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EXISTENCE FOR NONCONVEX INTEGRAL INCLUSIONS
VIA FIXED POINTS

AURELIAN CERNEA

ABSTRACT. We consider a nonconvex integral inclusion and we prove a Fi-
lippov type existence theorem by using an appropiate norm on the space
of selections of the multifunction and a contraction principle for set-valued
maps.

1. INTRODUCTION

This paper is concerned with the following integral inclusion
t
(1.1) z(t) = A(t) —|—/ f(t,s,u(s)) ds,
0

(1.2) u(t) € F(t,V(z)()), ae (I:=1[0,T]),

where A\(.) : I — R™, F(,.) : I xX — PX), f(,,.) : IxIxX — X,
V:C(I,X)— C(I,X) are given mappings and X is a separable Banach space.

The aim of this paper is to obtain a version of Filippov’s theorem concerning
the existence of solutions for problem (1.1)-(1.2). Such kind of results have been
proved by Zhu ([8]). The approach proposed in the present paper is different to the
ones in [6], [8] and it is based on an idea of Tallos ([7]), applying the contraction
principle in the space of selections of the multifunction instead of the space of
solutions.

Our estimate is different from the usual form of the Filippov’s estimate ([8]).
This is a consequence of our method of deriving a “pointwise” inequality from a
norm inequality.

We note that similar results are obtained in the case of differential inclusions
([4], [7]), in the case of mild solutions of semilinear differential inclusions in Banach
spaces ([2]), and for hyperbolic differential inclusions ([3]).

The paper is organized as follows: in Section 2 we recall some preliminary
results that we use in the sequel and in Section 3 we prove our main result.
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2. PRELIMINARIES

Let T > 0, I :=[0,T] and denote by £(I) the o-algebra of all Lebesgue mea-
surable subsets of I. Consider X a real separable Banach space with the norm ||.||
and denote by P(X) the family of all nonempty subsets of X, by B(X) the family
of all Borel subsets of X. The unit ball in X will be denoted by B.

In what follows, as usual, we denote by C(I, X) the Banach space of all contin-
uous functions z(.) : I — X endowed with the norm ||z(.)||c = sup,¢; ||z (t)||.

In order to study problem (1.1)-(1.2) we introduce the following assumption.

Hypothesis 2.1. Let F(.,.) : I x X — P(X) be a set-valued map with nonempty
closed values that verify:

i) The set-valued map F(.,.) is £L(I) ® B(X) measurable.
ii) There exists L(.) € L'(I,R;) such that, for almost all t € I, F(t,.) is
L(t)-Lipschitz in the sense that

du (F(t,2), F(t,y)) < Lt)|lz —yl| Vaz,yeX,
where dpy is the Hausdorff generalized metric on P(X) defined by
diy (A, B) = max{d*(A, B),d* (B, A)}, d*(A, B) = sup{d(a, B);a € A}.
iii) The mapping f: I x I x X — X is continuous, V : C(I,X) — C(I, X) and
there exist the constants M7, My > 0 such that
||f(ta S,Ul) - f(tu Su“?)” < MlHUI - U2|| ) VU]_,UQ € XJ
IV (z1)(t) = V(x2)(@®)|| < Ma|lz1(t) — z2(t)]|, YVt €I, Vri,20 € C(I,X).

System (1.1)-(1.2) encompasses a large variety of differential inclusions and
control systems and, in particular, those defined by partial differential equations.

Example 2.2. Set f(t,7,u) = G({t—7)u, V(z) = z, A(t) = G(t)xo where {G(t)}+>0
is a C%-semigroup with an infinitesimal generator A. Then a solution of system
(1.1)-(1.2) represents a mild solution of

(2.1) 2'(t) € Ax(t) + F(t,z(t)), (0)=uwz0.

In particular, this problem includes control systems governed by parabolic partial
differential equations as a special case. When A = 0, relation (2.1) reduces to
classical differential inclusions.

