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ON THE LIMIT POINTS OF THE FRACTIONAL PARTS
OF POWERS OF PISOT NUMBERS

ARTURAS DUBICKAS

ABSTRACT. We consider the sequence of fractional parts {£a™}, n =1,2,3,...,
where a > 1 is a Pisot number and £ € Q(«) is a positive number. We find
the set of limit points of this sequence and describe all cases when it has a
unique limit point. The case, where £ = 1 and the unique limit point is zero,
was earlier described by the author and Luca, independently.

1. INTRODUCTION

Suppose that a > 1 is an arbitrary algebraic number, and suppose that ¢ is an
arbitrary positive number that lies outside the field Q(«) if « is a Pisot number
or a Salem number. For such pairs &, a, in [6] we proved a lower bound (in terms
of « only) for the distance between the largest and the smallest limit points of the
sequence of fractional parts {€a™},=12.3,. .. More precisely, we showed that the
distance between the largest and the smallest limit points of this sequence is at least
1/inf L(PG), where P(z) = agz?+---+a12+ao € Z[z] is the minimal polynomial
of a and where G runs through polynomials with real coefficients having either
leading or constant coefficient 1. (Here, L stands for the length of a polynomial.)
For this result, we showed first that with the above conditions the sequence

Sn = agléa" T + - 4 ag[€a™ ] + agléa]
= —ag{¢a™} = — ar{&a™'} — ao{éa"}

is not ultimately periodic. Recall that s,, n = 0,1,2,..., is called wultimately
periodic if there is ¢t € N such that s,y+ = s, for all sufficiently large n. (In
contrast, s,, n = 0,1,2,..., is called purely periodic if there is t € N such that
Sntt = 8p for all m > 0.) For rational a = p/q > 1, our result in [6] recovers the
result of Flatto, Lagarias and Pollington [7]: the difference between the largest
and the smallest limit points of the sequence {&(p/q)"}n=1243... is at least 1/p.
(See also [1].)
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Moreover, the results of [6] imply that we always have

lim sup {€a™} —lim inf {{a™} > 1/L(P),
n—oo n—=00

unless s,, n = 1,2,..., is ultimately periodic with period of length 1. However,
for some Pisot and Salem numbers a and for some £ € Q(«), this can happen.
As a result, no bound for the difference between the largest and the smallest limit
points of the sequence {{a™},=1,23 .. can be obtained in terms of « only. More
precisely, for Salem numbers « such that o — 1 is not a unit, Zaimi [11] showed
that for every € > 0 there exist positive numbers £ € Q(«) such that all fractional
parts {£a™}n=123... belong to an interval of length €. In this context, the only
pairs that remain to be considered are of the form &, «, where « is a Pisot number
and & € Q(«). The aim of this paper is to consider such pairs.

Recall that a > 1 is a Pisot number if it is an algebraic integer (i.e. ag = 1) and
if all its conjugates over Q different from « itself lie in the open unit disc. The
problem of finding all such pairs £ > 0, a > 1, where « is a Pisot number and
¢ € Q(«), for which the sequence {{a" } =12 .3,... has a unique limit point is also of
interest in connection with the papers [3], [8] and [9]. In [8] Kuba asked whether
there are algebraic numbers « > 1 other than integers satisfying lim,,_,o{a™} = 0.
This was answered by the author [3] and by Luca [9] independently: the answer
is ‘no’.

2. RESULTS

From now on, suppose that &« = a3 > 1 is a Pisot number with minimal
polynomial

Plz)=z2%4ag 12 +- Fag=(z—a)(z—a2)...(z —aq) € Z[2].

Since & € Q(«), we can write £ = f(«) > 0, where f is a non-zero polynomial of
degree at most d — 1 with rational coefficients

(1) f(z)=(bo+brz+---+ba_12¢71)/b.

Here bg,b1,...,bq—1 € Z and b is the smallest positive integer for which bf(z) €
Z[z]. Set Sy, := af+af +-- -+« (which is a rational integer for each non-negative
integer n) and

Yn = boSn + blsn+1 + -+ bd*lanrdfl .

