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REMARKS ON SYMMETRIES OF PARABOLIC GEOMETRIES

LENKA ZALABOVÁ

Abstract. We consider symmetries on filtered manifolds and we study the
|1|-graded parabolic geometries in more details. We discuss the existence
of symmetries on the homogeneous models and we conclude some simple
observations on the general curved geometries.

This paper follows the lecture at the Winter School ‘Geometry and Physics’ in
Srńı, January 2006. The aim is to introduce and discuss the symmetries for the
so called parabolic geometries. The strategy is to view the Cartan geometries as
straightforward generalizations of the classical affine structures and to extend the
notion of the affine symmetries on manifolds in this way. The affine structures
can be understood as reductive Cartan geometries of the first order, the classical
results are expressed naturally in the language of the Cartan geometries, and the
classical approach generalizes easily.

The parabolic geometries represent another special case of the general Cartan
geometries. They are of second order and never reductive. The symmetries will
no more be unique in this case and we may have more than one symmetry at each
point.

The parabolic geometries live mostly on filtered manifolds, but we shall deal
with the |1|-graded geometries, where the filtration is trivial and the whole struc-
ture is given by a specific G-structure in the classical sense. For this special class
of geometries, the symmetries are defined in the same intuitive way as in the affine
geometry. At the same time, much of the classical theory of affine symmetries ex-
tends. In particular, the existence of a symmetry at a point kills the torsion of the
geometry at this point. In view of the nice general theory of parabolic geometries,
this already proves the local flatness of the symmetric geometries for most types
of them.

1. Basic facts

Throughout the paper we use the notation and concepts of [2] and [7]. Never-
theless we recall some of the basic facts and notation on the parabolic geometries
below.

The paper is in final form and no version of it will be submitted elsewhere.
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Cartan geometries. Let G be a Lie group, P ⊂ G a Lie subgroup, and write
g and p for their Lie algebras. A Cartan geometry of type (G, P ) on a smooth
manifold M is a principal fiber bundle p : G → M with structure group P , together
with a 1-form ω ∈ Ω(G; g) called a Cartan connection such that:

• (rh)∗ω = Adh−1 ◦ ω for each h ∈ P
• ω(ζX(u)) = X for each X ∈ p

• ω(u) : TuG −→ g is a linear isomorphism for each u ∈ G.

The homogeneous model for Cartan geometries of type (G, P ) is the canonical
P -bundle p : G −→ G/P endowed with the left Maurer-Cartan form ωG ∈ Ω(G, g).

The third property of ω defines the horizontal fields ω−1(X) for every element
X ∈ g. The curvature K of a Cartan geometry is defined by the structure equation
and K is also given explicitly by the curvature function κ : G → ∧2g∗ ⊗ g,

κ(u)(X, Y ) = [X, Y ] − ω
(

[ω−1(X), ω−1(Y )]
)

.

If at least one of the arguments is from p, then the curvature vanishes and the
curvature function may be viewed as κ : G → ∧2(g/p)∗ ⊗ g. This function is also
right-invariant, i.e.

κ ◦ rg = g−1 · κ

for all g ∈ P , where · is the tensor product of the adjoint actions Ad on (g/p)∗

and Ad on g.
A morphism of Cartan geometries from (G → M, ω) to (G′ → M ′, ω′) is a

principal bundle morphism ϕ : G → G′ such that ϕ∗ω′ = ω. In this case their
curvature functions κ and κ′ satisfy κ = κ′ ◦ ϕ. We shall deal with the auto-
morphisms of Cartan geometries. In the homogeneous case, there is the famous
Liouville theorem, see [6]:

Theorem 1.1. The automorphisms of the homogeneous model (G → G/P, ωG) of

a Cartan geometry are exactly the left multiplications by elements of G.

The curvature is the complete local invariant of a Cartan geometry, see e.g. [6]:

Theorem 1.2. If the curvature of a Cartan geometry vanishes then the geometry

is locally isomorphic with the homogeneous model of the same type.

