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THEORY OF RAPID VARIATION ON TIME SCALES
WITH APPLICATIONS TO DYNAMIC EQUATIONS

Jiří Vítovec

Abstract. In the first part of this paper we establish the theory of rapid
variation on time scales, which corresponds to existing theory from continuous
and discrete cases. We introduce two definitions of rapid variation on time
scales. We will study their properties and then show the relation between
them. In the second part of this paper, we establish necessary and sufficient
conditions for all positive solutions of the second order half-linear dynamic
equations on time scales to be rapidly varying. Note that these results are
new even for the linear (dynamic) case and for the half-linear discrete case. In
the third part of this paper we give a complete characterization of all positive
solutions of linear dynamic equations and of all positive decreasing solutions
of half-linear dynamic equations with respect to their regularly or rapidly
varying behavior. The paper is finished by concluding comments and open
problems of these themes.

1. Introduction

Recall that a measurable function f : [a,∞)→ (0,∞) of a real variable is said
to be rapidly varying of index ∞, resp. of index −∞ if it satisfies

(1) lim
x→∞

f(λx)
f(x) =

{
∞ resp. 0 for λ > 1 ,
0 resp. ∞ for 0 < λ < 1 ;

we write f ∈ RPVR(∞), resp. f ∈ RPVR(−∞). Note that it is easy to show that
in relation (1) it is not necessary to include both cases λ > 1 and 0 < λ < 1, i.e.,

lim
x→∞

f(λx)
f(x) =∞ (resp. 0) , λ > 1 ⇔ lim

x→∞

f(λx)
f(x) = 0 (resp. ∞) , λ ∈ (0, 1) .

For more information about the rapid variation on R, see for example [1] and
references therein. In [17], the concept of rapidly varying sequences was introduced
in the following way. Let [u] denote the integer part of u. A positive sequence {fk},
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k ∈ {a, a+ 1, . . .} ⊂ Z is said to be rapidly varying of index ∞, resp. of index −∞
if it satisfies

(2) lim
k→∞

f[λk]

fk
=
{
∞ resp. 0 for λ > 1 ,
0 resp. ∞ for 0 < λ < 1 ;

we write f ∈ RPVZ(∞), resp. f ∈ RPVZ(−∞). Similarly, as in the previous case,
one can show that

lim
k→∞

f[λk]

fk
=∞ (resp. 0) , λ > 1 ⇔ lim

k→∞

f[λk]

fk
= 0 (resp. ∞) , λ ∈ (0, 1) .

Note that these types of definitions of rapidly varying functions (1) and rapidly
varying sequences (2), which include a parameter λ, correspond to the classical
Karamata type definition of regularly varying functions, see [1, 8, 11, 12, 13, 25]
and references therein. In [17] it was shown that if a positive sequence {fk} has
the property that ∆fk increases, then f ∈ RPVZ(−∞) if and only if

(3) lim
k→∞

k∆fk
fk

= −∞ .

This result shows that under certain conditions there exists an alternative (in some
cases more practical) possibility, how to define rapidly varying sequences (resp.
functions). For further reading of rapid and regular variation in discrete case we
refer, e.g., to [3, 4, 5, 7, 17, 15, 16, 26] and the references therein.

In this paper we extend the theory of rapid variation to time scales (i.e., conside-
red functions are defined on nonempty closed subsets of R, see [2, 9]). We work with
two definitions of rapid variation, precisely, with a Karamata type definition and
with a definition using ∆-derivative, where the latter one is motivated by (3). Our
aim is to show properties of rapidly varying functions and relation between both
mentioned definitions. The theory of rapid variation on time scales automatically
holds for the continuous and discrete cases, moreover, at the same time, the theory
works also on other time scales which may be different from the “classical” ones.
Finally, note that the theory of rapid variation on time scales naturally extends
and completes our knowledge concerning the theory of regular variation on time
scales, which was earlier studied in [20, 24, 23].

As an application, we study asymptotic properties of solutions of the second
order half-linear dynamic equation

(4) [Φ(x∆)]∆ − p(t)Φ(xσ) = 0

on a time scale, where p > 0 is an rd-continuous function, and Φ(x) = |x|α−1sgn x,
α > 1. Note that this results automatically hold for the second order linear dynamic
equation

(5) x∆∆ − p(t)xσ = 0

as a special case of equation (4) (when α = 2).
In this paper, the time scale T is assumed to be unbounded above, min T = a

(with a > 0) and the graininess satisfies µ(t) = o(t). This condition will be discussed
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at the end of the paper. As we show, if we want to obtain a reasonable theory, we
cannot omit this additional requirement on the graininess.

2. Preliminaries

We assume that the reader is familiar with the notion of time scales. Thus note
just that T, σ, ρ, fσ, µ, f∆, and

∫ b
a
f∆(s) ∆s stand for the time scale, forward

jump operator, backward jump operator, f ◦ σ, graininess, ∆-derivative of f , and
∆-integral of f from a to b. See [9], which is the initiating paper of the time scale
theory, and [2] containing a lot of information on time scale calculus.

In [20], the concept of regular variation on T was introduced in the following
way. A measurable function f : T→ (0,∞) is said to be regularly varying of index
ϑ, ϑ ∈ R, if there exists a positive rd-continuously ∆-differentiable function g
satisfying

(6) f(t) ∼ Cg(t) and lim
t→∞

tg∆(t)
g(t) = ϑ ,

C being a positive constant; we write f ∈ RVT(ϑ). If ϑ = 0, then f is said to be
slowly varying; we write f ∈ SVT. Moreover, the function g is said to be normalized
regularly varying of index ϑ; we write g ∈ NRVT(ϑ). If ϑ = 0, then g is said
to be normalized slowly varying; we write g ∈ NSVT. In [24], we introduced a
Karamata type definition of regularly varying function on time scales and developed
and enriched the existing theory with new statements (the embedding theorem, a
relation between previous and Karamata type definition, etc.). Here is the Karamata
type definition. Let f : T→ (0,∞) be a measurable function satisfying

(7) lim
t→∞

f(τ(λt))
f(t) = λϑ

uniformly on each compact λ-set in (0,∞), where τ : R→ T is defined as τ(t) =
max{s ∈ T : s ≤ t}. Then f is said to be regularly varying of index ϑ (ϑ ∈ R) in the
sense of Karamata; we write f ∈ KRVT(ϑ). If ϑ = 0, then f is said to be slowly
varying in the sense of Karamata; we write f ∈ KSVT. For further information
about theory of regular variation on T see, e.g., [20, 22, 24, 23].

