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ALGEBRAIC ANALYSIS OF THE RARITA–SCHWINGER

SYSTEM IN REAL DIMENSION THREE

ALBERTO DAMIANO

Abstract. In this paper we use the explicit description of the Spin– 3

2
Dirac

operator in real dimension 3 appeared in [17] to perform the algebraic analysis
of the space of nullsolution of the system of equations given by several Rarita–
Schwinger operators. We make use of the general theory provided by [10]
and some standard Gröbner Bases techniques. Our aim is to show that such
operator shares many of the algebraic properties of the Dirac operator in
real dimension four. In particular, we prove the exactness of the associated
algebraic complex, a duality result and we explicitly describe the space of
polynomial solutions.

1. Introduction

A large class of invariant differential operators in parabolic geometries can be
constructed by taking suitable projections of the covariant derivative onto sections
of irreducible representation bundles defined on the corresponding homogeneous
space. See for example [24] for a general construction of such operators. The
first and maybe simplest example is given by the Dirac operator, which is an
invariant first order operator with respect to the action of the Spin group on
spaces of functions with values in the basic spinor representation. Its analytic
and algebraic properties have been widely investigated in the literature (see for
instance [15] for an analytic approach and [10, 23] for the algebraic treatment). The
Rarita–Schwinger operator constitutes a generalization of the Dirac operator to
the case of higher dimensional representations of the Spin group, and so its study
is the first natural step in the research on the so called higher spin differential
operators. Many of the relevant analytical properties of the space of nullsolutions
of such operators on manifolds, as well as eigenvalue problems on the sphere and
characterization of the polynomial solutions have been already illustrated in [3]
and later by the authors of [5].

A thorough and self-contained treatment of the theory underlying an algebraic
and computational approach can be found in [10] where numerous examples of
application are presented, including the case of the Dirac operator and some of its
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variations. The aim of this paper is to use such algebraic methods for the study of
linear constant coefficient partial differential operators and apply them to the case
of the system of differential equations associated to the Rarita–Schwinger operator
in one or more vector variables, in real dimension 3, namely the system

(1)





R1(D)f = g1

R2(D)f = g2

...
Rn(D)f = gn

where Ri is the Rarita–Schwinger operator with respect to the i-th vector vari-
able, and sections f, g1, . . . , gn are in a sheaf of generalized function on (R3)n

such as polynomial functions P , analytical functions A, smooth functions E , dis-
tributions D′ or any of the sheaves described in [10] for which, essentially, there
exists a notion of Fourier transform that is also an isometry. Thanks to the work
of Y. Homma [17] we are able to start with a local coordinate expression of the
Rarita–Schwinger operator and from this we can carry on the explicit computa-
tional algebraic analysis of the operator. Among the problems that we are able
to consider for this case, in Proposition 3.2 we describe some of the compatibility
conditions of the system (1). We also present, as a consequence of Theorem 3.1,
a proof of the exactness of the complex associated to (1) in the general case, and
some cohomological properties and duality theorems for the space of solutions of
the homogenous version of (1) in the case n = 2 (see Corollary 3.3). An alterna-
tive construction of a Dolbealut-like sequence of invariant operators is in principle
possible using techniques of representation theory and the orbits of the action of
the Weyl group associated to the Lie group with respect to which the initial op-
erator is invariant. For the case of the Dirac operator in real dimension four, also
known as the Cauchy-Fueter operator, this apparently different approach coming
from representation theory has been compared to the algebraic analysis of the
operator using computational tools [4, 8]. It is clearly shown in these papers that
such approaches are in fact equivalent. We then believe that our results from this
paper can be easily translated into the language of invariant differential operators
for parabolic geometries. We may return on this subject in a future work.
Acknowledgments. I want to thank Jaroĺım Bureš for the many useful discussion
on this topic and for providing me with the necessary references. I would also like
to acknowledge Irene Sabadini for reading an earlier version of this paper and for
precious remarks.

2. The flat version of the Rarita–Schwinger operator

Let (ρ, Vρ) be an irreducible (complex) unitary representation of the group
Spin(3). A 3-dimensional spin manifold M is a manifold endowed with a principal
Spin bundle Sρ(M), whose sections are smooth maps that to each point of the
manifold associate a vector of the spin representation Vρ. Let us recall that the
group Spin(3) can be thought of as SU(2) and hence its irreducible representations
are the m + 1 dimensional spaces Vm of polynomials in z with degree less than
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or equal to m. We will denote the spin bundle induced by V1 on M by S1 and
similarly by Sm the spin bundle induced by the irreducible representation Vm. For
each choice of a Spin bundle on the manifold, the classical covariant derivative ∇
on M gives rise to the so called lifted covariant derivative

∇S : Γ(Sm)→Γ(Sm ⊗ T ∗(M)).