Cartan geometry is called locally flat if the curvature κ vanishes. The torsion T
of the Cartan geometry is defined by the composition of the values of the curvature
function with the projection g → g/p. If the torsion is zero, i.e. the values of κ
are in ∧2(g/p)∗ ⊗ p, we call the Cartan geometry torsion free. Obviously, the
homogeneous models are Cartan geometries with zero curvature.

Parabolic geometries. Let g be a semisimple Lie algebra. The |k|-grading on g

is the vector space decomposition

g = g−k ⊕ · · · ⊕ g0 ⊕ · · · ⊕ gk

such that [gi, gj] ⊂ gi+j for all i and j (we understand gr = 0 for |r| > k) and such
that the subalgebra g− := g−k ⊕ · · · ⊕ g−1 is generated by g−1. We will suppose
that there is no simple ideal of g contained in g0. Each gradation of g defines the
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filtration g = g−k ⊃ g−k+1 ⊃ · · · ⊃ gk = gk, where gi = ⊕j≥igj . In particular g0

and g0 =: p are subalgebras of g and g1 =: p+ is a nilpotent ideal in p.
Let G be a semisimple Lie group with the Lie algebra g. Not only the choice of

the group G but also the choice of the subgroups G0 ⊂ P ⊂ G with the prescribed
subalgebras p a g0 impacts the properties of the resulting geometries. The obvious
maximal choice is this one:

G0 :=
{

g ∈ G | Adg(gi) ⊂ gi, ∀i = −k, . . . , k
}

P :=
{

g ∈ G | Adg(g
i) ⊂ gi, ∀i = −k, . . . , k

}

,

but we may also take the connected component of the unit in these subgroups
or anything between these two extremes. It is not difficult to show for all such
subgroups (see [8]):

Proposition 1.3. Let g be a |k|-graded semisimple Lie algebra and G be a Lie

group with Lie algebra g.

(1) G0 ⊂ P ⊂ G are closed subgroups with Lie algebras g0 and p, respectively.

(2) The map (g0, Z) 7→ g0 exp Z defines a diffeomorphism G0 × p+ → P .

A parabolic geometry is a Cartan geometry of type (G, P ), where G and P are
as above. If the length of the gradation of g is k, then the geometry is called
|k|-graded.

The curvature of parabolic geometries. The curvature function κ : G →
∧2g∗−⊗g is valued in the cochains for the second cohomology H2(g−, g). This group

can be also computed as the homology of the codifferential ∂∗ : ∧k+1g∗− ⊗ g →

∧kg∗− ⊗ g, where

∂∗(Z0 ∧ · · · ∧ Zk ⊗ W ) =

k
∑

i=0

(−1)i+1Z0 ∧ · · · î · · · ∧ Zk ⊗ Zi · W

+
∑

i<j

(−1)i+j [Zi, Zj ] ∧ · · · î · · · ĵ · · · ∧ Zk ⊗ W

for all Z0, . . . , Zk ∈ g∗− ≃ p+ and W ∈ g.
The parabolic geometry is called normal if the curvature satisfies ∂∗ ◦ κ = 0. If

the geometry is normal, we can define the harmonic part of curvature, κH : G →
H2(g−, g), as the composition of the curvature and the projection to the second
cohomology group.

Thanks to the gradation of g, there are several decompositions of the curva-
ture of the parabolic geometry. One of the possibilities is the decomposition into
homogeneous components, which is of the form

κ =

3k
∑

i=−k+2

κ(i) ,

where κ(i)(u)(X, Y ) ∈ gp+q+i for all X ∈ gp, Y ∈ gq and u ∈ G. The parabolic

geometry is called regular if the curvature function κ satisfies κ(r) = 0 for all
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r ≤ 0. The crucial structural description of the curvature is provided by the
following theorem (see [8]):

Theorem 1.4. The curvature κ of regular normal geometry vanishes if and only

if its harmonic part κH vanishes. Moreover, if all homogeneous components of

κ of degrees less than j vanish identically and there is no cohomology H2
j (g−, g),

then also the curvature component of degree j vanishes.

Another possibility is the decomposition of the curvature according to the val-
ues:

κ =

k
∑

j=−k

κj

and in an arbitrary frame u we have κj(u) ∈ g− ∧ g− → gj . The component κ−

valued in g− corresponds to the torsion.
In the case of |1|-graded geometries the decomposition by the homogeneity cor-

responds to the decomposition according to the values. The homogeneous compo-
nent of degree 1 corresponds to the torsion while the homogeneous components of
degrees 2 and 3 coincide with κ0 and κ1.