Then Y,, = bTrace(f(a)a™). By Newton’s formulae, we have Sy, 44+ aq—1Snt+a—1+
<o+ +apS, = 0 for every n > 0. It is easy to see that the sequence Yy, Y1,Ys, ...
satisfies the same linear recurrence

(2) Yn—i—d + ad—IYn—i-d—l +--+apY, =0

for every non-negative integer n. By Lemma 2 of [4], the sequence Y,,, n =
0,1,2,..., modulo b is ultimately periodic. Moreover, in case if ged(b,ag) = 1,
by Lemma 2 of [5], the sequence Y, n = 0,1,2,..., modulo b is purely peri-
odic. (These statements both can be proved directly. Firstly, there are at most
b? different vectors for (Y, 14_1,...,Yn) modulo b to occur, which implies the first
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statement by (2). Secondly, if ged(b,ap) = 1, then Y,, modulo b is uniquely de-
termined by Y, 44,..., Ynt1 modulo b. This shows that a respective sequence is
purely periodic.)

Suppose that B1Bs... By, where 0 < B; < b—1, is the period of Yy, Y1, Y, ...
modulo b. Some of B; may be equal. Let B be the set {Bi,...,Bi}. In other
words, B = Bg o is the set of residues of the sequence Y,,, n =0,1,2,..., modulo
b which occur infinitely often. We can now state our results.

Theorem 1. Let a > 1 be a Pisot number and let f(z) be a polynomial given in
(1). Thent € (0,1) is a limit point of the sequence { f(a)a™}n=123,.. if and only
if there is ¢ € B such that t = ¢/b. Furthermore, at least one of the numbers 0 and
1 is a limit point of {f(a)a"}n=1,2,3,.. if and only if 0 € B.

Without loss of generality we can assume that the conjugates of « are labelled
so that = a3 > 1 > |ag| = |ag| = -+ = |ag|. Then « is called a strong Pisot
number if d > 2 and «ay is positive [3]. By a result of Smyth [10] claiming that each
circle |z| = r contains at most two conjugates of a Pisot number «, the inequality
ag > |ag] holds for every strong Pisot number «. Recall that a result of Pisot and
Vijayaraghavan (see, e.g., [2]) implies that if the sequence {£a"},=1,23,..., where
a > 1 is algebraic and £ > 0 is real, has a unique limit point, then « is a Pisot
number and £ € Q(«). So our next result characterizes all possible cases when the
sequence {£a"}p=12,... has a unique limit point and completes the results of the
author [3] and of Luca [9].

Theorem 2. Let a > 1 be a Pisot number and let f(z) be a polynomial given in
(1). Then
(i) lim,—oo{f(a)a™} = t, where t # 0,1, if and only if B = {c}, ¢ > 0,
t=c/b.
(i) limp—oo{f(a)a™} =0 if and only if B = {0} and « is either an integer or
a strong Pisot number and f(az) < 0.
(ili) limp—oo{f(a)a™} =1 if and only if B = {0}, o is a strong Pisot number
and f(ag) > 0.

The following theorem gives a simple practical criterion of determining whether
the sequence {f(a)a"}n=1,2,... has one or more than one limit point.

Theorem 3. If B = {c}, ¢ > 0, then there is an integer r, where 1 < r < |P(1)|—1,
such that ¢/b = r/|P(1)|. Furthermore, if gcd(b,ag) = 1 then B = {c} is equivalent
tob|cP(1) and b| (Y, —¢) for everyn=0,1,...,d— 1.

Theorems 2 and 3 imply the following corollary.

Corollary. Let £ be an arbitrary positive number, and let o be a Pisot num-
ber which is not an integer or a strong Pisot number. If P(1) = —1, then
{€a™}n=1,2,3.... has more than one limit point.