The tensor product of the space Sm with the cotangent bundle splits into several
irreducible Spin(3)-modules Sν , following the well known Clebsch-Gordan formula,
so it is possible to define projections πm,ν from Γ(Sm ⊗ T ∗(M)) to Γ(Sν). For
instance, the classical Dirac operator is defined as

(2) D := π1,1 ◦ ∇
S : Γ(S1)→Γ(S1)

and the Rarita–Schwinger operator as

(3) R := π3,3 ◦ ∇
S : Γ(S3)→Γ(S3) .

If {e1, e2, e3} is a basis of R3, a local formula for the Dirac operator is given by

(4) D =

3∑

i=1

ei · ∇ei
,

where the multiplication by ei is given by the Clifford multiplication on the half-
spinor space which comes from the identification of the real clifford algebra Cl(3)
as SU(2)⊕SU(2) as follows. An element of the basis ei is identified with (σi,−σi)
where the Pauli matrices σi are

σ1 :=

(
i 0
0 −i

)
, σ2 :=

(
0 1
−1 0

)
, σ3 :=

(
0 i
i 0

)
.

The action of an element ei on a vector v of the half-spin representation is then
defined by ei · v := σiv. For an element h =

(
a b
c d

)
∈ SU(2), with a, b, c, d ∈ C, and

a vector zk in Vm we define the representation ρm

ρm(h)zk = (bz + d)m−k(az + c)k.

According to [17], given that we have the isomorphism of representations

(ρ2, V2) ≃ (ad, R3 ⊗ C) ,

the space Vm ⊗ R3 (actually, its complexification) decomposes, as representation
space, as follows

(ρm, Vm) ⊗ (ρ2, V2) ≃ (ρm+2, Vm+2) ⊕ (ρm, Vm) ⊕ (ρm−2, Vm−2)

and each vector v ⊗ X ∈ Vm ⊗ R3 splits consequently into three pieces

v ⊗ X = (v ⊗ X)+ + (v ⊗ X)0 + (v ⊗ X)− .

For the sake of the representation of the Rarita–Schwinger operator, we will only
need to describe the projection onto the middle component. The operators asso-
ciated to the other two invariant projections are respectivley overdetermined and
underdetermined. We will not analyze the properties of such operators here, see the
webpage [12] in which some related calculations are presented. For each vector X in
R3, we then have a morphism ρ0

m(X) : Vm → Vm, defined by ρ0
m(X)(v) = (v⊗X)0,
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which is called Clifford homomorphism. The following follows directly from [17],
Prop. 3.1, and can be directly checked with Mathematica using the “Clebsch-
Gordan coefficients formula” package.

Proposition 2.1. The Clifford homomorphism ρ0
m in terms of the basis {ei}1≤i≤3

of R3 and the basis {zk}0≤k≤m of Vm is given by





ρ0
m( e1

2 )zk = i(k − m
2 )zk

ρ0
m( e2

2 + i e3

2 )zk = −kzk−1

ρ0
m( e2

2 − i e3

2 )zk = (m − k)zk+1 .

If m = 3, the matrices Ai, i = 1 . . . 3, associated to the linear maps ρ0
3(ei) with

respect to such basis are

A1 :=




−3i 0 0 0
0 −i 0 0
0 0 i 0
0 0 0 3i


 , A2 :=




0 −1 0 0
3 0 −2 0
0 2 0 −3
0 0 1 0




A3 :=




0 i 0 0
3i 0 2i 0
0 2i 0 3i
0 0 i 0


 .

Definition 2.2. The general higher-spin Dirac operator acting on sections Γ(Sm)
is, in coordinates,

(5) Dm =

3∑

i=1

ρ0
m(ei) · ∇ei

.

Remark 2.3. Note that in the case m = 1 we simply reobtain the Clifford ho-
momorphism given by the standard Clifford action ei· as discussed above, so D1

is the classical Dirac operator (2).

Definition 2.4. The Rarita–Schwinger operator is the higher spin Dirac operator
with m = 3, hence its explicit form is given by

(6) R =

3∑

i=1

ρ0
3(ei) · ∇ei

.