Underlying structures. Let (G → M, ω) be a regular parabolic geometry. We
obtain the filtration of the tangent bundle on M by subbundles T iM := G ×P gi

such that for all sections ξ of T iM and η of T jM the Lie bracket [ξ, η] is a section
of T i+jM . We get directly the associated graded bundle

gr(TM) = gr−k(TM)⊕ · · · ⊕ gr−1(TM)

where gri(TM) = T iM/T i+1M . In this case we have that gr(TxM) ≃ g− as
graded Lie algebras for all x ∈ M and we obtain the frame bundle G0 := G/ exp p+

as the frame bundle of gr(TM). In particular, gri(TM) ≃ G0 ×G0
gi.

More generally, we define a filtered manifold as a manifold M together with a
filtration TM = T−kM ⊃ · · · ⊃ T−1M such that for sections ξ of T iM and η of
T jM the Lie bracket [ξ, η] is a section of T i+jM and we again obtain an associated
graded bundle. For each x ∈ M , the graded algebra gr(TxM) is called the symbol

algebra.
If the symbol algebras are all isomorphic to our fixed graded algebra g−, then

there is the frame bundle for gr(TM) with the structure group Autgr(g−). As
discussed thoroughly in [3], our group G0 may equal to the latter graded automor-
phism group (in the case when all the first cohomology lives in negative homo-
geneities), or it is a proper subgroup and the geometry is given by the reduction
of the graded frame bundle to the structure group G0 ⊂ Autgr(g−).

If we start with a regular parabolic geometry, we get exactly these data on the
base manifold and we call them the infinitesimal flag structure.

Conversely, the Cartan’s equivalence method has lead to the equivalence be-
tween such infinitesimal flag structures and regular and normal parabolic geome-
tries, see [8, 1],

Theorem 1.5. Let M be a filtered manifold such that each symbol algebra is

isomorphic to g− and let G0 → M be a reduction of the frame bundle of gr(TM)
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to the structure group G0. Then there is a regular normal parabolic geometry

(p : G → M, ω) inducing the given data. If H1
ℓ (g−, g) are trivial for all ℓ > 0, then

the normal regular geometry is unique up to isomorphism.

The construction is functorial and the latter theorem describes an equivalence
of categories.

|1|-graded geometries. In this case the filtration of the tangent bundle is trivial.
We need only the reduction of gr(TM) to the structure group G0. The |1|-graded
geometries are automatically regular and we get the correspondence between nor-
mal |1|-graded parabolic geometries and first order G-structures whose structure
groups G0 appear as the reductive part of a parabolic subgroup P ⊂ G and
g = g−1 ⊕ g0 ⊕ g1.

We give here survey on all |1|-graded geometries. The classification of semisim-
ple Lie algebras in terms of simple roots is well known and for a given g there is a
complete description of all parabolic subalgebras, see [8, 2] for more details. The
latter description allows to classify all corresponding geometries. We list them all
here together with their non-zero components of the harmonic curvature (notice
some overlaps in low dimensions).

Aℓ : the split form, ℓ ≥ 2, the almost Grassmannian structures, g = sl(p +
q, R), g0 = s(gl(p, R) × gl(q, R)), p + q = ℓ + 1. Moreover

p = 1, q = 2 or p = 2, q = 1 : the projective structures dim = 2, one
curvature of homogeneity 3

p = 1, q > 2 or p > 2, q = 1 : the projective structures dim > 2, one
curvature of homogeneity 2

p = 2, q = 2 : dim = 4, two curvatures of homogeneity 2
p = 2, q > 2 or p > 2, q = 2 : dim = pq, one torsion, one curvature of

homogeneity 2
p > 2, q > 2 : dim = pq, two torsions

Aℓ : the quaternionic form, ℓ = 2p + 1 > 2, g = sl(p + 1, H). We have:
p = 1: the almost quaternionic geometries, dim = 4, two curvatures of

homogeneity 2
p > 1: the almost quaternionic geometries, dim = 4p, one torsion, one

curvature of homogeneity 2
the geometries modeled on quaternionic Grassmannians: two torsions

