Ωz2 − Ω0z1 − z1z
2
2 ,

(2)

where Ω0 and Ω are two arbitrary constants. If Ω = Ω0 = 0, this system co-
incide with the Yang-Mills system (see Appendix 1) describing a homogeneous
two-component field having the gauge group SU(2). The solutions of this system
can also be related to the coupled nonlinear Schrödinger equations (see Appendix
2). The following two quartics are first integrals for this system

H1 =
1

4
Ω0

(
z2
1 + z2

2

)
− 1

2
Ωz1z2 +

1

4
z2
1z

2
2 +

1

2
z3z4 ,(3)

H2 = −1

2

(
Ω2

0 − Ω2
)
z1z2 −

1

2
Ωz3z4 −

1

4
Ω0

(
z2
3 + z2

4

)
− 1

8
Ω0z1z2

(
z2
1 + z2

2

)

− 1

4
Ωz2

1z2
2 − 1

16
z2
1z

2
4 +

1

8
z1z4z2z3 −

1

16
z2
2z

2
3 .(4)
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The system (2) can be written in the form (1) with n = 4, m = 2, k = 0; to be
precise

ż = f(z) = J
∂H

∂z
, z = (z1, z2, z3, z4)

> ,

where H = H1 (3),

∂H

∂z
=

(∂H

∂z1
,

∂H

∂z2
,

∂H

∂z3

∂H

∂z4

)>

, J =

(
0 I
−I 0

)
,

The second flow commuting with the first is regulated by the equations

.
z= J

∂H2

∂z
, z = (z1, z2, z3, z4)

>

with H2 defined by (4) and is written explicitly as

.
z1 =

1

2
Ωz4 +

1

2
Ω0z3 −

1

8
z2 (z1z4 − z2z3) ,

.
z2 =

1

2
Ωz3 +

1

2
Ω0z4 +

1

8
z1 (z1z4 − z2z3) ,

.
z3 =

1

8
z2

(
4Ω2 − 4Ω2

0 − 3Ω0z
2
1 − Ω0z

2
2 − 4Ωz1z2

)
− 1

8
z4 (z1z4 − z2z3) ,

.
z4 =

1

8
z1

(
4Ω2 − 4Ω2

0 − Ω0z
2
1 − 3Ω0z

2
2 − 4Ωz1z2

)
+

1

8
z3 (z1z4 − z2z3) .

(5)

The invariant (or level) variety

A =
2⋂

i=1

{Hi (z) = ci} ⊂ C
4 ,(6)

is a smooth affine surface for generic c = (c1, c2) ∈ C2. So, the question I address is
how does one find the compactification of A into an Abelian surface? Now granted
the system (2) is integrable, how does one effectively integrate the problem? The
proof of the Liouville theorem concerning integrals in involution and invariant tori
is non-constructive: neither does it enable you to decide about its integrability, nor
does it provide means for integrating the problem. The idea of the direct proof we
shall give here is closely related to the geometric spirit of the (real) Arnold-Liouville
theorem [3, 18]. Namely, a compact complex n-dimensional variety on which there
exist n holomorphic commuting vector fields which are independent at every point
is analytically isomorphic to a n-dimensional complex torus Cn/Lattice and the
complex flows generated by the vector fields are straight lines on this complex
torus. Now, the main problem will be to complete A (6) into a non singular

compact complex algebraic variety Ã = A∪D in such a way that the vector fields
(2) and (5) extend holomorphically along the divisor D and remain independent

there. If this is possible, Ã is an algebraic complex torus (an abelian variety) and
the coordinates zi restricted to A are abelian functions. A naive guess would be
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to take the natural compactification A of A by projectivizing the equations:

A =
2⋂

i=1

{
Hi (Z) = ciZ

4
0

}
⊂ CP

4 .