Let us now endow the space R3 with coordinates x1, x2, x3 and let R = C[x1, x2, x3]
be a ring of polynomials. The directional derivative ∇ei

with respect to this
system of coordinates will be denoted by ∂i. Let f ∈ Γ(S3) written as f =
f0 + f1z + f2z

2 + f3z
3 and fj = fj(x1, x2, x3). Then the matrix form of the

Rarita–Schwinger operator is

P (D) =




−3i∂1 −∂2 + i∂3 0 0
3∂2 + 3i∂3 −i∂1 −2∂2 + 2i∂3 0

0 2∂2 + 2i∂3 i∂1 −3∂2 + 3i∂3

0 0 ∂2 + i∂3 3i∂1






ALGEBRAIC ANALYSIS OF THE RARITA–SCHWINGER SYSTEM 201

and its symbol obtained via Fourier transform up to a scalar, is the matrix:

(7) P =




−3ix1 −x2 + ix3 0 0
3x2 + 3ix3 −ix1 −2x2 + 2ix3 0

0 2x2 + 2ix3 ix1 −3x2 + 3ix3

0 0 x2 + ix3 3ix1




In order to perform the algebraic analysis of the Rarita–Schwinger operator using
Gröbner Basis techniques, let us consider the module 〈P t〉 generated by the rows
of P . The use of a computer algebra software to analyze such a module will be
very useful for our scope. We have utilized CoCoA [6], whose current version does
not support complex coefficients. The only coefficient field of characteristic zero
available is Q. Although in this case it would suffice to handle polynomials with
coefficients in Z[i] (and this can be implemented ”by hand” by just adding a new
variable i and requiring that i2 +1 = 0), we are still able to avoid imaginary num-
bers and find an expression for the matrix which contains only integers, thanks to
a suitable change of coordinates. Here we present two possible choices.

First method. The multiplication by a complex number z = a+ib with a, b ∈ R can
be thought of as a R–linear operation whose associated matrix is

(
a −b
b a

)
. Therefore

if we consider each scalar function fj ∈ C as uj+ivj with uj , vj ∈ R, we can rewrite
the matrix P (D), as follows:

P (D)R =




0 3∂1 −∂2 −∂3 0 0 0 0
−3∂1 0 ∂3 −∂2 0 0 0 0

3∂2 −3∂3 0 ∂1 −2∂2 −2∂3 0 0
3∂3 3∂2 −∂1 0 2∂3 −2∂2 0 0

0 0 2∂2 −2∂3 0 −∂1 −3∂2 −3∂3

0 0 2∂3 2∂2 ∂1 0 3∂3 −3∂2

0 0 0 0 ∂2 −∂3 0 −3∂1

0 0 0 0 ∂3 ∂2 3∂1 0




which, apart from replacing f0 and f3 with 3f0 and 3f3 and after Fourier transform,
can be seen as the skew-symmetric matrix

(8) PR =




0 x1 −x2 −x3 0 0 0 0
−x1 0 x3 −x2 0 0 0 0

x2 −x3 0 x1 −2x2 −2x3 0 0
x3 x2 −x1 0 2x3 −2x2 0 0
0 0 2x2 −2x3 0 −x1 −x2 −x3

0 0 2x3 2x2 x1 0 x3 −x2

0 0 0 0 x2 −x3 0 −x1

0 0 0 0 x3 x2 x1 0




This representation of the Rarita–Schwinger operator is sure more symmetric than
(7). However it has the disadvantage of being computationally more expensive
since (8) has twice the rank of (7).
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Second method. We apply the following change of coordinates within C[x1, x2, x3]:

X1 = −ix1, X2 = x2 + ix3, X3 = −x2 + ix3 ,

together with the change of basis such that F = 3f0 + f1z + f2z
2 + 3f3z

3. The
matrix P becomes

(9) P =




X1 X3 0 0
X2 X1 2X3 0
0 2X2 −X1 X3

0 0 X2 −X1


 .

From now on, given that this representation is much more computationally suitable
for our scope, we will use (9) as the symbol matrix for the Rarita–Schwinger
operator. The algebraic analysis of the system of equations given by P (D)f = 0
amounts then to the study of the minimal free resolution of the module M1 :=
R4/〈P t〉. Since Det(P ) = X4

1 + 2X2
1X2X3 + X2

2X2
3 = (X2

1 + X2X3)
2 = −(x2

1 +
x2

2 + x2
3) 6= 0, using Proposition 2.2 from [7] we obtain that the module has no

syzygies and therefore its free resolution is

0−→R4 P t

1−→R4 −→M1 −→ 0 .