Aℓ : ℓ = 2p− 1 one type geometry for the algebra su(p, p). We have:
p = 2 : two curvatures of homogeneity 2
p > 2 : two torsions

Bℓ : the pseudo-conformal geometries in odd dimension ≥ 3. We have:
ℓ = 2 : dim = 3, one curvature of homogeneity 3
ℓ > 2 : dim = 2ℓ − 1, one curvature of homogeneity 2

Cℓ : the split form, ℓ > 2, the almost Lagrangian geometries - one torsion
Cℓ : one type of geometry corresponding to sp(p, p), 2p = ℓ - one torsion
Dℓ : the pseudo-conformal geometries in all even dimensions ≥ 4

ℓ = 3 : dim = 4, two curvatures of homogeneity 2
ℓ > 3 : dim ≥ 6, one curvature of homogeneity 2
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Dℓ : the real almost spinorial geometries g = so(l, l)
ℓ = 4 : one curvature of homogeneity 2
ℓ ≥ 5 : one torsion

Dℓ : the quaternionic almost spinorial geometries, g = u∗(ℓ, H), l = 2m -
one torsion

E6 : two exotic geometries with g0 = so(5, 5)⊕R and g0 = so(1, 9)⊕R - one
torsion

E7 : another two exotic geometries - one torsion

Let us remark, that in the low dimensional cases some of the algebras are
isomorphic and the corresponding geometries are in fact equal. In particular,
sl(4, R) ≃ so(3, 3), so(2, 4) ≃ su(2, 2), so(1, 5) ≃ sl(2, H) and so all the four-
dimensional conformal pseudo-Riemannian geometries are covered by the corre-
sponding A4–cases. Moreover, the spinorial geometries for D4 are isomorphic to
the conformal Riemannian geometries.

The symmetries of parabolic geometries. Let us first consider an affine lo-
cally symmetric space. This is a manifold M with a linear connection ∇ such that
at each point x ∈ M , there is a locally defined affine transformation sx satisfying
sx(x) = x and Txsx = − idTxM . The classical result on affine locally symmetric
spaces says that a manifold with an affine connection is locally symmetric if and
only if the torsion vanishes and the curvature is covariantly constant, see e.g. [5].

A manifold with a linear connection can be viewed equivalently as the first
order Gl(n, R)-structure, i.e. a principal bundle p : P1M −→ M equipped by the
canonical form θ ∈ Ω1(P , Rn), together with a fixed principal connection form
γ ∈ Ω1(P1M, gl(n)). Clearly the form ω := θ + γ ∈ Ω(P1M, Rn + gl(n, R)) enjoys
the properties of a Cartan connection of the type (A(n, R), Gl(n, R)), with the
affine group A(n, R).

Now, a symmetry on M can be viewed as a morphism of this Cartan geometry,
such that its underlying smooth map ϕ on M (base morphism) has the properties

of the classical affine symmetries, i.e. ϕ(x) = x and Txϕ = − idTxM .
We might try to extend this definition to a general Cartan geometry, but clearly

this cannot work in general. In order to see the point, let us consider any contact
parabolic geometry, a CR–manifold for example. Thus we deal with a 2n + 1–
dimensional manifold M equipped with the contact distribution HM of codi-
mension one, such that the algebraic map L : ∧2HM → TM/HM induced by
the Lie bracket is non–degenerate. If there were a symmetry ϕ, then for any ξ,

η ∈ HxM ⊂ TxM the action of ϕ on L(ξ, η) must be

ϕ(L(ξ, η)) = L(ϕ(ξ), ϕ(η)) = L(ξ, η)

and thus we cannot require the differential to be minus identity everywhere.
At the same time, the above analysis indicates how to proceed for all parabolic

geometries. Let us recall that each |k|–graded parabolic geometry comes with the
tangent bundle equipped by a filtration TM = T−kM ⊃ T−k+1M ⊃ · · · ⊃ T−1M .

