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ON THE H-PROPERTY OF SOME
BANACH SEQUENCE SPACES

SUTHEP SUANTAI

ABSTRACT. In this paper we define a generalized Cesaro sequence space ces (p) and
consider it equipped with the Luxemburg norm under which it is a Banach space,
and we show that the space ces (p) posses property (H) and property (G), and it is
rotund, where p = (pg) is a bounded sequence of positive real numbers with py > 1
for all k € N.

1. PRELIMINARIES

For a Banach space X, we denote by S(X) and B(X) the unit sphere and unit
ball of X, respectively. A point xg € S(X) is called

a) an extreme point if for every x,y € S(X) the equality 229 = x + y implies
T =y;

b) an H-point if for any sequence (z,) in X such that ||z,|| — 1 as n — oo,
the weak convergence of (z,,) to zo (write ,, — x¢) implies that ||z, —z| — 0 as
n — oo;

c) a denting point if for every € > 0, z¢ ¢ conv{B(X)\(zo + eB(X))}.

A Banach space X is said to be rotund (R), if every point of S(X) is an extreme
point.

A Banach space X is said to posses property (H) (property (G)) provided every
point of S(X) is H-point (denting point).

For these geometric notions and their role in mathematics we refer to the mono-
graphs [1], [2], [6] and [13]. Some of them were studied for Orlicz spaces in [3], [7],
[8], [9] and [114].

Let us denote by 1° the space of all real sequences. For 1 < p < oo, the Cesaro
sequence space (ces p, for short) is defined by

cesp = {m cll: i (% Xn:|x(z)|)p < oo}

n=1
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]l = <7§:1 ( glx(m)p);

This space was introduced by J.S. Shue [16]. It is useful in the theory of matrix
operator and others (see [10] and [12]). Some geometric properties of the Cesaro
sequence space ces , were studied by many mathematicians. It is known that ces,
is LUR and posses property (H) (see [12]). Y. A. Cui and H. Hudzik [14] proved
that ces, has the Banach-Saks of type p if p > 1, and it was shown in [5] that
cesp has property (5).

Now, let p = (pr) be a sequence of positive real numbers with p; > 1 for all
k € N. The Nakano sequence space [(p) is defined by

equipped with the norm

S|

I(p)={zcl’:o(\x) <oo forsome A>0},

where o(z) = Y .0, |z(i)

Pi, 'We consider the space I(p) equipped with the norm

|| = inf{)\ >0: JG) < 1},

under which it is a Banach space. If p = (px) is bounded, we have
I(p) = {x el 3 2P < oo}.
i=1

Several geometric properties of [(p) were studied in [1] and [4].
The Cesaro sequence space ces (p) is defined by

ces(p) = {z €1°: o(\x) < oo for some A\ >0},

where o(z) = 307 (£ 37" |2(4)|)P». We consider the space ces (p) equipped with

n=1\p
the so-called Luxemburg norm

||| = inf{)\ >0: p(%) < 1}

under which it is a Banach space. If p = (px) is bounded, then we have

o)
=1

ces(p) = {x =x(i) : Z (% i |x(z)|)pn < oo}.

W. Sanhan [15] proved that ces(p) is nonsquare when p; > 1 for all k € N. In
this paper, we show that the Cesaro sequence space ces(p) equipped with the
Luxemburg norm is rotund (R) and posses property (H) and property (G) when
p = (p) is bounded with p > 1 for all k € N.

Throughout this paper we assume that p = (px) is bounded with p; > 1 for all
k €N, and M = supy, pk.-
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2. MAIN RESULTS

We begin with giving some basic properties of modular on the space ces (p).

Proposition 2.1. The functional ¢ on the Cesdro sequence space ces(p) is a
convex modular.

Proof. It is obvious that g(z) = 0 < 2z = 0 and g(ax) = p(x) for all scalar «
with |o| = 1. If z,y € ces(p) and « > 0, 8 > 0 with a + 8 = 1, by the convexity
of the function ¢ — |¢|P* for every k € N, we have

olax + By) =

<%§;|aaz + By(i) |>m
2o () o)

g :
E{tEe) 5

i=1
Proposition 2.2. For x € ces(p), the modular o on ces (p) satisfies the following
properties:

() f0<a <1, then aMg(g) < o(x) and o(ax) < ap(x),
(ii) if a > 1, then o(z) < aMQ(a),
(iii) if a > 1, then o(z) < ap(x) < o(ax).
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Proof. It is obvious that (iii) is satisfied by the convexity of o. It remains to
prove (i) and (ii).
For 0 < a < 1, we have

and it implies by the convexity of o that o(ax) < ag(z), hence (i) is satisfied.
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Now, suppose that a > 1. Then we have

So (ii) is obtained. O

Next, we give some relationships between the modular p and the Luxemburg
norm on ces (p).