From the vanishing of the first module of syzygies it also follows that HomR(M1, R)
= 0 but 0 6= Ext1R(M1, R) = R4/〈P1〉 so according to the terminology of [10] the
system of equation is not overdetermined. This also shows, in particular, that the
nullsolutions of the Rarita–Schwinger operator can have compact singularities, by
using Theorem 2.1.14 of [10].

Before we proceed to the analysis of the system given by several Rarita–Schwinger
operators in more variables, let us make the following remark. Henceforth we will
denote by i, j,k the imaginary unit quaternions. Consider the Moisil-Theodorescu
operator

D := i∂1 + j∂2 + k∂3

which is the Dirac operator in real dimension 3 action on (smooth) functions
f : R3 −→H. Its symbol matrix has the following form [22]:

U :=




0 X1 X2 X3

X1 0 −X3 X2

X2 X3 0 −X1

X3 −X2 X1 0




where X1, X2, X3 are real coordinates and ∂1, ∂2, ∂3 are the respective directional
derivatives. The authors of [22] have shown that the module associated to one
(resp. several) Moisil-Theodorescu operators has the same minimal free resolution
of the one associated to the Cauchy-Fueter in one (several) quaternionic variables:

∂q̄ := ∂0 + i∂1 + j∂2 + k∂3

at least in terms of Betti numbers and degrees of the maps. Obviously the two
modules differ (as they have, for instance, different characteristic varieties), but it
is easy to see that the descriptions of the two resolutions are tightly related.
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Definition 2.5. Let R = C[x1, . . . , xn] be a polynomial ring and let P (D) and
Q(D) be two differential operators with symbol matrices P and Q respectively.
We say that P has the same analytical structure of Q if their free resolution have
the same Betti numbers and the same degrees. Two operators are called similar

if there exists a map φ ∈ End(R) such that P = φ̃(Q) where φ̃ is the natural
extension of φ to the ring of matrices with entries in R.

In this language, the Moisil-Theodorescu operator not only has the same ana-
lytical structure of the Cauchy-Fueter operator, but they are also similar, φ being
the map such that φ(X0) = 0 and all other variables are fixed. More in general, it
follows directly from Lemma 3.15 of [16] that whenever the module associated to
Q is obtained from the module associated to P via the quotient with an element
which is not a zerodivisor in coker(P t) (such as X0 in the case of the Cauchy-
Fueter operator), then the two operators automatically have the same analytical
structure. This is a case in which the similarity of the two operators is in fact a
stronger condition than having the same analytical structure. To prove that the
two properties are actually independent, we will show in the next paragraphs that
the Rarita–Schwinger operator has the same analytical structure of the Moisil-
Theodorescu operator, even in several variables.

3. Rarita-Schwinger operators in several vector variables

In complete analogy with the holomorphic (respectively monogenic) case, the
case of nullsolutions to the system of equations defined by one complex (resp. vec-
tor) variable is somehow special. In several variables, one observes that the system
of differential equations describing the kernel of the operator becomes overdeter-
mined and the length of the resolution is actually greater than one, leading to non
trivial compatibility conditions for the case of the non-homogeneous system. Let
us investigate this matter for the Rarita–Schwinger operator. Let f be a smooth
function defined on (R3)n, n > 1, with values in V3 ≃ H (this last isomorphism
being realized by the correspondence 1 7→ 1/3, z 7→ i, z2 7→ j and z3 7→ 1/3k.
Let {Xji | i = 1 . . . 3, j = 1 . . . n} be real coordinates on R3n and let Pj(D) be
the Rarita–Schwinger operator with respect to the real variables (Xj1, Xj2, Xj3),
whose symbol is

Pj =




Xj1 Xj3 0 0
Xj2 Xj1 2Xj3 0
0 2Xj2 −Xj1 Xj3

0 0 Xj2 −Xj1


 .

Let g = (g1, . . . , gn)t be some data of the same type of f and consider the inho-
mogeneous system of equations

(10)





P1(D)f = g1

P2(D)f = g2

...

Pn(D)f = gn



204 A. DAMIANO

which can be written in compact form as P (D)f = g where P = [P t
1 . . . P t

n]t is the
block matrix containing the Pj ’s in a column.