Definition 1.6. Let (G → M, ω) be a parabolic geometry. The symmetry at the

point x is a locally defined automorphism ϕ such that its base morphism satisfies
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ϕ(x) = x and Txϕ|T−1

x M = − idT−1M . The geometry is called (locally) symmetric

if there is a symmetry at each point x ∈ M .

In other words, symmetries revert by the sign change only the smallest subspace
in the filtration, while their actions on the rest are completely determined by the
algebraic structure of the symbol algebra.

In the case of |1|-graded geometries, however, the filtration is trivial and so we
have T−1M = TM . Thus the definition of the symmetries of |1|-graded geometries
follow completely the classical intuitive idea.

2. Symmetries on homogeneous models of |1|-graded geometries

The following lemma works in all situations where the symmetry is defined as
reflecting the whole tangent space by the sign change. In particular, the lemma is
very useful for homogeneous models of such geometries.

Lemma 2.1. If there is a symmetry in x on a Cartan geometry of type (G, P ),
then there exists an element g ∈ P such that Adg(X + p) = −X + p for all

X + p ∈ g/p.

In the case of a |1|-graded geometry, all such elements g are of the form g =
g0 exp Z, where g0 ∈ G0 such that Adg0

(X) = −X for all X ∈ g−1 and Z ∈ g1 is

arbitrary.

Proof. Suppose, that there is a symmetry in a point x ∈ M . We know, that the
base morphism ϕ preserves the point x. Hence the morphism ϕ preserves the fiber
over x. Let u be an arbitrary fixed point in the fiber over x. There is an element
g ∈ P such that ϕ(u) = u · g. Let ξ ∈ X(M) be a vector field on M . It holds that

Tϕ.ξ(x) = − idTxM (ξ(x)) = −ξ(x) .

Using the identification TM = G×P g/p we have ξ(x) = [[u, X +p]] for some X ∈ g.
In the chosen frame u, we then have

Tϕ([[u, X + p]]) = [[ϕ(u), X + p]] = [[ug, X + p]] = [[u, Adg−1(X + p)]] .

The definition of a symmetry implies

Tϕ([[u, X + p]]) = [[u,−(X + p)]]

and the two vectors are the same. Comparing the coordinates in the frame u gives
us an element g ∈ P such that Adg(−X + p) = X + p and we take its inverse.

In the case of |1|-graded parabolic geometry, we have g = g0 exp Z for some
g0 ∈ G0 and Z ∈ g1, because g ∈ P . We get Adg0 exp Z(X) = −X for all X ∈ g−1.
But the action of the component expZ is trivial while the action of g0 preserves
the gradation, i.e. Adg0

= Adg0
, and so we get Adg0

(X) = −X . �

Suppose that there is such an element g. If some element differs from g by a
conjugation by an element from P , then it has the same property. If g corresponds
to the frame u ∈ p−1(x), then the element h−1gh, h ∈ P corresponds to the frame
uh ∈ p−1(x).
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Proposition 2.2. All symmetries of the homogeneous model (G → G/P, ωG) at

the origin o are exactly the left multiplications by elements g ∈ P satisfying the

condition in Lemma 2.1. Moreover, if there is a symmetry in the origin o, then

the homogeneous model is symmetric.

Proof. We have seen that all automorphisms of G/P are exactly left multipli-
cations by elements from G. We have to look for elements from G which give
symmetries. Let us denote λg the left multiplication by element g. Because λg

should be symmetry, element g must be in P . We make the same computation as
in the proof of Lemma 2.1. Let ξ ∈ X(G/P ) be a vector field. In the origin of the
homogeneous model we have ξ(o) = [[e, X + p]] for some X + p ∈ g/p and we get

Tλg

(

[[e, X + p]]
)

= [[ge, X + p]] = [[g, X + p]] = [[e, Adg−1(X + p)]]

and the element g must satisfy the equation in Lemma 2.1.
If there is a symmetry in the origin, we can use the conjugation to get symmetry

in each point hP ∈ G/P . If λg is symmetry in the origin for some g ∈ P , then
λhgh−1 is symmetry in the point hP . �

Now we present some examples. We start with the affine geometry. This is not
a parabolic geometry but our definition of the symmetry recovers the classical one
and the latter proposition holds. Finally we show some |1|-graded examples.