Proposition 2.3. For any x € ces (p), we have
(i) if |zl <1, then o(x) < |||,
(ii) of [|zf| > 1, then o(z) = ||z[,
(iii) ||z|| =1 if and only if o(z) =1,
(iv) |lz|| < 1 4f and only if o(x) < 1,
(v) ||zl > 1 if and only if o(x) > 1,
(vi) if 0 <a <1 and ||z|| > a, then o(x) > a™ |, and
(vii) if a > 1 and ||z| < a, then o(z) < a™ .

Proof. (i) Let € > 0 be such that 0 < e < 1 — ||z, so ||z]| + € < 1. By definition
of ||.||, there exists A > 0 such that ||z|| +¢ > A and o(5) < 1. From Proposition
2.2 (i) and (iii), we have

oto) < o (P50} — o (1l + 03)

T
< (2l + e e(3) < ol +e.

which implies that o(z) < ||z||, so (i) is satisfied.

(ii) Let € > 0 be such that 0 < e < Hgﬁlglcﬁl, then 1 < (1—e¢)|jz| < ||z||- By definition

of ||| and by Proposition 2.2 (i), we have

T 1
t<e <<1 —e>||x||> ST o™

llzll—1
[

so (1 —¢€)|lz]| < o(x) for all € € (0,
(ii) is obtained.

). This implies that |[z| < o(z), hence

(iii) Assume that ||z|| = 1. By definition of ||z|, we have that for € > 0, there
exists A > 0 such that 1+ € > X\ > [|z]| and ¢(%) < 1. From Proposition 2.2 (ii),
we have o(z) < Mp(%) < A < (14 )M, so (o(x))™ < 1+e¢forall e > 0,
which implies p(z) < 1. If p(x) < 1, then we can choose a € (0,1) such that
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o(z) < a™ < 1. From Proposition 2.2 (i), we have o(%) < —7po(z) < 1, hence
lz]| < a < 1, which is a contradiction. Therefore o(z) = 1.

On the other hand, assume that o(x) = 1. Then [|z|| < 1. If ||z|| < 1, we have
by (i) that o(z) < ||z|| < 1, which contradicts our assumption. Therefore ||| = 1.

(iv) follows directly from (i) and (iii).

(v) follows from (iii) and (iv).

(vi) Suppose 0 < a < 1 and ||z| > a. Then ||£|| > 1. By (v), we have o(%) > 1.
Hence, by Proposition 2.2 (i), we obtain that o(z) > a™ (%) > a™.

(vii) Suppose a > 1 and ||z|| < a. Then ||| < 1. By (iv), we have o(%) < 1. If
a = 1, it is obvious that o(z) < 1 = a™. If a > 1, then, by Proposition 2.2 (ii),
we obtain that o(z) < a™p(%) < a™. O
Proposition 2.4. Let (z,,) be a sequence in ces (p).

(1) If |lznll = 1 as n — oo, then o(zy) — 1 asn — 0.
(i) If o(zn) — 0 as n — oo, then ||z,|| — 0 asn — oo.

Proof. (i) Suppose ||z,|| — 1 as n — oo. Let € € (0,1). Then there exists N € N
such that 1 — e < ||z,|| < 1+ € for all n > N. By Proposition 2.3 (vi) and (vii),
we have (1 — €)M < o(z,,) < (1+€)M for all n > N, which implies that o(z,) — 1
as n — 0o.

(ii) Suppose ||z,| # 0 as n — oo. Then there is an € € (0,1) and a subsequence
(@n,,) of (z,,) such that ||z, | > € for all k € N. By Proposition 2.3 (vi), we have
o(wy, ) > €M for all k € N. This implies o(z,,) / 0 as n — oc. O

Next, we shall show that ces (p) has the property (H). To do this, we need a
lemma.

Lemma 2.5. Let x € ces(p) and (x,) C ces(p). If o(zy,) — p(x) as n — oo and
xn (i) — x(1) as n — oo for all i € N, then x,, — x as n — o0.