Theorem 3.1. Let R = C[X10, . . . , X13, . . . , Xn0, . . . , Xn3] be a polynomial ring

and let P be as above. Let Q be the 4n by 4 matrix associated to the Cauchy–Fueter

operator in n quaternionic variables qj = Xj0 + iXj1+ jXj2 +kXj3 as in [1]. Then

P has the same analytical structure of Q.

Before we actually prove the result, let us focus on the case n = 2. For the
Cauchy-Fueter operator in 2 quaternionic variables, an interesting property of the
compatibility conditions of the system is that they only arise from the centrality
of the Laplace operator ∆i = ∂q̄i∂qi. This is also the case for the Dirac operator
in any number of vector variables and in high dimension. For the Dirac operator,
in the terminology of [21] such relations are called radial. See also [11], Chapter
6, for further details on radial syzygies and an alternative way to compute them.
Let us study the case of the Rarita–Schwinger operator in two variables and see
whether it is possible to associate to such operator an opportune ”laplacian” which
commutes with it. Computations with CoCoA show that the free resolution for the
module M2 := R4/〈P t〉 in this case is

(11) 0−→R(−4)4 −→R(−3)8 −→R(−1)8 −→R4 −→M2 −→ 0

so that we have 2 ”quaternionic” quadratic syzygies at the first step and one
”quaternionic” linear syzygy that closes the complex. By the term ”quaternionic”
syzygy we mean that we have divided the dimensions in (11) by a factor of 4 in
order to express the compatibility conditions of the system (10) only in terms of
the vector data g1, g2. If R1 and R2 are the Rarita–Schwinger operators with
respect to the first and the second set of variables respectively, then we have that

Proposition 3.2. The compatibility conditions of the system (10) are given by

(C12 + R1R̃2)g1 −R1R̃1g2 = 0

and

R2R̃2g1 + (C12 −R2R̃1)g2 = 0 .

Furthermore, naming h1 and h2 the left hand sides of the two previous equations

respectively, we have that the second compatibility conditions of the system are

given by the single equation

R′
1h2 −R′

2h1 = 0 .

Here the operators R′
j and R̃j are given, in real form, by

R̃j :=




5∂j1 −5∂j3 0 0
∂j2 −∂j1 −2∂j3 0
0 2∂j2 −∂j1 −∂j3

0 0 5∂j2 5∂j1


 ,R′

j :=




∂j1 −∂j3 0 0
−∂j2 ∂j1 2∂j3 0

0 2∂j2 −∂j1 −∂j3

0 0 −∂j2 −∂j1


 ,

j = 1, 2 and Cij := R̃iRj − R̃jRi = 5(∂i2∂j3 − ∂i3∂j2)I4, i 6= j, where I4 is the

identity matrix of rank 4.
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Proof. The proof can be obtained by comparing the syzygies with the ones ob-
tained with CoCoA. They only differ by some scalar coefficients hence the module
they generate is exactly the same. As an alternative proof, one could just calculate
the graded Betti numbers (i.e. the ranks of the free modules in the resolution)
with the use of the computer and discover that the eight first (independent) syzy-
gies are quadratic and that the four second syzygy are linear. Therefore, since the
relations above are obviously syzygies and they are independent1, one concludes
that those are all the possible syzygies at each step.

The complex associated to two Rarita–Schwinger operators then shares some
of the properties of the Cauchy-Fueter complex for two operators. It is immediate
for example to show, using CoCoA, that Ext1(M2, R) = 0 and that Ext2(M2, R) ≃
R4/〈(P ′)t〉 where (P ′)t is the block matrix given by [P ′

1 P ′
2] and P ′

i is the symbol
of R′

i, i = 1, 2. This fact has two noteworthy consequences.

Corollary 3.3. Let E be the sheaf of smooth functions on R6 and let D′ be the

sheaf of distributions. If S is a sheaf, denote by SR the sheaf of nullsolutions to

the Rarita-Schwinger system for n = 2. Then for each open set in R6 of the type

U \K where U is an open convex and K a compact set in U , and for each element

f ∈ Γ(U \ K,SR) there exist a unique extension f ∈ Γ(U, SR). Let us consider

the matrix (P ′)t as previously defined and let S(P ′)t

denote the space of solutions

to the system (P ′)t(D)f = 0 on the sheaf S. Let K be a compact convex set in

R6. Then

H3
K(R6, E(P ′)t

) ∼= [D′R(K)]′(12)

and

H3
K(R6, D′R) ∼= [E(P ′)t

(K)]′ .