3. Theory of rapid variation on time scales

In this section we establish the theory of rapid variation on time scales. Recall
that throughout the paper, T is assumed to be unbounded above, min T = a (with
a > 0) and µ(t) = o(t).

Definition 1. Let c, d be the real constants such that 0 < c ≤ d and ϑ ∈ R.
A measurable function f : T → (0,∞) is said to be rapidly varying of index ∞,
resp. of index −∞ if there exist function ϕ : T→ (0,∞) satisfying ϕ ∈ RVT(ϑ) or
c ≤ ϕ(t) ≤ d for large t and a positive rd-continuously ∆-differentiable function ω
such that f(t) = ϕ(t)ω(t) and

(8) lim
t→∞

tω∆(t)
ω(t) =∞ , resp. lim

t→∞

tω∆(t)
ω(t) = −∞ ;
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we write f ∈ RPVT(∞), resp. f ∈ RPVT(−∞). Moreover, the function ω is said
to be normalized rapidly varying of index ∞, resp. normalized rapidly varying of
index −∞; we write ω ∈ NRPVT(∞), resp. ω ∈ NRPVT(−∞).

Proposition 1.
(i) It holds f ∈ RPVT(∞) if and only if 1/f ∈ RPVT(−∞).
(ii) Let f ∈ NRPVT(∞). Then for every ϑ ∈ [0,∞) the function f(t)/tϑ is

increasing for large t and limt→∞ f(t)/tϑ =∞.
(iii) Let f ∈ NRPVT(−∞). Then for every ϑ ∈ [0,∞) the function f(t)tϑ is

decreasing for large t and limt→∞ f(t)tϑ = 0.
(iv) f ∈ NRPVT(∞) implies f∆(t) > 0 for large t and f(t) is increasing for

large t, moreover f and f∆ are tending to ∞.
(v) f ∈ NRPVT(−∞) implies f∆(t) < 0 for large t and f(t) is decreasing for

large t, moreover f is tending to 0. If f is convex for large t or if there exists
h > 0 such that µ(t) > h for large t, then f∆ is tending to 0.

Proof. (i) Let f ∈ RPVT(∞), f = ϕω. First, we show that ω ∈ NRPVT(∞)⇔
1/ω ∈ NRPVT(−∞). Due to (8), ω∆(t) > 0 for large t. Therefore,

ω ∈ NRPVT(∞) ⇔ lim
t→∞

ω(t)
tω∆(t) = 0 ⇔ lim

t→∞

ωσ(t)− µ(t)ω∆(t)
tω∆(t) = 0

⇔ lim
t→∞

(
ωσ(t)
tω∆(t) −

µ(t)
t

)
= 0 ⇔ lim

t→∞

ωσ(t)
tω∆(t) = 0

⇔ lim
t→∞

tω∆(t)
ωσ(t) =∞ ⇔ lim

t→∞

(
t

1/ω(t) ·
−ω∆(t)
ω(t)ωσ(t)

)
= −∞

⇔ lim
t→∞

t(1/ω(t))∆

1/ω(t) = −∞ ⇔ 1
ω
∈ NRPVT(−∞) .

Now, since 1/ϕ ∈ RVT(−ϑ), see, [24, part (iv) of Proposition 1], or 0 < 1/d ≤
1/ϕ(t) ≤ 1/c for large t, we have 1/f ∈ RPVT(−∞). Similarly, 1/f ∈ RPVT(−∞)
implies f ∈ RPVT(∞).

(ii) Let f ∈ NRPVT(∞) and ϑ ∈ [0,∞). Then there exists a function ξ(t),
t ≤ ξ(t) ≤ σ(t), such that

(9)
(
f(t)
tϑ

)∆
= f∆(t)tϑ − f(t)(tϑ)∆

tϑ(σ(t))ϑ = f∆(t)tϑ − ϑf(t)(ξ(t))ϑ−1

tϑ(σ(t))ϑ .

In view of
tf∆(t)
f(t) > ϑ

(
ξ(t)
t

)ϑ−1
for large t

(indeed, tf∆(t)/f(t)→∞ and ξ(t)/t→ 1 as t→∞), which is equivalent to

f∆(t)tϑ > ϑf(t)(ξ(t))ϑ−1 for large t ,

(9) is positive for large t and hence f(t)/tϑ is increasing for large t. By a contra-
diction, suppose that limt→∞ f(t)/tϑ = L, L ∈ (0,∞) (note that the limit of
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this function exists for all ϑ ≥ 0 as a finite or infinite number, because the func-
tion f(t)/tϑ is increasing). Then f(t) ∼ Ltϑ and hence f ∈ RVT(ϑ), which is a
contradiction with f ∈ NRPVT(∞). Therefore, limt→∞ f(t)/tϑ =∞.

(iii) It follows from (i) and (ii).

(iv) Let f ∈ NRPVT(∞). If we take ϑ = 0 in (ii), we get f(t) is increasing (thus
f∆(t) > 0) for large t and limt→∞ f(t) = ∞. To prove that limt→∞ f∆(t) = ∞,
it is enough to show that lim inft→∞ f∆(t) = ∞. We know that f∆(t) > 0.
Assume that lim inft→∞ f∆(t) = c, c > 0. Then, in view of limt→∞ t/f(t) = 0
(which follows from (ii) ), lim inft→∞ tf∆(t)/f(t) = 0, a contradiction with (8). So
lim inft→∞ f∆(t) =∞ and hence limt→∞ f∆(t) =∞.