Example. Affine geometry. We have G = A(n, R) =
{

( 1 0
v A ) | v ∈ R

n, A ∈

Gl(n, R)
}

the affine group and the elements from P = Gl(n, R) are of the form

( 1 0
0 A ) ∈ A(n, R). The Lie algebra of G looks like aff(n, R) =

{

( 0 0
w B ) | w ∈ R

n, B ∈

gl(n, R)
}

and gl(n, R) =
{

( 0 0
0 B ) | B ∈ gl(n, R)

}

.

We have to look for elements ( 1 0
v A ) ∈ A(n, R) satisfying ( 1 0

x A ) ( 0 0
w 0 ) ( 1 0

x A )
−1

=
(

0 0
−w 0

)

for all ( 0 0
w 0 ) ∈ g− ≃ R

n. Consequently, ( 1 0
x A ) ( 0 0

w 0 ) =
(

0 0
−w 0

)

( 1 0
x A ) and

thus ( 0 0
Aw 0 ) =

(

0 0
−w 0

)

. We can see that there is only one element satisfying this

equality and this is
(

1 0
0 −E

)

, the conjugation by another element of P gives trivial
change.

This matches well the known facts on the classical symmetric spaces. There
can exist only one symmetry in each point on the affine (locally) symmetric space.
The symmetry corresponds to the element we found above. The homogeneous
model is the affine plane R

n ≃ A(n, R)/Gl(n, R)) and this clearly is a symmetric
space and the symmetry in the origin is the left multiplication by

(

1 0
0 −E

)

.

Example. Projective structures. We can make two reasonable choices of the Lie
group G with the given Lie algebra and grading. We can consider G = Sl(m+1, R).
Then the maximal P is the subgroup of all matrices of the form

(

d W
0 D

)

such that
1
d

= detD and W ∈ R
m, but we take the connected component of the unit only.

Clearly with this choice G/P is diffeomorphic to the m–dimensional sphere and
P is the stabilizer of the ray spanned by the first basis vector in R

m+1. The
subgroup G0 contains exactly elements of P such that W = 0, and this subgroup
is isomorphic to Gl+(m, R).

The second reasonable choice is G = PGl(m + 1, R), the quotient of Gl(m, R)
by the subgroup of all multiples of the identity. Here P is the stabilizer of the



REMARKS ON SYMMETRIES OF PARABOLIC GEOMETRIES 365

line generated by the first basis vector too and the subgroup G0 is isomorphic
to Gl(m, R), because each class in G0 has exactly one representant of the form
( 1 0

0 D ). We can make the computation simultaneously and then discuss both cases
separately.

We have g−1 = {( 0 0
X 0 ) | X ∈ R

m} and the adjoint action of a =
(

b 0
0 B

)

on

V = ( 0 0
X 0 ) is Ada V = b−1BX . We look for elements

(

b 0
0 B

)

such that BX = −bX
for each X ∈ g−1. It is easy to see that B is a diagonal matrix and that all
elements on the diagonal are equal to −b. Thus we may represent the prospective
solution as

(

1 0
0 −E

)

.
Now we discuss the choice G = Sl(m + 1, R) with G/P ≃ Sm. The element

has the determinant ±1 and the sign depends on the dimension on the geometry.
If m is even, then the element gives a symmetry but if m is odd, then there is no
symmetry on this model. The reason is obvious — our choice of the groups has
lead to the oriented sphere with the canonical projective structure (represented e.g.
by the metric connection of the round sphere metric) and the obvious symmetries
are orientation preserving in the even dimensions only.

In the case of G = PGl(m+1, R), the above element always represents the class
in G0 and thus yields the symmetry. In both cases, all elements giving symmetry
are of the form

(

1 W
0 −E

)

for all W ∈ R
m.

These two choices of the group G correspond to projective structures on ori-
ented and not oriented manifolds and we get that the projective space is always a
symmetric homogeneous model. The existence of a symmetry on the oriented pro-
jective geometry depends on its dimension. Only the even-dimensional geometries
can be symmetric.