Proof. These facts are immediate consequences of Theorems 2.1.11 and 2.1.12 of
[10].

Remark 3.4. We refer the reader to the paper [9] for more details on what can
be said about quaternionic hyperfunctions. We believe that a similar theory could
be carried out for the Rarita–Schwinger operator in one and two vector variables,
but we defer this matter to a future paper.

We now present some technical lemmas that will lead to the proof of Theorem
3.1. The first one gives a Gröbner Basis for the module associated to several
Rarita-Swinger operators. For the terminology and the main results on Gröbner
Bases we refer the reader to [18].

Lemma 3.5. Let R = C[X11, . . . , X13, . . . , Xn1, . . . , Xn3] be a ring of polynomials

and let P1, . . . , Pn be the symbols associated to n Rarita-Schwinger operators. Let

Mn be the module generated by the rows of such matrices. The reduced degree

1independence of syzygies can be proved by just saying that the matrices corresponding to
the maps in the free resolution do not contain nonzero constants
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reverse lexicographic Gröbner Basis for Mn is given by the rows of the matrices

Pt, t = 1, . . . , n together with the rows of the matrices

Crs = P̃rPs − P̃sPr , 1 ≤ r < s ≤ n ,

where the matrices P̃j, j = 1, . . . , n are the symbols of the operators R̃j.

Proof. The statement can be verified directly with CoCoA for n ≤ 4. For the
general case, we can see that the S-polynomials generated by any two rows of the
matrices Pi give rise to the rows of Crs. Therefore, considering Buchberger’s algo-
rithms for the computation of a reduced Gröbner Basis, we have so far generated
elements of the Gröbner Basis of Mn by adding the rows of Crs. To prove that
they are the only elements of the reduced Gröbner Basis, we need to show that
all their S-polynomials reduce to zero. An S-polynomial generated by a row of Pi

and a row of Crs is computed and reduced to zero as in the case n = 2 or n = 3,
depending on the number of different indices in the triple (i, r, s). An S-polynomial
generated by two rows of Crs is computed and reduced to zero as in the case n = 2,
n = 3 or n = 4 depending on the number of different indices. This completes the
proof.

Remark 3.6. The proof of the previous lemma relies on an argument that has
been employed many times in the literature for the algebraic analysis of differential
operators, [2, 13, 22]. We believe that it can be generalized and applied to all
such cases in which there exists, together with the original operators, say Di,

another operator D̃i such that the “generalized commutator” Cij := D̃iDj − D̃jDi

is diagonal. This and some related considerations will not be presented here for
the sake of brevity, but will be investigated in our future work.

From the calculation of the Gröbner Basis for the module Mn it follows the ex-
pression of the Hilbert series of R4/Mn. Remember that the Hilbert function hN :
Z −→ N associated to a finitely generated Z-graded R-module N =

⊕
d∈Z

Nd is

simply hN(d) := dimC(Nd) and the associate Hilbert series is HM (z) :=
∑
d∈Z

hM (d)zd.

Lemma 3.7. The Hilbert series of the module R4/Mn is given by

HR4/Mn
(z) = 4

1 + (n − 1)z

(1 − z)n+1
.

Moreover, the module is Cohen-Macaulay with Castelnuovo-Mumford regularity

equal to two.

Proof. Let us first calculate the monomial module LT(Mn), i.e. the leading term
module of Mn with respect to the degree reverse lexicographic term order on R.
It follows from Lemma 3.5 that such a module is generated by the set of terms
{Xi1et, Xh3Xk2et | i = 1 . . . n, t = 1 . . . 4, 1 ≤ h < k ≤ n}, where et is the t-
th element of the canonical basis of R4. Let In be the ideal {Xi1, Xh3Xk2 | i =
1 . . . n, t = 1 . . . 4, 1 ≤ h < k ≤ n}. Then from a well known result of Macaulay
([18], Theorem 1.5.7) and from the additivity of the Hilbert function it follows

HR4/Mn
(z) = 4HR/In

(z).
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The ideal In is the same initial ideal that one obtains for the module associated to
the Moisil-Theodorescu operator in several quaternionic variables (see [22]). The
method we present here to calculate the Hilbert series, though, is slightly different
and more direct than the one presented in the aforementioned paper. First one
shows that the set of polynomials