(v) Analogously as in case (iv), we get (by using (iii) for ϑ = 0) that f(t) is
decreasing (thus f∆(t) < 0) for large t and limt→∞ f(t) = 0. Let f be convex for
large t. Then f∆(t) increases for large t and limt→∞ f∆(t) exists as a nonpositive
number. By a contradiction, assume that limt→∞ f∆(t) = k < 0. Hence, f∆(t) ≤ k
for large t. By integration of the last inequality from t0 to t (where t0 ∈ T is
sufficiently large), we get f(t) ≤ kt+ q (q = kt0−f(t0)) for large t. Hence, f(t) < 0
for large t, a contradiction. Let (for large t) µ(t) be bounded from below by a
positive constant h. Then in view of that f(t) is decreasing for large t,

(10) 0 > f∆(t) = fσ(t)− f(t)
µ(t) >

fσ(t)− f(t)
h

for large t.

If t→∞ in (10), we get (by using limt→∞ f(t) = 0) limt→∞((fσ(t)− f(t))/h) = 0,
hence limt→∞ f∆(t) = 0. �

Remark 1. (i) From the above proposition it is easy to see that the function
f(t) = at with a > 1 is a typical representative of the class RPVT(∞), while
the function f(t) = at with a ∈ (0, 1) is a typical representative of the class
RPVT(−∞). Of course, as we can see also from Definition 1, these classes are
much wider. The rapidly varying function can be understood like a product of
an exponential function and a function, which is regularly varying or bounded.
However, the exact representation is not known for now. We conjecture that it
could be somewhere near to this one: for f ∈ RPVT(∞) resp. RPVT(−∞),

f(t) = ϕ(t)ag(t) , a > 1 resp. a ∈ (0, 1) ,

where ϕ is defined as in Definition 1 and g(t) ≥ h(t), h ∈ RVT(ϑ) with ϑ > 0.
Observe that this “representation” is sufficiently wide and includes many various
rapidly varying functions, e.g., (sin(t) + b)at, ln(t)at, tγat, atϑ and ab

t with a ∈
(0, 1) ∪ (1,∞), b > 1, γ ∈ (−∞,∞) and ϑ > 0.

(ii) Case (ii), resp. (iii) (and of course (iv), resp. (v) ) of Proposition 1 does not
hold generally for f ∈ RPVT(∞), resp. f ∈ RPVT(−∞). It is enough to take, e.g.,
a function f(t) = at−2 sin t with a > 1, resp. f(t) = at−2 sin t with a < 1. Note that
f(t) ∈ RPVT(±∞) in view of at−2 sin t = a−2 sin tat with bounded a−2 sin t.

(iii) The assumption of convexity or existence of h > 0 in Proposition 1 in
part (v) (unlike part (iv) ) is important, because without this condition only
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lim supt→∞ f∆(t) = 0 holds, as can we see in the following example. Let n ∈ N
and consider function f defined on the discrete time scale T = N ∪ {n+ (1/2)n+2}
such that

f(t) =
{( 1

2
)t for t = n ,

3
4
( 1

2
)t for t = n+

( 1
2
)n+2

.

Then f(t) ∈ NRPVT(−∞), lim inft→∞ f∆(t) = −1 and lim supt→∞ f∆(t) = 0.
Now we introduce a Karamata type definition, see (1), (2) and (7).

Definition 2 (Karamata type definition). Let τ : R → T be defined as τ(t) =
max{s ∈ T : s ≤ t}. A measurable function f : T→ (0,∞) satisfying

(11) lim
t→∞

f(τ(λt))
f(t) =

{
∞ resp. 0 for λ > 1 ,
0 resp. ∞ for 0 < λ < 1

is said to be rapidly varying of index∞, resp. of index −∞ in the sense of Karamata.
We write f ∈ KRPVT(∞), resp. f ∈ KRPVT(−∞).

Note that the classes KRPVT(∞) and KRPVT(−∞) can be described similarly
as the classes RPVT(∞) and RPVT(−∞), see part (i) of Remark 1. Now we prove
some properties of rapidly varying functions in the sense of Karamata.
Proposition 2.

(I) f ∈ KRPVT(∞) if and only if 1/f ∈ KRPVT(−∞).
(II) Let f : T→ (0,∞) be a measurable function, monotone for large t. Then

(i) f ∈ KRPVT(∞) implies f is increasing for large t and limt→∞ f(t) =∞.
(ii) f ∈ KRPVT(−∞) implies f is decreasing for large t and limt→∞ f(t) =

0.

(iii) lim
t→∞

f(τ(λt))
f(t) =∞ (λ > 1) implies f ∈ KRPVT(∞).

(iv) limt→∞
f(τ(λt))
f(t) = 0 (λ > 1) implies f ∈ KRPVT(−∞).

Proof. (I) We have

f ∈ KRPVT(∞) ⇔ lim
t→∞

f(τ(λt))
f(t) =

{
∞ for λ > 1,
0 for 0 < λ < 1

⇔

⇔ lim
t→∞

1
f(τ(λt))

1
f(t)

=
{

0 for λ > 1,
∞ for 0 < λ < 1

⇔ 1
f
∈ KRPVT(−∞) .

(II) (i) Let λ > 1 and limt→∞ f(τ(λt))/f(t) = ∞ hold. Suppose that f(t) is
nonincreasing for large t. Then lim supt→∞ f(τ(λt))/f(t) ≤ 1, a contradiction.
Next, let limt→∞ f(t) = c <∞. Then, limt→∞ f(τ(λt))/f(t) = 1, a contradiction.