Indeed, this can never work for a general reason: an abelian variety Ã of dimension
bigger or equal than two is never a complete intersection, that is it can never be de-

scriped in some projective space CP
n by n-dim Ã global polynomial homogeneous

equations. In other words, if A is to be the affine part of an abelian surface, A
must have a singularity somewhere along the locus at infinity A∞ = A∩{X0 = 0}.
In fact, we shall show that the existence of meromorphic solutions to the differen-
tial equations (2) depending on 3 free parameters can be used to manufacture the
tori, without ever going through the delicate procedure of blowing up and down.
Information about the tori can then be gathered from the divisor.

2. Laurent expansions solutions and curves

Consider points at infinity which are limit points of trajectories of the flow.
If the hamiltonian flow (1) is algebraic complete integrable, it means that the
variables zi are meromorphic on the torus Cm/Lattice and by compactness they
must blow up along a codimension one subvariety (a divisor) D ⊂ Cm/Lattice. By
the algebraic complete integrability definition, the flow (1) is a straight line motion
in C

m/Lattice and thus it must hit the divisor D in at least one place. Moreover
through every point of D , there is a straight line motion and therefore a Laurent
expansion around that point of intersection. Hence the differential equation must
admit Laurent expansions which depend on the m− 1 parameters defining D and
the m + k constants ci defining the torus Cm/Lattice the total count is therefore
n − 1 = dim (phase space)−1 parameters.

Proposition 1. The pole solutions of the system (2) restricted to the surface A (6)
is a curve D (8) of geometric genus 7. Its smooth version is a hyperelliptic curve

C (10) of genus 5, which is a double cover ramified at 4 points of a genus 2 hyper-

elliptic curve C0 (11).

Proof. The first fact to observe is that if the system (2) is to have Laurent ex-
pansions solutions depending on dim(phase space)−1 = 3 free parameters, the
solutions must blow up like:

z1 =
z
(0)
1

t
+ z

(1)
1 + z

(2)
1 t + z

(3)
1 t2 + z

(4)
1 t3 + · · ·

z2 =
z
(0)
2

t
+ z

(1)
2 + z

(2)
2 t + z

(3)
2 t2 + z

(4)
2 t3 + · · ·

z3 = −z
(0)
1

t2
+ z

(2)
1 + 2z

(3)
1 t + 3z

(4)
1 t2 + · · ·

z4 = −z
(0)
2

t2
+ z

(2)
2 + 2z

(3)
2 t + 3z

(4)
2 t2 + · · ·

(7)
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this follows immediately from the differential equations (2). Putting (7) into (2),
solving inductively for the z(k), one finds at the 0th step a non-linear equation,
and at the kth step, a linear system of equations. One free parameter α appear at
the 0th step and the two remaining ones β, γ at the kth step, k = 3, k = 4. More
precisely, we find

z
(0)
1 = α , z

(0)
1 z

(0)
2 = −2 ,

z
(1)
1 = 0 , z

(1)
2 = 0 ,

z
(2)
1 = −1

6
Ωα +

1

3
Ω0z2 +

1

12
α3Ω0 , z

(2)
2 = −1

6
Ωz2 +

1

3
Ω0α +

1

12
z3
2Ω0 ,

z
(3)
1 =

1

2
α2β , z

(3)
2 = β ,

z
(4)
1 =

1

12
ΩΩ0z2 +

1

24
Ωα3Ω0 −

1

24
z3
2Ω

2
0 −

1

48
α5Ω2

0 −
1

2
α2γ , z

(4)
2 = γ ,

Substituting the solutions (7) into H1 = c1 and H2 = c2, and equating the t◦-terms
yields

H1 = − 5

72
α4Ω2

0 +
1

9
Ωα2Ω0 −

17

36
Ω2

0 −
7

36
Ω2 +

5

36
z4
2Ω

2
0 −

11

36
Ωz2

2Ω0 − 5αγ ,

H2 = − 9

4
α2β2 − 19

576
α6Ω3

0 +
17

144
Ωα4Ω2

0 −
1

8
Ω3

0α
2 − 11

144
Ω2α2Ω0 +

7

36
Ω3

− 2

9
ΩΩ2

0 +
11

576
z6
2Ω3

0 −
1

9
ΩΩ2

0z
4
2 +

1

12
Ω3

0z
2
2 +

25

144
Ω2Ω0z

2
2 +

9

8
Ω0z2γ

− 5

4
Ω0α

3γ + 3Ωαγ ,

with z
(0)
1 z

(0)
2 = −2. Eliminating γ from these equations, leads to the followings

curve of geometric genus 7,

D : α8β2 − P (α) = 0 ,(8)