Since P(z) is the minimal polynomial of a Pisot number «, we have P(1) < 0
and P’(a) > 0. Note that the condition P(1) = —1 is equivalent to the fact that
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a —1is a unit. Our final theorem describes all algebraic numbers o > 1 for which
there is a positive number £ such that the sequence {{a" },,=12, . tends to a limit.

Theorem 4. Suppose that o > 1 is an algebraic number. Then there is a real
number € > 0 such that the sequence {£a™}p=12,3,... tends to a limit if and only if
« s either a strong Pisot number, or a = 2, or « is a Pisot number whose minimal
polynomial P satisfies P(1) < —2.

In fact, we will show that if « is strong Pisot number or o« = 2 we can take
¢ =1, whereas in the third case of Theorem 4 we can take £ = 1/(P'(a)(a — 1)).
Some examples will be given in Section 4.
3. PROOFS OF THE THEOREMS

Proof of Theorem 1. Consider the trace of f(a)a™ :

flar)af + flag)ag + -+ flaa)ag = Yn/b.

Setting

(3) L= flas)ad +-- -+ f(aa)a
(which is a real number), we have

(4) {f(a)an} - Yn/b — L, — [f(a)an] :

Assume that B contains a non-zero integer ¢. Then b > 2. Since 1 < ¢ < b—1 and
all f(aj)a;?, where j > 2, tend to zero as n — oo, we get that L,, —» 0 asn — oo
and so {f(a)a"} = ¢/b— L, for infinitely many n. Hence ¢/b is the limit point of
{f(a)a}p=1,2,.. for each non-zero ¢ € B. Suppose now that ¢t € (0,1) is a limit
point of {f(a)a™}n=12,.. Since L, — 0 as n — oo, equality (4) implies that ¢
is a limit point of {f(a)a™}n=12,.. only if ¢ = ¢/b, where ¢ € B. This proves the
first part of Theorem 1. The second part follows from (3) and (4) by a similar
argument. (I

Proof of Theorem 2. We begin with (i). As above, since L,, — 0 as n — o0,
(4) shows that the sequence {f(a)a™},=1,2.... has a unique limit point only if Y},
modulo b is ultimately periodic with period of length 1. Since the unique limit
point is neither 0 nor 1, it follows that B = {c}, where ¢ > 0. For the converse,
suppose that B = {c}, where ¢ is non-zero. Then b > 2 and 1 < ¢ < b— 1.
Furthermore, Y;, modulo b is ¢ for each sufficiently large n. With these conditions,
(4) implies that lim,, o {f(e)a™} = ¢/b. This proves (i).

If « is an integer, say a = g, then {(bo/b)g"} — 0 as n — oo precisely when
each prime divisor of b divides g, i.e. B = {0}, because Y,, = bgg™. This proves
the subcase of (ii) corresponding to integer c. Suppose now that « is irrational.
If B = {0}, « is a strong Pisot number and f(ag) < 0, then L,, defined by (3) is
negative for all sufficiently large n. So (4) implies that lim,, . {f(a)a"} = 0.

For the converse, suppose that lim, _..{f(a)a”} = 0. Then (4) shows imme-
diately that B = {0}, as otherwise the sequence of fractional parts has other limit
points. We already know that one case when B = {0} and lim, o {f(a)a™} =0
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both occur is when « is an integer. Suppose it is not. Then, since 1 is not the
limit point of {f(a)a™}p=1,,.., the sum L, defined by (3) must be negative for
all sufficiently large n. Recall that aq > |as| = -+ > |aql.

We will consider three cases corresponding to as being complex, negative and
positive. By the above mentioned result of Smyth [10], if as is complex, then
ag and ag is the only complex conjugate pair on the circle |z| = |az|. Since
a3 = g, for each n sufficiently large, the sign of L,, is determined by the sign of
flaz)ad + f(az)ag. Clearly, f(as) # 0, because deg f < d. Writing as = ge®?
and f(ag) = 0'e’®, where g, 0’ > 0 and i = \/—1, we see that az = e~ ¢, f(a3) =
o'e”. Hence L, < 0 (for n sufficiently large) precisely when cos(ny + ¢) < 0.
Note that ¢/ is irrational, as otherwise there is a positive integer v such that
oy = af. Mapping as to a; we get a contradiction, because «a; is the only
conjugate of « lying outside the unit circle. Hence, as the sequence ny/m + ¢/x
modulo 1 has each point in [0, 1] as its limit point, cos(ny+¢) will be both positive
and negative for infinitely many n. This rules out the case of s being complex.
Similarly, if as is negative then L, is both positive and negative infinitely often,
because so is f(az)ad. This implies that as must be positive, namely, o must be
a strong Pisot number. Then L,, < 0 implies that f(az) < 0. This proves (ii).