Example. Almost quaternionic structures. Now we take almost quaternionic
structures. There are again two interesting choices of the groups. We can choose
G = Sl(m + 1, H) with the canonical action on H

m+1. The parabolic subgroup P
is the stabilizer of the quaternionic line spanned by the first basis vector in H

m+1.
Then G0 = {( a 0

0 A ) | |a|4 detR A = 1}.

Next we can take G = PGl(m, H), the quotient of all invertible quaternionic
linear endomorphisms by the subgroup of real multiples of identity. Let P be
again the stabilizer of the quaternionic line spanned by the first basis vector. The
subgroup G0 consists of all elements of the form ( a 0

0 A ) such that 0 6= a ∈ H and
A ∈ Gl(m, H).

We have g−1 = {( 0 0
X 0 ) | X ∈ H

m} and we look for elements
(

q 0
0 B

)

such that
BX = −Xq for each X ∈ g−1. Again, such an element must be diagonal and the
elements on the diagonal of B are equal to −q. Suppose, that q = a+ bi+ cj +dk.
If we choose X = ( i

0 ) we get (−a − bi − cj − dk)i = −i(a + bi + cj + dk), thus
−ai + b + ck − dj = −ai + b− ck + dj and so c = d = 0. Then the choice X =

(

j
0

)

gives that q has to be real. We again get the element
(

1 0
0 −E

)

.
In the case of PGl(m + 1, H), this element clearly represents the class giving

symmetry. In the case of Sl(m, H) it should again depend on the dimension of
the manifold. But the real dimension equals to 4m and thus also in this case the
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symmetry is well defined. All elements giving symmetries look like
(

1 W
0 −E

)

for all
W ∈ H

m.

Let us point out some observations coming from these examples. The existence
of symmetry on the homogeneous model depends on the choice of the groups. We
know, that if there is no element satisfying the condition from lemma 2.1, then
the homogeneous model of the corresponding type is not symmetric. In addition,
none of the Cartan geometry of the same type is symmetric. Let us mention the
oriented projective structures in odd dimension. These Cartan geometries cannot
be symmetric. If we forget the orientation (i.e. if we cosinder different groups)
then we get geometries which can be symmetric.

3. Symmetric |1|-graded geometries

The following theorem plays a cruical role for us.

Theorem 3.1. Symmetric |1|-graded parabolic geometries are torsion free.

Proof. Let us choose an arbitrary x ∈ M and let us denote ϕ the symmetry in
x. We have that ϕ fixes x and thus ϕ preserves the fiber over x. The curvature
function satisfies κ = κ ◦ ϕ and for appropriate g ∈ P we have

κ(u) = κ(ϕ(u)) = κ(u · g) = g−1 · κ(u) .

The torsion is identified with the component κ−1 and we have the same equation
for this correctly defined component (we have just to keep in mind the proper
action of P on the quotient space g−1 ≃ g/p). We compare κ−1 in the frames u
and ϕ(u), where u, ϕ(u) ∈ p−1(x). We arrive at

κ−1

(

ϕ(u)
)

(X, Y ) = κ−1(u · g)(X, Y ) = g−1 · κ−1(u)(X, Y )

= Adg−1

(

κ−1(u)(AdgX, AdgY )
)

= −κ−1(u)(−X,−Y ) = −κ−1(u)(X, Y )

and this should be equal to κ−1(u)(X, Y ) for all X, Y ∈ g−1. Thus, we obtain
κ−1(u)(X, Y ) = −κ−1(u)(X, Y ) and so κ−1(u) vanishes. This is true for all frames
u ∈ G, p(u) = x and so this part of curvature vanishes at the point x.

If the geometry is symmetric then there is symmetry in all x ∈ M . Then κ−1

vanishes in all x ∈ M and the geometry is torsion free. �

Corollary 3.2. Let (G, ω) be a normal |1|-graded parabolic geometry on a manifold

M such that its homogeneous components of the harmonic curvature are only of

degree 1. If there is a local symmetry at a point x ∈ M , then the whole curvature

vanishes in this point. In particular, if the geometry is symmetric, than it is locally

isomorphic with the homogeneous model.