where

P (α) ≡ − 1

144
Ω3

0α
12 +

7

324
ΩΩ2

0α
10 +

1

3240
Ω0

(
35Ω2

0 + 360H1 + 56Ω2
)
α8

− 1

405

(
−14Ω3 + 180H2 + 108ΩH1 + 45ΩΩ2

0

)
α6

− 1

1620
Ω0

(
7Ω2

0 − 35Ω2 − 324H1

)
α4 +

19

405
Ω2

0Ωα2 +
8

81
Ω3

0 .(9)

Its smooth version is the following hyperelliptic curve of genus 5,

C : u2 − P (α) = 0 .(10)

It is a double ramified cover of the genus 2 hyperelliptic curve,

C0 : v2 − P (ξ) = 0 ,(11)

ramified at the four points covering ξ = 0 and ∞. The polynome P (ξ) of degree
6 is given by (9) with ξ ≡ α2. This concludes the proof of Proposition 1.
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3. Invariant surfaces as affine part of an abelian surface

We now wish to give a direct geometric proof that the surface A (6) is an affine

part of an abelian surface. Let Ã be a smooth surface compactifying A. Consider
a basis 1, f1, . . . , fN of the vector space

L ≡ L (C) =
{
f : f meromorphic on Ã, (f) ≥ −C

}
,

of meromorphic functions on Ã with at worst a simple pole along C and the map

Ã → CP
N , p 7−→ [1, f1(p), . . . , fN(p)] ,

considered projectively, because if at p some fi(p) = ∞, we divide by fi having
the highest order pole near p, which makes every element finite. The Kodaira
embedding theorem tells us that if the line bundle associated with the divisor is

positive, then for k ∈ N, the functions of L (kC) embed smoothly Ã into CP
N and

then by Chow’s theorem, Ã can be realized as an algebraic variety, i.e.,

Ã =
⋂

i

{
z ∈ CP

N : Pi (z) = 0
}

,

where Pi (z) are homogeneous polynomials. In fact we shall show that the diviseur
2C provides a smooth embedding into CP

15, via the meromorphic section of L (2C).
Put S ≡ 2C and let

χ (S) = dim H0(Ã,O(S)) − dim H1
(
Ã,O(S)

)
,

be the Euler characteristic of S. The adjunction formula and the Riemann-Roch
theorem for divisors on abelian surfaces imply that

g (S) =
K

Ã
· S + S · S

2
+ 1 ,

χ (S) = pa(Ã) + 1 +
1

2

(
S · (S−K

Ã
)
)

,

where g (S) is the geometric genus of S and pa(Ã) is the arithmetic genus of Ã.

Since Ã is an abelian surface
(
K

Ã
= 0, pa(Ã) = −1

)
,

g (S) − 1 =
S · S

2
,

= χ (S) .

Using Kodaira-Serre duality [6, p. 153], Kodaira-Nakano vanishing theorem [6,
p. 154] and a theorem on theta-functions [6, p. 317], it is easy to see that

g (S) − 1 = dim L(S)
(
≡ h0 (L)

)
,(12)

= N + 1 ,

= δ1δ2 ,

where δ1, δ2 ∈ N, are the elementary divisors of the polarization of Ã.
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Proposition 2. The orbits of the vector field (2) running through S ≡ 2C form a

smooth surface ∆p near S. Near p ∈ S, the surface strip ∆p coincides with Ã and

∆p \ S ⊆ A; ∆p is the only part of Ã in a small neighbourhood of p. Moreover,

the variety

A ∪
( ⋃

p∈S

∆p

)
= Ã = A ∪ S ,

is smooth, compact, connected and embeds smoothly into CP
15.