To simplify the notations, we set

(2.2) B(u)(t) = / ft,ru(r)dr, tel.
0
Then the integral inclusion system (1.1)-(1.2) becames
(2.3) z(t) = A@t) + (u)(t), u(t) € F(t,V(z)(t) ae (I),

which may be written in the more “compact” form

u(t) € F(t, V(A + @(u))(t)) ae. (1),
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but the integral operator ®(.) in (2.2) plays a certain role in the proofs of our main
results.

Denote m(t) = [j L(s)ds, t € I.

Given o € R we denote by L(I, X) the Banach space of all (Bochner) integrable
functions wu(.) : I — X endowed with the norm

T
lu()lls = / ¢ oMM 4 (1)]| .

Definition 2.3. A pair of functions (x,u) is called a solution pair of (2.3), if
x(.) € C(I,X), u(.) € L*(I,X) and relation (2.3) holds.

We denote by S(A) the solution set of (1.1)-(1.2).

Finally we recall some basic results concerning set valued contractions that we
shall use in the sequel.

Let (Z,d) be a metric space and consider a set valued map T on Z with
nonempty closed values in Z. T is said to be a [-contraction if there exists 0 < [ < 1
such that:

d(T(a:),T(y)) <ld(z,y), Vz,y€ Z.

If Z is complete, then every set valued contraction has a fixed point, i.e. a point
z € Z such that z € T'(z) (see, for instance, [5]).

We denote by Fix (T') the set of all fixed point of the multifunction T'. Obviously,
Fix (T) is closed.

Proposition 2.4 ([5]). Let Z be a complete metric space and suppose that Ty, Tz
are l-contractions with closed values in'Y . Then

dH(FiX (Tl),FiX (Tg)) S 1 1 lSlglgd(T&(Z%Tg(Z)) .

3. THE MAIN RESULT
We are able now to prove a Filippov type existence theorem concerning the
existence of solutions of problem (1.1)-(1.2).
Theorem 3.1. Let Hypothesis 2.1 be satisfied, let A(.), u(.) € C(I,X) and let
v(.) € LY(I,X) be such that

d(v(t), F(t,V(y)(t) <p(t) ae (I),

)
where p(.) € LY(I,Ry) and y(t) = u(t) + ®(v)(t), Vt € I.
Then for every a > 1 and for every € > 0 there exists x(.) € S(X) such that for
everyt € 1

T

« —a m

Ja(®) ~ y(o)] < e MM D |3 e+ My [ MmO e) ] 4
0

Proof. For A € C(I,X) and u € L(I, X) define

Ty (1 /ftsu
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Consider A € C(I,X),0 € L*(I, X) and define the set valued maps:
(3.1) My s(t) = F(t,V(zon)(t)), tel,

(3.2) Ta(o) = {¢(.) € L'(I, X );0(t) € Mao(t) ae. (I)}.

We shall prove first that T\ (o) is nonempty and closed for every o € L1.

The fact that that the set valued map M, ,(.) is measurable is well known.
For example the map ¢t — F(t,V(z,,x)(t)) can be approximated by step functions
and we can apply Theorem III. 40 in [1]. Since the values of F are closed, with
the measurable selection theorem (e.g. Theorem IIL.6 in [1]) we infer that M (.)
admits a measurable selection and T’\(¢) is nonempty.

The set Tx(0) is closed. Indeed, if ¢, € Tx(o) and ||3p, —¢||1 — 0, then we can
pass to a subsequence ¢y, such that ¢, (t) — 1 (t) for a.e. t € I and we find that
P € Th(o).

The next step of the proof will show that T)\(.) is a contraction on L*(I, X).