(ii) This part we can prove analogically as the part (i).
(iii) Let λ > 1 and limt→∞ f(τ(λt))/f(t) =∞ hold. From (i) we know that f(t)

is increasing for large t. Therefore,

∞ = lim
t→∞

f(τ(λτ( tλ )))
f(τ( tλ ))

≤ lim
t→∞

f(t)
f(τ( 1

λ t))
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(due to f(τ(λτ( tλ ))) ≤ f(t)). Hence, limt→∞ f(t)/f(τ(λt)) =∞ for 0 < λ < 1 and
thus limt→∞ f(τ(λt))/f(t) = 0 for 0 < λ < 1. Therefore, f ∈ KRPVT(∞).

(iv) This part we can prove analogically as the part (iii). �

Now, we show that the Karamata type definition is under certain conditions
equivalent to Definition 1.

Lemma 1. Let f be a positive rd-continuously differentiable function and let f∆(t)
be increasing for large t. Then

(i) f ∈ KRPVT(∞) iff f ∈ RPVT(∞) iff f ∈ NRPVT(∞).
(ii) f ∈ KRPVT(−∞) iff f ∈ RPVT(−∞) iff f ∈ NRPVT(−∞).

Moreover, f∆(t) be increasing for large t is not to be assumed in all if parts.

Proof. (i) We will proceed in the following way:
f ∈ KRPVT(∞)⇒ f ∈ NRPVT(∞)⇒ f ∈ RPVT(∞)⇒ f ∈ KRPVT(∞) .

Let f ∈ KRPVT(∞). First, observe that f(t) is monotone for large t. Indeed, f(t)
is convex, so there exists t0 such that f(t) is monotone for t > t0. Hence, f(t) is
increasing for large t due to Proposition 2. Now, for all λ < 1, we have

f(t)− f(τ(λt)) =
∫ t

τ(λt)
f∆(s)∆s ≤ f∆(t)[t− τ(λt)] ≤ f∆(t)[t− (λt− µ(τ(λt)))]

= f∆(t)[t(1− λ) + µ(τ(λt))] .
Hence,

(12) f∆(t)[t(1− λ) + µ(τ(λt))]
f(t) ≥ f(t)− f(τ(λt))

f(t) .

Note that µ(τ(λt))/f(t)→ 0 as t→∞. Really, f(t) is convex and increasing, so
there exists t0 ∈ T such that f(t) > t for t > t0 and hence,

0 = lim
t→∞

µ(τ(λt))
t

≥ lim
t→∞

µ(τ(λt))
f(t) ≥ 0 .

Since λ < 1 is independent of t and can be chosen arbitrarily close to 1, in view
of µ(τ(λt))/f(t)→ 0 as t→∞ and f(τ(λt))/f(t)→ 0 as t→∞, from inequality
(12) we have

(13) lim inf
t→∞

tf∆(t)
f(t) ≥ sup

λ<1

1
1− λ =∞

and thus f ∈ NRPVT(∞). The part f ∈ NRPVT(∞) ⇒ f ∈ RPVT(∞) holds
trivially. Let f ∈ RPVT(∞) and take λ > 1. Then, by Definition 1

(14) lim
t→∞

f(τ(λt))
f(t) = lim

t→∞

ϕ(λt)
ϕ(t) ·

ω(λt)
ω(t) = lim

t→∞
hλ(t)ω(λt)

ω(t) .

Let ϕ ∈ RVT(ϑ). Hence, ϕ ∈ KRVT(ϑ) by [24, Theorem 2], which implies that
h(t)→ λϑ as t→∞. Let ϕ is bounded, i.e., 0 < c ≤ ϕ(t) ≤ d for large t. Then,

c

d
≤ lim inf

t→∞
hλ(t) ≤ hλ(t) ≤ lim sup

t→∞
hλ(t) ≤ d

c
.
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Together, hλ(t) is bounded both above and below for large t by the positive
constants. Due to ω ∈ NRPVT(∞), ω(t) is increasing for large t (by Proposition 1).
Now, for all λ > 1, we have

ω(τ(λt)) ≥ ω(τ(λt))− ω(t) =
∫ τ(λt)

t

ω∆(s)∆s ≥ ω∆(t)[τ(λt)− t]

≥ ω∆(t)[λt− µ(τ(λt))− t] = ω∆(t)
[
t(λ− 1)− µ(τ(λt))

]
.

Hence,

(15) ω(τ(λt))
ω(t) ≥ ω∆(t)[t(λ− 1)− µ(τ(λt))]

ω(t) .

Since λ > 1, in view of µ(τ(λt))/ω(t)→ 0 as t→∞ (a similar reasoning as in the
first implication of part (i) of this proof), from (14) and (15) we have

lim
t→∞

f(τ(λt))
f(t) ≥ lim

t→∞
hλ(t) tω

∆(t)(λ− 1)
ω(t) =∞ (λ > 1) ,

and thus (by Proposition 2) f ∈ KRPVT(∞).
(ii) We will proceed analogically as in case (i). Let f ∈ KRPVT(−∞). Similarly

as in part (i), we get f(t) is decreasing for large t due to Proposition 2. Now, for
all λ > 1, we have

−f(τ(λt)) + f(t) =
∫ τ(λt)

t

(−f∆(s))∆s ≤ −f∆(t)(τ(λt)− t)) ≤ −f∆(t)(λ− 1) t .

Hence,

− tf
∆(t)
f(t) ≥ 1

λ− 1 ·
−f(τ(λt)) + f(t)

f(t) = 1
λ− 1

(
1− f(τ(λt))

f(t)

)
.