Proof. Based on the above motivation, it is easy to find a set of polynomial
functions {1, f1, . . . , fN} in L (S) such that the embedding of S ≡ 2C with those

functions into CP
N yields a curve of genus N +2. Straightforward calculation, us-

ing asymptotic expansions, shows that the space L (S) is spanned by the following
functions

L (S) = {1, f1, . . . , f15} ,

where

f1 = z1 =
α

t
+ o (t) ,

f2 = z2 =
z
(0)
2

t
+ o (t) ,

f3 = z3 = − α

t2
+ o (t) ,

f4 = z4 = −z
(0)
2

t2
+ o (t) ,

f5 = z2
1 =

α2

t2
+ o (t) ,

f6 = z2
2 =

4

α2t2
+ o (t) ,

f7 = z1z2 = − 2

t2
+ o (t) ,

f8 = z1z4 − z2z3 = Ω0

(
α2 − 2

) α2 + 2

α2t
+ o (t) ,

f9 = (z1z4 − z2z3)
2

= Ω2
0

(
α2 − 2

)2

(
α2 + 2

)2

α4t2
+ o (t) ,

f10 = z1 (z1z4 − z2z3) = Ω0

(
α2 − 2

) α2 + 2

αt2
+ o (t) ,

f11 = z2 (z1z4 − z2z3) = −2Ω0

(
α2 − 2

) α2 + 2

α3t2
+ o (t) ,

f12 = z3 (z1z4 − z2z3) + Ω0z1

(
z2
1 − z2

2

)
= −6

α2

t2
β + o (t) ,

f13 = z4 (z1z4 − z2z3) + Ω0z2

(
z2
1 − z2

2

)
=

12

t2
β + o (t) ,
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f14 =
(
z2
1 − z2

2

)
z1z2 + 2

(
z2
3 − z2

4

)
,

=
1

2

(
−Ω0α

4 + 4Ωα2 − 4Ω0

) (
α2 + 2

) α2 − 2

t2α4
+ o (t) ,

f15 = z1z2 (z1z4 − z2z3) − 2Ω0 (z1z3 − z2z4) − 2Ω (z1z4 − z2z3) ,

= −12

t2
αβ + o (t) .

The map

S → CP
15 ,

p 7→ lim
t→0

t2 (1, f1(p), . . . , f15(p)) ,

=
(
0, 0, 0, f

(0)
3 (p), . . . , f

(0)
7 (p), 0, f

(0)
9 (p), . . . , f

(0)
15 (p)

)
,

maps the curve S into S̃ ⊆ CP
15 and the genus of S is 17, satisfying the requirement

(12). Let ∆p ⊂ CP
15 be the surface formed by the divisor S with fibres defined

by the flow (for small t) departing from the points of S in a neighbourhood of the
point p ∈ S. Let H ⊂ CP

15 be a hyperplane transversal to the direction of the
flow at p and consider the segment of the curve S ′ defined by S ′ = H ∩ ∆p. If
S ′ is smooth, then using the implicit function theorem the surface ∆p is smooth.
But if S ′ is singular at 0, then ∆p would be singular along the trajectory (t-axis)
which go immediately into the affine part A. Hence, A would be singular which is a
contradiction because A is the fibre of a morphism from C4 to C2 and so smooth for
almost all the two constants of the motion ci. Next, let A be the projective closure
of A into CP

4, let Z = (Z0, Z1, Z2, Z3, Z4) ∈ CP
4 and let A∞ = A ∩ {Z0 = 0} be

the locus at infinity. Consider the map

f : A ⊆ CP
4 → CP

15, Z 7→ f (Z) ,

where f = (1, f1, . . . , f15) ∈ L (S) and let Ã = f(A). In a neighbourhood V (p) ⊆
CP

15 of p, we have ∆p = Ã and ∆p \ S ⊆ A; ∆p is the only part of Ã in a small

neighbourhood of p. Otherwise there would exist an element of surface ∆′
p ⊆ Ã

intersecting ∆p at p ∈ S. Let gt
X1

(p) be the orbit going with the vector field (2)
through p. We have

orbit
{
gt

X1
(p) , 0 < |t| < ε

}
=

(
∆p ∩ ∆′

p

)
\A ,

∆p ∩ ∆′
p = t-axis.