Let 01,00 € LY(I,X) be given, 1y € Ty(o1) and let § > 0. Consider the
following set valued map:

Gl1) = My () {2 € X u1(0) = 21 < ML) [ flon(s) = ras) s+ 3
Since
A1 (1), My, (1) < it (F(V (@0, 2) (1), E(V (0, 2)(1))

< LNV (2o, 2) () = V(@o, A) ()| < L(t) Ma|zo, A() = 2oy ()

|
< MgL(t)/O ||f(t,s,01(s)) — f(t,s,og(s))H ds

< My M, L(t) / lov(s) — oa(s)]) ds

we deduce that G(.) has nonempty closed values.
Moreover, according to Proposition III.4 in [1], G(.) is measurable.
Let 19(.) be a measurable selection of G(.). It follows that 1o € Th(02) and

T
[ =l = [ e 1) — (o)
0
T t
< / ¢=oM Mam() (V1 M, (1) / o1 (s) — oa(s)]| ds) dt

0 0

T
+ 5/ e*O[Mlem(t) dt

0

1 T
< —|loy —o2[1 + 5/ e eMiMam(t) gy
o 0
Since ¢ is arbitrarly, we deduce that

1
d(41,Ta(o2)) < EHJI — 021
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Replacing o1 (.) with o3(.), we obtain

1
di(Ta(o1), Tx(02)) < EHUl —oal|1 -

Hence Ty (.) is a contraction on L!(I, X).
We consider the following set-valued maps

F(t,z) :== F(t,x) 4+ p(t),
Mo (t) = F(t,V(zo0)(1),
Tu(o)={yp € L*(I,X); () € M,o(t) ae. (I)}.

Obviously, F(.,.) satisfies Hypothesis 2.1.

Repeating the previous step of the proof we obtain that Tu is also a é—contraction
on L(I, X) with closed nonempty values.

We prove next the following estimate:

- 1 T
33)  du(Tx(0),Tu(0) < ——lA—plc +/ em MM 1) d .
Ole 0
Let ¢ € T\(0),0 > 0 and define
Gi(t) = Mao(t) N {z € X; [[9(t) = 2Il < M2L(t)|A = e +p(t) + 6}

With the same arguments used for the set valued map G(.), we deduce that

G1(.) is measurable with nonempty closed values. Let ¢(.) € Tj,(0). One has:

A

T
16—l < / e MM 6() — (1) di

0

T
< / e~ MM N L) ||N — plle + p(t) + 6] dt
0

T
= A - alle / e oMM () AL 1 () dy
0

T T
+/ efaMlMgm(t)p(t) dt + (5/ efaMlem(t) dt .
0 0

Since § is arbitrarly, as above we obtain (3.3).
Applying Proposition 2.4 we obtain:
1
M1 (Oé — ].)
Since v(.) € Fix (T},), it follows that there exists u(.) € Fix (Ty) such that:
(3.4)

T
. . ind « —Q 1 2Mm
dp (Fix (Tn), Fix (T,)) < 1A= plle + —— 1/ ¢=aM MmO, gt
- 0

€

T
_ &7 —aMlMgm(t)
A= plle+ a_1 /o € dt +- My eMi Mam(T)

1
_ < -
lo=lh < sre =y

We define .
z(t) = A\(t) —|—/0 f(t,s,u(s)) ds.
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One has
[z(t) —y@) < IAE) — n@®] + Ml/o [u(s) —v(s)|| ds

< A = plle + Myt MMy — o)y

Combining the last inequality with (3.4) we obtain

aM; Mam(T)
l2(t) — y@)I| < IIA = pllc [1 + eaf}

T
n Mo eaM1M2m(T)/ e—aMlMgm(t)p(t) dt + ¢
a—1 0
T
< et D) |3 — o My [ oMM Oty at] 4+
o — 0

and the proof is complete. O

Remark 1. If f(t,7,u) = G(t — T)u, V(z) =z, A\(t) = G(t)zo where {G(t)}+>0
is a C°-semigroup with an infinitesimal generator A, Theorem 3.1 yields the result
in [2] obtained for mild solutions of the semilinear differential inclusion (2.1).
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