Since λ > 1 is independent of t and can be chosen arbitrarily close to 1, in view of
f(τ(λt))/f(t)→ 0 as t→∞, from the above inequality we have

lim inf
t→∞

− tf
∆(t)
f(t) ≥ sup

λ>1

1
λ− 1 =∞

and thus f ∈ NRPVT(−∞). The part f ∈ NRPVT(−∞) ⇒ f ∈ RPVT(−∞)
holds trivially. Let f ∈ RPVT(−∞). By using Proposition 1, part (i) of this lemma
and Proposition 2 we can successively write:

f ∈ RPVT(−∞)⇒ 1
f
∈ RPVT(∞)⇒ 1

f
∈ KRPVT(∞)⇒ f ∈ KRPVT(−∞) .

�

Remark 2 (Important). (i) Note that the concept of normalized rapid variation
is not known in the literature concerning the continuous (resp. discrete) theory
and it seems that there is no reason to distinguish the two cases of rapidly varying
behavior in this situation. We conjecture that in this case, every positive differen-
tiable function f (resp. every positive sequence), which is rapidly varying, is
automatically normalized rapidly varying. Hence, there is no point to consider
both definitions (specially, when we study asymptotic properties of differential or
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difference equations and deal with functions which are differentiable). However, the
situation is different in the general time scale case, where the previous assertion
is not true in general (only if f is convex and ∆-differentiable, then, in view of
Lemma 1, these two definitions are equivalent). Indeed, take, e.g., T = N∪{n+2−n},
n ∈ N, and f , ϕ, ω : T→ R satisfying the assumptions of Definition 1 such that

ϕ(t) =
{

1 + 2−t for t = n ,

1− 2−t for t = n+ 2−n
and ω(t) = 2t (t ∈ T) .

Then ϕ(t)→ 1 as t→∞ and ω(t) ∈ NRPVT(∞). Moreover,

f(t) = ϕ(t)ω(t) =
{

2t + 1 for t = n ,

2t − 1 for t = n+ 2−n

is of the class C1
rd(T). It is not difficult to verify that f(t) is decreasing in each t = n,

n ∈ N. Hence, f∆(t) is negative for every t = n, thus lim inft→∞ tf∆(t)/f(t) ≤ 0
and hence f 6∈ NRPVT(∞).

(ii) Looking at Definition 1 and a condition on a function ϕ, the reader may ask
why we require the function ϕ just in this form. The other eventualities are, e.g.,
to consider ϕ in the following forms:

(a) ϕ(t) ∼ C, where C > 0 (a less general form),
(b) tc ≤ ϕ(t) ≤ td, where c, d ∈ R, c ≤ d (a more general form).

However, the case (a) is less general then in our definition. Moreover, observe that
the function ϕ from the previous example from (i) satisfies condition (a). The case
(b) is more general but not convenient since our theory focuses on a generalization
in the sense of a “domain of definition” rather than considering “badly behaving”
functions.

4. Applications to half-linear dynamic equations

As an application of the theory of rapid variation, we study asymptotic behavior
of solutions of half-linear dynamic equation in the form (4). In [18] the reader
can find many useful information about half-linear dynamic equations and the
monograph [2] is a very good source for many results about linear dynamic equations.
In view of the structure of equation (4), it is not difficult to see that every positive
solution y of (4) satisfies y∆∆ > 0 , i.e., y is convex and y∆ is increasing.

Theorem 1. Equation (4) has solutions u ∈ RPVT(−∞) and v ∈ RPVT(∞) if
and only if for all λ > 1

(16) lim
t→∞

tα−1
∫ τ(λt)

t

p(s)∆s =∞ .

Moreover, all positive decreasing solutions of (4) belong to NRPVT(−∞) and all
positive increasing solutions of (4) belong to NRPVT(∞).
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Proof. “If ”: Let u be a positive decreasing solution of (4) and let (16) hold. By
integration of equation (5) from t to τ(

√
λt) (λ > 1) we get

Φ
(
u∆(τ(

√
λt))

)
− Φ

(
u∆(t)

)
=
∫ τ(

√
λt)

t

p(s)Φ
(
uσ(s)

)
∆s .

Since u∆ < 0 and u is positive decreasing with zero limit, we can write

−u∆(t) ≥ Φ−1
(∫ τ(

√
λt)

t

p(s)Φ
(
uσ(s)

)
∆s
)

≥ u
(
τ(
√
λt)
)
Φ−1

(∫ τ(
√
λt)

t

p(s)∆s
)
.(17)

In the last inequality we use the fact that

(18)
∫ b

a

fσ(t)g(t)∆t ≥ f(b)
∫ b

a

g(t)∆t (a, b ∈ T; a < b)

holds for arbitrary positive decreasing function f and positive function g. This
inequality follows from the time scales version of the second mean value theorem
of integral calculus, see [18, Lemma 2.5]. By integration of (17) from t to τ(

√
λt)

(λ > 1) we get

u(t)− u
(
τ(
√
λt)
)
≥
∫ τ(

√
λt)

t

u
(
τ(
√
λs)
)
Φ−1

(∫ τ(
√
λs)

s

p(r)∆r
)

∆s .

By using (18) with u(τ(
√
λρ(τ(

√
λt)))) ≥ u(τ(λt)) we get

(19) u(t) ≥ u
(
τ(λt)

) ∫ τ(
√
λt)

t

Φ−1
(∫ τ(

√
λs)

s

p(r)∆r
)

∆s .

In view of (16) for any arbitrarily large constant M > 0 there exists t0 sufficiently
large such that

(20)
∫ τ(

√
λt)

t

p(s)∆s ≥ M

tα−1 , t > t0 .