Hence A would be singular along the t-axis which is impossible. Since the variety
A ∩ {Z0 6= 0} is irreductible and since the generic hyperplane section Hgeneric of

A is also irreducible, all hyperplane sections are connected and hence A∞ is also
connected. Now, consider the graph Γf ⊆ CP

4 × CP
15 of the map f , which is

irreducible together with A. It follows from the irreducibility of A∞ that a generic
hyperplane section Γf ∩ {Hgeneric × CP

15} is irreducible, hence the special hyper-

plane section Γf

⋂{{Z0 = 0} × CP
15} is connected and therefore the projection
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map

projCP15 [Γf ∩ {{Z0 = 0} × CP
15}] = f(A∞) ≡ S ,

is connected; a projection maintains connectivity by continuity. Hence, the variety

A ∪ (
⋃

p∈S

∆p) = Ã = A ∪ S,

is compact, connected and embeds smoothly into CP
15 via f. This completes the

proof of Proposition 2.

Proposition 3. The variety Ã comes equipped with two everywhere independent

commuting vector fields, which extend holomorphically on Ã.

Proof. Let gt1 and gt2 be the flows generated respectively by vector fields (2) and
(5) . For p ∈ S and for small ε > 0, gt1(p), ∀t1, 0 < |t1| < ε, is well defined and
gt1(p) ∈ A. Then we may define gt2 on A by

gt2(q) = g−t1gt2gt1(q), q ∈ U(p) = g−t1(U(gt1(p))) ,

where U(p) is a neighbourhood of p. By commutativity one can see that gt2 is
independent of t1;

g−t1−ε1gt2gt1+ε1(q) = g−t1g−ε1gt2gt1gε1 ,

= g−t1gt2gt1(q) .

We affirm that gt2(q) is holomorphic away from S. This because gt2gt1(q) is
holomorphic away from S and that gt1 is holomorphic in U(p) and maps bi-
holomorphically U(p) onto U(gt1(p)). This finishes Proposition 3.

Proposition 4. The affine surface A (6) defined by the intersection of two quar-

tics completes into an abelian surface Ã ' a complex algebraic torus C2/period
lattice. The system of differential equations (2) is algebraic complete integrable

and the corresponding flow evolues on this torus.

Proof. Since the flows gt1 and gt2 are holomorphic and independent on S, we can

show along the same lines as in the Arnold-Liouville theorem that Ã is a torus.
And that will done, by considering the holomorphic map

C
2 −→ Ã, (t1, t2) 7−→ gt1gt2(p) ,

for a fixed origin p ∈ A. Then

lattice = { (t1, t2) ∈ C
2 : gt1gt2(p) = p} ,

is a lattice of C
2 and hence C

2/lattice → Ã is a biholomorphic diffeomorphism.

Therefore Ã ⊆ CP
15 is conformal to a complex torus C

2/lattice and an abelian
surface as a consequence of Chow theorem. This establishes Proposition 4.
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4. Abelian surface of polarization (2,8), Prym and Jacobian
varieties

We can go further and describe what abelian surfaces arise this way. The
system (2) can then be solved by quadratures, that is to say their solutions can
be expressed in terms of Abelian integrals. We make also a few comments about

the relation between the abelian variety Ã, the Prym variety Prym(C/C0) and the
Jacobian variety Jac (C).

Proposition 5. The flow (2) evolues on abelian surfaces Ã ⊆ CP
15 of period

matrix (
2 0 a c
0 8 c b

)
, Im

(
a c
c b

)
> 0 ,

and it will be expressed in terms of abelian integrals, involving the differentials

(15).

Proof. Note that the affine invariant surface A (6), has the following involution

σ : (z1, z2, z3, z4) 7−→ (−z1,−z2,−z3,−z4) ,

which amounts to a reflection about some appropriately chosen origin on A. This
map acts on the parameters of the Laurent solutions (7) as follows

(t, α, β) 7−→ (−t,−α, β) .