Proof. The existence of a symmetry forces κ−1 to vanish. If all harmonic curva-
ture is concentrated to this homogeneity, then the whole curvature κ has to vanish,
see Theorem 1.4. Of course, then the geometry is locally flat, see Theorem 1.2. �

It is not difficult to name all geometries satisfying the condition on the curva-
ture in the latter Corollary browsing through the description after Theorem 1.5.
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In particular, the following symmetric normal |1|-graded geometries have always
to be locally flat: almost Grassmannian geometries such that p > 2 and q > 2,
geometries modeled on quaternionic Grassmannians (but not the almost quater-
nionic ones), geometries for the algebra sp(p, p) where p > 2, all geometries coming
from the algebras of types Cℓ, spinorial geometries in the Dℓ types with ℓ > 4,
and all exotic geometries.

The crucial point in the above considerations was the odd homogeneity degree
of the components in harmonic cuvatures. Thus, a similar argument applies for
all geometries where the only available homogeneity is three:

Proposition 3.3. Symmetric conformal geometries of dimension 3 and symmetric

projective geometries of dimension 2 are locally flat.

Proof. We prove that κ1 is zero. Suppose that there is a symmetry ϕ in x ∈ M.
In arbitrary frame u over x we have

κ1

(

ϕ(u)
)

(X, Y ) = κ1(u · g)(X, Y ) = g−1 · κ1(u)(X, Y )

= Adg−1

(

κ1(u)(AdgX, AdgY )
)

= Adg−1

(

κ1(u)(−X,−Y )
)

= Adg−1

(

κ1(u)(X, Y )
)

and this should be equal to κ1(u)(X, Y ).
The action of g on g−1 is −id from the definition. It holds that g1 is dual to

g−1 with respect to the Killing form. The adjoint action of P on g1 is the dual
action of the adjoint action on g−1. The action of the element g on g1 is then the
dual action of −id and it is again −id. We have κ1(u)(X, Y ) = −κ1(u)(X, Y ) for
all u over x and therefore κ1 vanish in x. If we have a symmetry in each point
then κ1 vanishes.

By Theorem 1.4 and our list of the features of all |1|–graded geometries, the
geometries in question have no homogeneous parts of curvature of degree 1 and
2. They have only one homogeneous harmonic part of degree 3. This component
belongs to κ1 and therefore has to vanish. But then the harmonic part of curvature
κH vanishes and so the curvature κ vanishes and the geometries are locally flat. �

The curvature of a symmetric |1|-graded geometry looks like κ = κ0 and its
lowest part κ0 : G → g∗ ∧ g∗ ⊗ g0 is a correctly defined (quotient) object. Unfor-
tunately, comparing κ0(u) with κ0(ϕ(u)) does not give us any new information.
Indeed,

κ0

(

ϕ(u)
)

(X, Y ) = κ0(u · g)(X, Y ) = g−1 · κ0(u)(X, Y )

= Adg−1(κ0(u)(−X,−Y )) = Adg−1

(

κ0(u)(X, Y )
)

is equal to κ0(u)(X, Y ) for all X, Y ∈ g−1. Since g0 ⊆ gl(g−1) ≃ g∗−1 ⊗ g−1, and
the action on g−1 and g∗−1 is −id, the action of g on the tensor is obviously trivial.

Again, we can easy find all remaining |1|–graded normal parabolic geometries
allowing some homogeneous component of curvature of degree 2. These are just
four lines of examples: projective geometries, conformal Riemannian geometries,
almost quaternionic geometries and almost Grassmannian structures such that
p = 2 or q = 2. We should like to remark that all the other geometries allowing
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curvature in our list above are in fact isomorphic with some of these four types.
We have commented on that already.

The best known example of such geometries are the conformal Riemannian
ones and the rich theory of Riemannian symmetric spaces indicates that there will
indeed be examples of symmetric geometries which will not be locally flat. The
study of all these most interesting geometries has to rely on more of the general
theory of parabolic geometries and we shall treat this elsewhere.

Acknowledgement. Many discussions with J. Slovák were very useful during
the work on this paper. This research has been supported by the grant GACR
201/05/H005.

References

[1] Čap, A., Schichl, H., Parabolic geometries and canonical Cartan connection, Hokkaido Math.
J. 29 (2000), 453–505.
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