Proof. Let € > 0 be given. Since p(z) = Y7o, (3 Zle |a:(z)|)pk < o0, there is
ko € N such that

00 k Pk
1 ) e 1
k=ko+1 =1

. k k . k k ,
Since p(zn) — kl):l(% >ict [zn(@))PE — p(x) — kozl(% 2z [z(@))P as n — oo
and (i) — x(i) as n — oo for all i € N, there is ng € N such that

ko 1 k Pk ko 1 E Pk e 1
(2.2)  olzn) =) <E > Ixn(i)|> <o) =Y (E 3 |x(z-)|> + <o
k=1 i=1 k=1 i=1

for all n > ng, and

ko 1k Pk .
(2:3) Z(Ezmn(i)—x(m) <3
k=1 '
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for all n > nyg.
It follows from (2.1), (2.2) and (2.3) that for n > no,

(o'} 1 k P
Q(xn = <E Z |33n )
ko 1 k Pk 1 k Pk

im1 k=ko+1 i=1
o Pk 0o 1 k Pk
€
<t M( > ( zunm) > (Ezuw) )
k=ko+1 k=ko+1 i—1
ko 1 k Pk oo 1 k Pk
€
-5 (e =X (330m0) ¢ 3 (E3wl) )
k=1 i=1 k=ko+1 i=1
¢ ko (1 E e < [(1& "
<§+2M <Q($)— <EZ|$(Z)|> tgom T Z <EZ|9C(Z)|> )
k=1 i—1 k=ko+1 i—1
¢ < (1 e > [1&E "
:§+2M< > <E2|x(i)|> + 357+ > <—Z|x(z)|> )
k=ko+1 =1 k=ko+1 =1
) 1 k Pk 1
G M ) €
k=ko+1 =1
PR
3337«

This show that o(z, — x) — 0 as n — oco. Hence, by Proposition 2.4 (ii), we have
|zn — x| — 0 as n — oo.

Theorem 2.6. The space ces (p) has the property (H).

Proof. Let 2 € S(ces(p)) and (z,,) C ces (p) such that ||z,| — 1 and z, = = as
n — oo. From Proposition 2.3 (iii), we have g(x) = 1, so it follows from Proposition
2.4 (i) that o(z,) — o(z) as n — oo. Since the mapping p; : ces(p) — R,
defined by p;(y) = y(4), is a continuous linear functional on ces (p), it follows that
2y (1) — x(i) as n — oo for all ¢ € N. Thus, we obtain by Lemma 2.5 that z,, — «
as n — 0o. (]

Theorem 2.7. The space ces (p) is rotund.

Proof. Let z € S(ces(p)) and y,z € B(ces(p)) with z = ¥
2.3 and the convexity of ¢ we have

erz . By Proposition

1+1)=1,

N =

(e(y) + o(2)) <

N =

1=p(z) <
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so that o(z) = 1(o(y) + o(2)) = 1. This implies that

k . A\ PE k Pk k P
(2.4 (%Z'W') =§<%§|y<i>|) +§<%Z|z<i>|)

=1

for all & € N.
We shall show that y(i) = z(i) for all 4 € N.
From (2.4), we have

y(1) +2(1)

(2.5) e = [25 (WP + =),

l\D|’—‘

Since the mapping ¢ — |¢|P* is strictly convex, it 1mphes by (2.5) that y(1) = z(1).
Now assume that y(i) = z(i) for all i = 1,2,3, ...,k — 1. Then y(i) = 2(i) = =(i)
foralli=1,2,3,...,k — 1. From (2.4), we have

LS ) + 20\ (RS @)+ 2 120)
<E;‘y 2 D :<k 2 )

k Pk k Pk
: (%Dy ) v (%an)

By convexity of the mapping ¢ — |¢[P*, it implies that + ZZ y@)] =% ZZ 1 12(@)].
Since y(i) = (i) for all i = 1,2,3,...,k — 1, we get that

(2.6)

(2.7) (k) = |z(k)[-

If y(k) = 0, then we have z(k) = y(k) = 0. Suppose that y(k) # 0. Then
z(k) #0. If y(k)z(k) < 0, it follows from (2.7) that y(k) + z(k) = 0. This implies
by (2.6) and (2.7) that

1k71 Pk 1 k—1 Pk
(EDx(in) =<z <Z|x<i>|+|y<k>>> ,

which is a contradiction. Thus, we have y(k)z(k) > 0. This implies by (2.5) that
y(k) = z(k). Thus, we have by induction that y(i) = 2(i) for all i € N, so y = z.
(]

Bor-Luh Lin, Pei-Kee Lin and S. L. Troyanski proved (cf. Theorem iii [11]) that
element x in a bounded closed convex set K of a Banach space is a denting point
of K iff z is an H-point of K and z is an extreme point of K. Combining this
result with our results (Theorem 2.6 and Theorem 2.7), we obtain the following
result.
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Corollary 2.8. The space ces(p) has the property (G).

For 1 < r < oo, let p = (pr) with p, = r for all kK € N. We have that
ces, = ces(p), so the following results are obtained directly from Theorem 2.6,
Theorem 2.7 and Corollary 2.8, respectively.

Corollary 2.9. For1l <r < oo, the Cesaro sequence space ces, has the property
(H).

Corollary 2.10. For 1 < r < oo, the Cesdro sequence space ces, is rotund.

Corollary 2.11. Forl < r < oo, the Cesdro sequence space ces , has the property

(@).
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