Since L is symmetric (σ∗L'L), σ can be lifted to L as an involution σ̃ in two ways
differing in sign and for each section (theta-function) s ∈ H0 (L), we therefore have
σ̃s = ±s. Recall that a section s ∈ H0 (L) is called even (resp. odd) if σ̃s = +s
(resp. σ̃s = −s). Under σ̃ the vector space H0 (L) splits into an even and odd
subspace

H0 (L) = H0 (L)even ⊕ H0 (L)odd ,

with H0 (L)even containing all the even sections and H0 (L)odd all odd ones. Using
the inverse formula [21, p. 331], we see after a small computation that

h0 (L)even ≡ dim H0 (L)even =

{
δ1δ2

2 + 2
(
1 + [ δ2

2 ] − δ2

2

)
for even δ1

δ1δ2

2 +
(
1 + [ δ2

2 ] − δ2

2

)
for odd δ1

,

h0 (L)
odd ≡ dim H0 (L)

odd
=

{
δ1δ2

2 − 2
(
1 + [ δ2

2 ] − δ2

2

)
for even δ1

δ1δ2

2 −
(
1 + [ δ2

2 ] − δ2

2

)
for odd δ1

.

(13)

By the classification theory of ample line bundles on abelian varieties and Propo-

sition 4, Ã ' C2/LΩ with period lattice given by the columns of the matrix

Ω =

(
δ1 0 a c
0 δ2 c b

)
, Im

(
a c
c b

)
〉 0,

according to (12), with

δ1δ2 = h0 (L) = g (S) − 1 = 16 , δ1 | δ2 , δi ∈ N
∗ .
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Hence we have the following possibilities: (i) δ1 = 1, δ2 = 16 and (ii) δ1 = 2,
δ2 = 8. From formula (13), the corresponding line bundle L has in case (i), 9 even
sections, 7 odd ones and in cases (ii) 10 even sections, 6 odd ones. Among the
functions of L, there are 10 even and 6 odd functions for the involution σ, showing
that cases (ii) is the only alternative and the period matrices have the form

(
2 0 a c
0 8 c b

)
, Im

(
a c
c b

)
> 0 .

Consider on Ã the holomorphic 1-forms dt1 and dt2 defined by

dti (Xj) = δij ,

where X1 is the flow (2) and X2 the other flow (5) commuting with the first. The
holomorphic differentials on C can be spanned as well by

ωk =
αk−1dα√

P (α)
, 1 ≤ k ≤ 5 .(14)

The restriction of dt1 and dt2 to the curve C are easily computed:

dt1 |C = ω2 =
αdα√
P (α)

,

dt2 |C = ω4 =
α3dα√
P (α)

.

(15)

This ends the proof of Proposition 5.

Finally we make a few comments about the relation between the abelian variety

Ã, the Prym variety Prym(C/C0) and the jacobian variety Jac (C). As pointed out
before, C is a double ramified cover of a hyperelliptic curve C0 of genus 2, whose
sheets are interchanged by the involution (α, u) 7−→ (−α, u). Hence

Jac (C) = Prym(C/C0) ⊕ Jac (C0) .

Since the space of holomorphic differentials splits according to odd and even dif-
ferentials respectively (for that involution)

Ω (C) = {ω1, ω3, ω5} ⊕ {ω2, ω4} ,

the flows evolve on the 3-dimensional Prym(C/C0) and therefore

Ã ⊆ Prym(C/C0) .

Its differentials restricted to the curve C are given by ω1, ω3 and ω5. This shows
that Prym(C/C0) splits further, up to isogenies, into an elliptic curve E and the

3-dimensional invariant torus Ã :

Prym (C/C0) = Ã ⊕ E .