Since u is positive, from (19) and (20) we get

u(t)
u(τ(λt)) ≥ Φ−1(M)

∫ τ(
√
λt)

t

Φ−1
( 1
sα−1

)
∆s = Φ−1(M)

∫ τ(
√
λt)

t

1
s

∆s

≥ Φ−1(M)
∫ τ(

√
λt)

t

1
s

ds = Φ−1(M) ln τ(
√
λt)
t

≥ Φ−1(M) ln
√
λt− µ(τ(

√
λt))

t
= Φ−1(M) ln

(√
λ− µ(τ(

√
λt))

t

)
.

where the inequality
∫ τ(
√
λt)

t
(1/s) ∆s ≥

∫ τ(
√
λt)

t
(1/s) ds (used also in further part of

the proof) follows from [19, Lemma 1.1]. Since µ(τ(
√
λt))/t→ 0 as t→∞ and since

M was arbitrarily large, this implies u(t)/u(τ(λt))→∞ as t→∞. Consequently,
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u(τ(λt))/u(t)→ 0 as t→∞ for λ > 1, which implies (due to Proposition 2) that
u ∈ KRPVT(−∞) and hence, by Lemma 1, u ∈ (N )RPVT(−∞).

Let v be a positive increasing solution of (4) and let (16) hold. By integration
of equation (4) from τ(t/

√
λ) to t (λ > 1) we get

Φ(v∆(t))− Φ
(
v∆
(
τ
( t√

λ

)))
=
∫ t

τ
(
t√
λ

) p(s)Φ(vσ(s)
)
∆s .

Since v∆ > 0 and v is positive increasing, we get

v∆(t) ≥ Φ−1
(∫ t

τ
(
t√
λ

) p(s)Φ(vσ(s)
)
∆s
)

≥ v
(
τ
( t√

λ

))
Φ−1

(∫ t

τ
(
t√
λ

) p(s)∆s) .
By integration of the last inequality from σ(τ(t/

√
λ)) to t (λ > 1) we get

v(t)− vσ
(
τ
( t√

λ

))
≥
∫ t

σ
(
τ
(
t√
λ

)) v(τ( s√
λ

))
Φ−1

(∫ s

τ
(
s√
λ

) p(r)∆r)∆s .

By using the same ideas as before we get

(21) v(t) ≥ v
(
τ
( t
λ

))∫ t

σ
(
τ
(
t√
λ

)) Φ−1
(∫ s

τ
(
s√
λ

) p(r)∆r)∆s ,

where we use

v
(
τ
(σ(τ( t√

λ

))
√
λ

))
≥ v
(
τ
( t
λ

))
.

Inequality (21) can be rewritten on the form

(22) v(t)
v
(
τ
(
t
λ

)) ≥ ∫ t

σ
(
τ
(
t√
λ

)) Φ−1
(∫ s

τ
(
s√
λ

) p(r)∆r)∆s ,

In view of (16), which can be equivalently written with
√
λ instead of λ, we have

(due to {τ(t/
√
λ)} ⊆ T for large t)

lim
t→∞

(
τ
( t√

λ

))α−1 ∫ τ
(√

λτ
(
t√
λ

))
τ
(
t√
λ

) p(s)∆s =∞ .

Therefore, thanks to τ(t/
√
λ) ≤ t/

√
λ < t and τ(

√
λτ(t/

√
λ)) ≤ t, we get

lim
t→∞

tα−1
∫ t

τ
(
t√
λ

) p(s)∆s =∞ ,

which means that for arbitrarily large M > 0, there exists s0 sufficiently large such
that

(23)
∫ s

τ
(
s√
λ

) p(r)∆r ≥ M

sα−1 , s > s0 ,
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and since v is positive, then from (22) and (23), we get (by using the similar
calculation as in previous case for the decreasing solution u)

v(t)
v
(
τ
(
t
λ

)) ≥ Φ−1(M)
∫ t

σ
(
τ
(
t√
λ

)) 1
s

∆s ≥ Φ−1(M)
∫ t

σ
(
τ
(
t√
λ

)) 1
s

ds

≥ Φ−1(M) ln t
t√
λ

+ µ
(
τ
(
t√
λ

)) = Φ−1(M) ln
√
λ

1 +
µ
(
τ
(
t√
λ

))
t√
λ

.

Since µ(t) = o(t), µ(τ(t/
√
λ))/(t/

√
λ)→ 0 as t→∞ and since M was arbitrarily

large, this yields v(t)/v(τ((t/λ)))→∞ as t→∞ for λ > 1, i.e., v(τ(λt))/v(t)→ 0
as t → ∞ for λ < 1, which implies, similarly as in the proof of Lemma 1, first
implication of part (i) (indeed, v satisfies (12) and (13) ), that v ∈ (N )RPVT(∞).

“Only if ”: Let u be a positive decreasing rapidly varying solution of (4). Thanks
to u∆∆ > 0 (see equation (4)), we have u∆ increases and due to Lemma 1,
u ∈ NRPVT(−∞). Hence, u∆(t) is negative with zero limit and u(t) → 0 as
t→∞ (by Proposition 1). Moreover, −u∆(t) decreases. For λ > 1 we have

−u∆(τ(λt)
)
τ(λt)

(
1− t

τ(λt)

)
= −u∆(τ(λt)

)(
τ(λt)− t

)
= −u∆(τ(λt)

) ∫ τ(λt)

t

∆s

≤ −
∫ τ(λt)

t

u∆(s)∆s = u(t)− u
(
τ(λt)

)
.(24)

From the fact that

1− t

τ(λt) ≥ 1− t

λt− µ(τ(λt)) = 1− 1
λ− µ(τ(λt))

t

= 1− 1
λ
(
1− µ(τ(λt))

λt

) ,
we have (due to µ(τ(λt))/λt→ 0 as t→∞):

lim
t→∞

(
1− t

τ(λt)

)
≥ lim
t→∞

(
1− 1

λ
(
1− µ(τ(λt))

τ(λt)
)) = 1− 1

λ
> 0 .

Since limt→∞
(
u(t)− u

(
τ(λt)

))
= 0, inequality (24) implies

(25) lim
t→∞

τ(λt)u∆(τ(λt)) = 0 .

Due to u∆(t) is negative increasing,

u∆(τ(λt))
u∆(t) ≤ 1 .