The case (iii) can be proved by the same argument as (ii). Indeed, if «v is a strong
Pisot number, f(ag2) > 0, and B = {0}, then (4) implies that lim, . {f(a)a™} =
1. For the converse, assume that lim, . {f(a)a™} = 1. Tt is easy to see that
then B = {0}. Furthermore, o cannot be a rational integer. Now, (4) shows that
L,, must be positive for all sufficiently large n. We already proved that this is
impossible, unless « is a strong Pisot number. In case it is, (3) shows that f(a2)
must be positive too. This completes the proof of Theorem 2. 0

Proof of Theorem 3. Suppose that B = {c}, ¢ > 0. Then (2) shows that b
divides ¢(1 + ag—1 + -+ 4+ ag) = ¢P(1), where P(1) < 0. It follows that there
is r € N such that br = ¢|P(1)|, giving ¢/b = r/|P(1)|. This proves the first
statement of Theorem 3.

Now, let ged(b, ag) = 1 and suppose again that B = {c}, where ¢ can be equal to
zero. The above argument implies that b | ¢cP(1). Evidently, B = {c} is equivalent
to the fact that Y,, modulo b is equal to ¢ for every sufficiently large n. Suppose
that there are k > 0 for which Y; modulo b is different from c. Take the largest
such k. Let Y; modulo b be ¢/, where ¢/ # ¢. Then (2) with n = k shows that
Yitd + -+ a1Yi+1 + aoYr modulo b is ¢P(1) 4 ag(¢’ — ¢) which is divisible by b.
Since b | ¢P(1), we have that b | ag(¢’ — ¢). Since ged(ag,b) = 1, we conclude that
¢’ = ¢, a contradiction.

For the converse, suppose that Yy, Y7, ..., Yy_1 are all equal to ¢ modulo b, and
b| cP(1). Evidently, (2) with n = 0 shows that Yy +a4—1Yg—1+ - -+ agYy modulo
b is zero. But it is equal to Yy + ¢(P(1) — 1) = Yy — ¢+ ¢P(1) modulo b. Since
b | ¢P(1), we obtain that Yy is ¢ modulo b. In the same manner (setting n = 1
into (2) and so on) we can see that Y,, is equal to ¢ modulo b for every n > 0.
Therefore, B = {c}. Note that we were not using the condition ged(ag,b) =1 for
this part of the proof. O
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Proof of the Corollary. For £ ¢ Q(«), the sequence {{a™},=1.2,... has more
than one limit point by the above mentioned result of Pisot and Vijayaraghavan
(and by the results of [6] mentioned in Section 1 too). So suppose that £ € Q(«),
where « satisfies the conditions of the corollary. If {€a™},—1 2, has a unique limit
point, then Theorem 2 implies that B = {c}. Clearly, by the first part of Theorem
3, |[P(1)] =1 yields ¢ = 0. Now, parts (ii) and (iii) of Theorem 2 show that « is
either a rational integer or a strong Pisot number, a contradiction. (I

Proof of Theorem 4. Suppose that £ > 0 and an algebraic number o« > 1 are
such that {£a™},=1,2,.. has a unique limit point. Then (again by the theorem of
Pisot and Vijayaraghavan) « is a Pisot number. The corollary shows that o must
be either an integer, or a strong Pisot number, or a Pisot number whose minimal
polynomial P satisfies P(1) < —2. Since all rational integers, except for o = 2,
are covered by the case P(1) < —2, the theorem is proved in one direction.