The torus Ã can also be regarded as a double cover of the Jacobi variety Jac(C0)
and the system (2) can be integrated in terms of genus 2 hyperelliptic functions
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of time. The differentials dt1 and dt2, corresponding to the flows (2) and (5),
restricted to the curve C, go down to C0. Indeed, using (15)

dt1 |C = ω2 =
α dα√
P (α)

=
dξ√
P (ξ)

,

dt2 |C = ω4 =
α3 dα√
P (α)

=
ξ dξ√
P (ξ)

,

yielding the two hyperelliptic differentials on C0.

Appendix 1. Consider the Yang-Mills system for a field with gauge group SU(2) :

DkFkl =
∂Fkl

∂xk

+ [Ak , Fkl] = 0 ,

where Fkl, Ak ∈ TeSU(2), 1 ≤ k, l ≤ 4 and

Fkl =
∂Al

∂xk

− ∂Ak

∂xl

+ [Ak, Al] .

In the case of homogeneous two-component field,

∂Al

∂xk

= 0 (k 6= 1) , A1 = A2 = 0 , A3 = n1U1 , A4 = n2U2 ,

where n1,2 = constant, n1 = [n2, [n1, n2]], n2 = [n1, [n2, n1]] and the system
becomes

∂2U1

∂t2
+ U1U

2
2 = 0 ,

∂2U2

∂t2
+ U2U

2
1 = 0 ,

with t = x1. By setting

U1 =
1

2

(
4
√

2
)3

z1 ,
∂U1

∂t
=

√
2 (1 − i)

4
(z3 + iz4) ,

U2 =
1

2

(
4
√

2
)3

z2 ,
∂U2

∂t
=

√
2 (1 + i)

4
(z3 − iz4) .

Yang-Mills equations are reduced to hamiltonian system with the hamiltonian

H =
1

2
z3z4 +

1

4
z2
1z2

2 ,

which obviously coincides with (3) for Ω = Ω0 = 0.

Appendix 2. It’s well known [5] that the system of two coupled nonlinear
Schrödinger equations is given by

i
∂A

∂Z
+

1

2

∂2A

∂T 2
+ σB +

(
|A|2 + γ |B|2

)
A = 0 ,

i
∂B

∂Z
+

1

2

∂2B

∂T 2
+ σA +

(
|B|2 + γ |A|2

)
B = 0 .
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Making the change of variables

A =

√
2

2
(u + iv) , z =

1

2
(γ + 1)Z ,

B =

√
2

2
(u − iv) , t =

√
(γ + 1) T ,

gives the system

i
∂u

∂z
+

∂2u

∂t2
+ Ω0u +

2

3

(
|u|2 + |v|2

)
u +

1

3

(
u2 + v2

)
u = 0 ,

i
∂v

∂z
+

∂2v

∂t2
+ Ω0v +

2

3

(
|u|2 + |v|2

)
v +

1

3

(
u2 + v2

)
v = 0 ,

where Ω0 = 2
3σ. We seek solutions of these equations in the following form:

u (z, t) =
1

2
(z1 + z2) (t) exp (iΩz) ,

v (z, t) =
1

2i
(z1 − z2) exp (iΩz) ,

where z1 (t) and z2 (t) are two functions and Ω is an arbitrary constant. Then we
obtain the system

..
z1 = Ωz1 − Ω0z2 − z2

1z2 ,
..
z2 = Ωz2 − Ω0z1 − z1z

2
2 ,

with hamiltonian

H1 =
1

4
Ω0

(
z2
1 + z2

2

)
− 1

2
Ωz1z2 +

1

4
z2
1z2

2 +
1

2
z3z4 ,

which obviously coincides with (3).
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Vol. I, No. 1, (1999), 147–157.

[12] Lesfari A., Geodesic flow on SO(4), Kac-Moody Lie algebra and singularities in the complex

t-plane, Publ. Mat. 43 (1999), 261–279.

[13] Lesfari, A., Completely integrable systems: Jacobi’s heritage, J. Geom. Phys. 31 (1999),
265–286.

[14] Lesfari, A., The problem of the motion of a solid in an ideal fluid. Integration of the Clebsch’s

case, Nonlinear Differential Equations Appl. 8 (2001), 1–13.
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