Now we want to show that

(26) lim sup
t→∞

u∆(τ(λt))
u∆(t) < 1 , λ > 1 .
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By a contradiction, assume that there exist λ0 > 1 and an unbounded sequence
{tk}∞k=1 ⊆ T such that

(27) lim
tk→∞

u∆(τ(λ2
0tk))

u∆(tk) = 1 .

Let y be a continuous positive decreasing function of a real variable, such that

y(t) = −u∆(t) for all t ∈ {tk}∞k=1

and

y(t) ≥ −u∆(t) for all t ∈ T .

Thanks to µ(t)/t→ 0 as t→∞, we have for large t
µ(τ(λ0t))

λ0t
≤ µ(τ(λ0t))

τ(λ0t)
≤ λ0 − 1

and therefore, we get

µ
(
τ(λ0t)

)
≤ λ2

0 t− λ0t ≤ λ2
0 t− τ(λ0t) .

From the last inequality we have σ(τ(λ0t)) ≤ λ2
0 t for large t and hence

(28) λ0t ≤ τ(λ2
0 t) .

From (27), (28) and thanks to y is decreasing we have

1 > y(λ0tk)
y(tk) ≥

y(τ(λ2
0 tk))

y(tk) ≥ u∆(τ(λ2
0 tk))

u∆(tk) → 1 ,

as tk → ∞. Then (see the proof of [13, Theorem 1.3]) there exists a continuous
positive decreasing function z of real variable, such that z(t) = y(t) for every
t ∈ T sufficiently large, and limx→∞(z(λ0x)/z(x)) = 1. Since z is monotone,
limx→∞(z(λx)/z(x)) = 1 holds for every λ > 0, see [1, Proposition 1.10.1] and this
implies that z is slowly varying function, see [1, Definition on page 6]. Therefore,
limx→∞ xz(x) =∞. The contradiction follows by observing that

z
(
τ(λt)

)
= y
(
τ(λt)

)
= −u∆(τ(λt)

)
, t ∈ {tk}∞k=1

and

lim
t→∞

−τ(λt)u∆(τ(λt)
)

= 0 , t ∈ {tk}∞k=1 ,

which holds due to (25). Hence, (26) holds. Therefore, there exists N > 0 such that

(29) 1− Φ
(u∆(τ(λt))

u∆(t)

)
≥ N ,

for every λ > 1 and t sufficiently large. By integration of (4) from t to τ(λt) we
have

Φ
(
u∆(τ(λt)

))
− Φ

(
u∆(t)

)
=
∫ τ(λt)

t

p(s) Φ
(
u
(
σ(s)

))
∆s ≤ Φ

(
u(t)

) ∫ τ(λt)

t

p(s) ∆s .
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This implies

−Φ
(
u∆(t)

)(
1− Φ(u∆(τ(λt)))

Φ(u∆(t))

)
≤ Φ

(
u(t)

) ∫ τ(λt)

t

p(s) ∆s .

From (29) and by multiplying the previous inequality by tα−1, we have

N
(−tu∆(t)

u(t)

)α−1
≤ tα−1

∫ τ(λt)

t

p(s)∆s ,

which (with t→∞) implies (16). �

Remark 3. Note that the previous theorem is new even for the linear case (when
α = 2), where u and v form a fundamental set of solutions of (5). The sufficiency
part for increasing solutions is new also for the half-linear discrete case. For
more information about this case, see [17, 16]. For the continuous case, we refer
to Marić’s book [13] or to [14] for the corresponding results in the linear case.
However, according to the best of our knowledge, the corresponding case of rapid
variation for half-linear differential equations has not yet been processed in the
literature. Finally note that the necessity part for increasing solutions has not
been proved (even in linear case) in the differential, resp. difference or dynamic,
equations setting yet.

5. Karamata functions and M-classification

In this section we provide information about asymptotic behavior of all positive
solutions of (5) and all positive decreasing solutions of (4) as t→∞. First consider
the linear dynamic equation (5). Note that all nontrivial solutions of (5) are
nonoscillatory (i.e., of one sign for large t) and monotone for large t. Because of
linearity, without loss of generality, we may consider just positive solutions of (5);
we denote this set as M. Thanks to the monotonicity, the set M can be further
split into the two classes M+ and M−, where

M+ = {x ∈M : ∃tx ∈ T such that x(t) > 0, x∆(t) > 0 for t ≥ tx} ,

M− = {x ∈M : x(t) > 0, x∆(t) < 0} .

These classes are always nonempty. To see it, the reader can follow the continuous
ideas described, e.g., in [6, Chapter 4].

Now we introduce the following concept. A positive function f : T→ R is said
to be a Karamata function, if f is slowly or regularly or rapidly varying; we write
f ∈ KFT. In [24] we established necessary and sufficient conditions for all positive
solutions of (5) to be regularly (resp. slowly) varying. Here we want to complete
this discussion for all positive solutions to be Karamata functions. We introduce
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the following notation:

M−SV = M− ∩NSVT ,

M−RV (ϑ1) = M− ∩NRVT(ϑ1), ϑ1 < 0 ,
M+
RV (ϑ2) = M+ ∩NRVT(ϑ2), ϑ2 = 1− ϑ1 > 1 ,

M−RPV (−∞) = M− ∩NRPVT(−∞) ,
M+
RPV (∞) = M+ ∩NRPVT(∞) ,

M−0 = {y ∈M− : lim
t→∞

y(t) = 0} ,

M+
∞ = {y ∈M+ : lim

t→∞
y(t) =∞} .