Now, if « is a strong Pisot number, then, with £ = 1, we have lim,,_,{a"} = 1.
(See, for instance, Theorem 2 (iii) with b = 1 and f(z) = 1.) If « is a rational
integer, greater than or equal to 2, then, with £ =1, lim, .. {a™} = 0.

Finally, suppose that a is a Pisot number of degree d > 2 whose minimal
polynomial P satisfies P(1) < —2. Let us take £ = 1/(P'(a)(a — 1)) > 0. We will
show that then lim, . {a™} = 1/|P(1)|. Note that, for each k =0,1,...,d — 1,

N T
©) o = PG

Indeed, for each non-negative integer k < d, (5) is the identity, because multiplying
both sides of (5) by P(z) we obtain two polynomials, both of degree smaller than d,
which are equal at d distinct points z = o, j = 1,2,...,d. Setting z = 1 into (5)),
we deduce that the trace of &% /(P’(a)(ar—1)) is equal to —1/P(1) = 1/|P(1)| < 1
for every k =0,1,...,d— 1. Of course, we can write £ = 1/(P'(a)(av— 1)) = f()
for some polynomial f of the form (1). Then, as in the proof of Theorem 3, we
will get that ¥,,, n =0,1,...,d— 1, modulo b are all equal to ¢, where b = ¢|P(1)|.
Hence, as in the second part of the proof of Theorem 3 we obtain that Y;, modulo
b is equal to ¢ for every non-negative integer n. Consequently, B = {c}, where
¢/b=1/|P(1)|. Now, Theorem 2 (i) implies that

lim {a"/(P/(0)(a — 1))} = 1/|P(1)

provided that « is a Pisot number whose minimal polynomial P satisfies P(1) <
—2. (This result trivially holds for integer « > 3 too.) The proof of Theorem 4 is
completed. O

4. EXAMPLES

We remark that the condition ged(b, ag) = 1 of Theorem 3 cannot be removed.
Take, for example, a = 3 + v/5. It is a strong Pisot number with other conjugate
being oy = 3 — /5. Its minimal polynomial is P(z) = 22 — 6z +4. Set f(z) =
(1+ 2)/4. Here, b = 4 and a¢ = 4. Note that Sy = 2, S; = 6, So = 28, S5 = 144,
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and so on. All S, n=2,3,..., are divisible by 4. Hence Y,, = S,, + S,,+1 modulo
4 is equal to 2 for n = 1 and to zero for all non-negative n # 1.

Suppose that § > 1 solves 23 — z —1 = 0. Then 6§ is a Pisot number having a
pair complex conjugates inside the unit circle. Clearly, P(1) = —1. The corollary
implies that there are no £ > 0 (algebraic or transcendental) such that the sequence
{€0"}n=1,2,... tends to a limit with n tending to infinity.

Set, for instance, f(z) = (2+ z)/3. Let us find the set of limit points of {(2/3+
9/3)9"}»”:1721_”. Then Yn = QSn + SnJrl, b = 3. We find that So, Sl, SQ, Sg, S4, N
modulo 3 is purely periodic with period 0020222110212, so that Yy, Y1,Ys, Y3, ...
modulo 3 is purely periodic with period 0212002022211. It follows that B =
{0, 1,2}. Since 0 has a pair of complex conjugates, on the arithmetical progression
n=13m, m=0,1,2,..., the values of L,,, defined by (3) are positive and negative
infinitely often. Hence the set of limit points of the sequence {(2/346/3)0"},=1 2,...
is {0,1/3,2/3,1}.

Finally, if, say, a > 1 solves 22> — 7z 4+ 2 = 0 then Sy, S1, S2, S3,... modulo
b=41is2,3,1,1,1,.... Taking, for example, f(z) = (2 + 32)/4, we deduce that
Y, = 25, + 35,41 modulo 4 is ultimately periodic, with B = {1}. Consequently,
1imn_,oo{#a”} =1/4.
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