{X12, Xn3, X13 + X22, . . . , Xn−13 + Xn2}

is a maximal regular sequence in R4/Mn. So the depth of the module is n+1. This
is equal to the cardinality of a maximal subset of independent indeterminates for
In, namely Y = {X12} ∪ {Xi3 | 1 ≤ i ≤ n}, and this number equals the dimension
of the affine algebra R/In (see [19]) and hence equals the dimension of R4/Mn.
This shows that the module is Cohen-Macaulay and that the denominator of its
Hilbert series must be (1 − z)n+1. Let J be the ideal generated by the above
maximal sequence. If we look at the so called Artinian reduction of the module,
namely An := R4/JMn, then An is zerodimensional by Cohen-Macaulyness and
therefore HAn

is just a polynomial in z. Such a polynomial is precisely the numer-
ator of HR4/Mn

. The non constant elements of An are the classes of the elements
Xk3et, k = 1 . . . n − 1, t = 1 . . . 4, which are 4n − 4 elements of degree one, and
it is immediate to check that An does not contain quadratic elements. Therefore,
HAn

= 4 + 4(n − 1)z.
The fact that the module is Cohen-Macaulay follows because the length of a
maximal regular sequence for R4/ LT(Mn) coincides with the denominator of
the Hilbert series. Finally, using Proposition 4.14 from [16] and the fact that
the elements of the regular sequence are linear, we obtain that the Castelnuovo-
Mumford regularity of Mn is two, but this is obviously the same as the regularity
of R4/ LT(Mn).

Now that we have the Hilbert series of the module associated to the Rarita–
Schwinger in several variables, we can finally prove the main result of this paper.

Proof of Theorem 3.1. To show that the Cauchy-Fueter operator and the
Rarita–Schwinger operator have the same analytical structure, we just need to
prove that the Betti numbers βj of the module Mn coincides with those found in
[2]. For the case n = 1, the proof follows from the computation in Section 2. Let
us then deal with the case n > 1. First note that by the Auslander-Buchsbaum
formula, the length of the free resolution is 3n−(n+1) because the proof of Lemma
3.7 shows that the depth of the module is n + 1. The regularity of the module
being two, we have that the maps of its free resolution are all linear except for the
first syzygies that are quadratic. This allows then to calculate the explicit form of
the Betti numbers, using Corollary 1.10 from [16] which gives the Betti numbers
of a module if one knows its Hilbert function and the degrees of the maps at each
step of the resolution. We can then apply such result to this case and get that
β0 = 4, β1 = 4n and

βj = 4n

(
2n− 1

j

)
j − 1

j + 1
, j > 1 .
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Another important fact that can be deduced from the expression of the Hilbert
series of R4/Mn is that the cohomology modules Exti(R4/Mn, R) are all zero
except for the one corresponding to the last spot of the resolution. In other words

Corollary 3.8. The complex associated to n > 1 Rarita-Schwinger operators

0 −→ R4 −→ R4n(−1) −→ Rβ1(−3) −→ . . . −→ Rβn(−2n) −→ 0

is exact, except at the last spot.

Proof. The dimension of the associated module is n + 1 as calculated in Lemma
3.7, and this is the same as the dimension of the characteristic variety of the
module Mn. Applying [20], Corollary 1, p. 377, we obtain that the first nontrivial
cohomology corresponds to the index 3n − (n + 1) = 2n − 1.

In particular, the Hartogs’ phenomenon and all the cohomology vanishing re-
sults described in [10] hold for nullsolutions of the Rarita–Schwinger operator in
several variables.

4. Polynomial solutions to the Rarita–Schwinger system

As a last application of the calculation of the Hilbert series, we show that it is
possible to find the dimension of the spaces of homogeneous polynomial solutions
to the Rarita–Schwinger operator in any number of variables. Let us introduce
the Weyl algebra

A := C
[
Xi1, . . . , Xi3, ∂i1, . . . , ∂i3 | i = 1 . . . n

]

and denote by R the ring of polynomials as before. R can be seen as an A-module
in a canonical way. Let P (D) be a linear constant coefficient partial differential
operator with symbol P = [P t

1 . . . P t
n]t ∈ Mat 4n×4(R). Then let us denote by N

the (left) A–module

N = A4/

n∑

j=1

A4 · Pj(D) = A4/im (P (D)t) ,

and consider the vector space

P := HomA(N , R)

which, adapting the proof of Proposition 2.1.1 from [10], is isomorphic to the space
of polynomial solutions to the system of equations P (D)f = 0.

Proposition 4.1. The C–spaces P and M = R4/im (P t) are isomorphic.

Proof. It suffices to construct the map Φ from HomA(N , R) to M which sends
the morphism ϕ ∈ HomA(N , R) defined by ϕ(ēi) = fi to the element Φ(ϕ) =
(f̄1, . . . , f̄4) ∈ M. Here ei is the i-th canonical basis element of A4. Then it is
immediate to see that this is the isomorphism required.
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Since the isomorphism Φ is obviously graded (the degree of a homogeneous map
ϕ in N just being the degree of fi = ϕ(ēi)), we obtain a method to describe the
homogeneous components of the space of polynomial solution by just studying the
homogenous components of M. These are finite dimensional vector spaces and
their dimensions are given, by definition, by the values of the Hilbert function.
We can then prove the following result.

Theorem 4.2. Let P be the symbol matrix associated to the Rarita–Schwinger

operator in n variables in real dimension 3. Let P be the space of polynomial

solutions to the system P (D)f = 0, let d ∈ N be a natural number and let [P ]d be

the homogeneous component of degree d. Then

dim C([P ]d) = 4(d + 1)

(
d + n − 1

n − 1

)
.

Proof. Given the definition of Hilbert function and Proposition 4.1 we have that
hP = hM so we just need to find the values of the Hilbert function hM(d) for each
d ∈ N. Let use distinguish two cases for n.
n = 1. The Hilbert series associated to M is H(z) = 4 1

(1−z)2 hence the values

h(d) can be reconstructed by the formula

h(d) =
1

d!

∂dH

∂zd
(0) = 4

1

d!

(d + 1)!

(1 − z)d+2

∣∣
z=0

= 4(d + 1) .

n > 1. We proceed in a similar way to calculate the d-th derivative of the Hilbert
series. By induction on d, with some simple calculations, we get

∂d

∂zd
H(z) = 4n(n + 1) · · · (n + d − 1)

(d + 1) + (n − 1)z

(1 − z)n+d+1

from which it follows immediately

h(d) =
1

d!

∂dH

∂zd
(0) = 4

1

d!

(n + d − 1)!

(n − 1)!
(d + 1) = 4(d + 1)

(
d + n − 1

n − 1

)
.

Let R = C[x1, . . . , xn] and let P ∈Matr,s(R) be the symbol matrix of a linear
differential operator. Many computer algebra softwares allow the computation
of polynomial solutions, up to a given degree, to the system of PDEs given by
P (D)f = 0. It is interesting to note that the computation of the so called Noe-
therian operators [14] associated to P (D) can be related to this problem. If we
want to find the space of all polynomial solutions P<d of degree (strictly) less than
d > 0, then it suffices to consider the operator

P<d :=

[
P
T

]

where T is the matrix whose rows are of the type tei = (0, . . . , 0, t, 0, . . . , 0),
i = 1..s, and t varies among all power products in R whose degree is d. It follows
that (smooth) solutions to the new system

P<d(D)f = 0
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are polynomial functions of degree less than d which also satisfy P (D)f = 0.
The module Rs/im(T t) is a finite dimensional C-space (it is generated by all
the polynomial vectors of Rs whose degree is less than d), and hence the space
Rs/im(P t

<d) is finite dimensional as well, or zerodimensional in the language of
[14]. Its associated characteristic variety, i.e. the set in Cn where the matrix P<d

is not of maximal rank, is the origin. One can then apply the methods described
in the aforementioned paper (see section 3.4, l.c.) to find an explicit expression
of the solutions to the system P<d(D)f = 0 via the calculation of the Noetherian
operators associated to the module. It is interesting to notice that this is consistent
with the description of Theorem 4.2. In fact, the dimension of the space P<d+1 is
equal to the multiplicity of M<d+1 := Rs/im(P t

<d+1), which equals its dimension
as a vector space. But this is given by the sum of the values of the Hilbert function

∞∑

i=1

hM<d+1
(i) =

d∑

i=1

hM(i) .

The same holds for the space P<d and by subtracting the two multiplicities we
obtain another proof of the fact that the space of polynomial solutions of degree
exactly d is hM(d) =dimC(Md).

References

[1] Adams, W. W., Berenstein, C. A., Loustaunau, P., Sabadini, I., Struppa, D. C., Regular

functions of several quaternionic variables and the Cauchy–Fueter complex, J. Geom. Anal.
9 (1999), 1–16.

[2] Adams, W. W., Loustaunau, P., Analysis of the module determining the properties of regular

functions of several quaternionic variables, Pacific J. Math. 196 (2000), no. 1, 1–15.
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