We distinguish three cases for the behavior of the coefficient p from equation (5):

lim
t→∞

t

∫ ∞
t

p(s) ∆s = 0 ,(30)

lim
t→∞

t

∫ ∞
t

p(s) ∆s = A > 0 ,(31)

lim
t→∞

t

∫ τ(λt)

t

p(s)∆s =∞ for all λ > 1 .(32)

We claim (with the use of the results of this paper and [24]) that:

(33)
M− = M−SV ⇐⇒ (30) ⇐⇒ M+ = M+

RV (1) = M+
∞ ,

M− = M−RV (ϑ1) = M−0 ⇐⇒ (31) ⇐⇒ M+ = M+
RV (ϑ2) = M+

∞ ,

M− = M−RPV (−∞) = M−0 ⇐⇒ (32) =⇒ M+ = M+
RPV (∞) = M+

∞ .

Now consider the second order half-linear dynamic equations (4). The space of
all solutions is here more complicated than the space of all solution of equation
(5). The reason is that we do not have property of linearity in this case. However,
by the similar consideration as in linear case, we get again two classes M+ and
M−, which are always nonempty. In [23] we established necessary and sufficient
conditions for all positive decreasing solutions of (4) to be regularly varying. Now
we complete this result in the sense of rapidly varying behavior. We distinguish
three cases for behavior of coefficient p(t) from equation (4):

lim
t→∞

tα−1
∫ ∞
t

p(s)∆s = 0 ,(34)

lim
t→∞

tα−1
∫ ∞
t

p(s)∆s = B > 0 ,(35)

lim
t→∞

tα−1
∫ τ(λt)

t

p(s)∆s =∞ for all λ > 1 .(36)



278 J. VÍTOVEC

With the use of the results of this paper and [23], with the same notation as in the
linear case we can claim:

M− = M−SV ⇐⇒ (34),
M− = M−RV (ϑ1) = M−0 ⇐⇒ (35),
M− = M−RPV (−∞) = M−0 ⇐⇒ (36) =⇒M+ = M+

RPV (∞) = M+
∞ .(37)

The reader may wonder that integral in condition (32) (resp. (36)) is from t to
τ(λ(t)), while integral in conditions (30) and (31) (resp. (34) and (35)) is from t
to ∞. In [17, Example 1], it is shown that there exists function p : T→ R (T = N,
thus p is a sequence), which satisfies following condition

(38) lim
t→∞

t

∫ ∞
t

p(s) ∆s =∞ , but lim
t→∞

t

∫ τ(λt)

t

p(s)∆s 6=∞ ,

for some λ > 1. For simplicity, introduce the following notation

P = lim
t→∞

tα−1
∫ ∞
t

p(s) ∆s , Pλ = lim
t→∞

tα−1
∫ τ(λt)

t

p(s)∆s , λ > 1 .

In view of that example, P = ∞ does not imply Pλ = ∞ for all λ > 1 (only
the inverse implication holds, because

∫ τ(λt)
t

p(s)∆s <
∫∞
t
p(s) ∆s). But if P is

finite (nonnegative) number, then Pλ is also finite (nonnegative) number for all
λ > 1, and if Pλ is finite (nonnegative) number for all λ > 1, then P is also finite
(nonnegative) number. A relation between P and Pλ is shown in the following
theorem.

Theorem 2. It holds

P = A ≥ 0 if and only if Pλ = A(λα−1 − 1)
λα−1 for all λ > 1 .

Proof. In this proof we will need a special sequence of reals. Take λ > 1 and t ∈ T
sufficiently large and define sequence {rn}∞n=0 of reals such that λrnt = τ(λnt) for
n ∈ N ∪ {0}. Note that rn = rn(t). We show that rn has the following properties:

(i) rn < rn+1 for all n ∈ N,
(ii) r0 = 0 < r1 ≤ 1 < r2 ≤ 2 < · · · < rn−1 ≤ n− 1 < rn ≤ n for all n ∈ N,
(iii) τ(λ1+rnt) ≤ λrn+1t for all n ∈ N,
(iv) rn(t)→ n as t→∞ for all n ∈ N.

(i) Let n ∈ N. First note that for τ(λnt) right-dense λrnt = τ(λnt) = λnt <
τ(λn+1t) = λrn+1t and (i) holds trivially. Now suppose that τ(λnt) is right-scattered.
Thanks to µ(t) = o(t), µ(t) < (λ− 1)t for large t and we can write

σ(τ(λnt)) ≤ λnt+ µ(τ(λnt)) < λnt+ (λ− 1)τ(λnt) ≤ λnt+ (λ− 1)λnt = λn+1t .

Therefore, τ(λnt) < σ(τ(λnt)) ≤ τ(λn+1t). Hence, λrnt < λrn+1t and (i) holds.
(ii) Note that r0 = 0 holds trivially. Let n ∈ N. By using (i) we can write

τ(λn−1t) ≤ λn−1t < τ(λnt) = λrnt ≤ λnt. Hence, n− 1 < rn ≤ n.
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(iii) Let n ∈ N. It holds

τ(λ1+rnt) = τ(λλrnt) = τ
(
λ(τ(λnt))

)
≤ τ(λλnt) = τ(λn+1t) = λrn+1t .

Hence, (iii) is fulfilled.
(iv) In view of

1 ≥ τ(λnt)
λnt

≥ λnt− µ(τ(λnt))
λnt

= 1− µ(τ(λnt))
λnt

→ 1 as t→∞ ,

we get limt→∞ τ(λnt)/(λnt) = 1. Hence,

1 = lim
t→∞

τ(λnt)
λnt

= lim
t→∞

λrnt

λnt
= λrn−n ,

which implies rn(t)→ n as t→∞ for each n ∈ N.

“If ”: We wish to show that if there is λ > 1 such that Pλ = L, then P =
Lλα−1/(λα−1 − 1). First suppose that there exist λ > 1 and L∗ > 0 such that

lim inf
t→∞

tα−1
∫ τ(λt)

t

p(s) ∆s ≥ L∗ .

Let ε > 0 and take t ∈ T sufficiently large. Then by using the properties (i), (ii)
and (iii) we get

(λnt)α−1
∫ λrn+1 t

λrn t

p(s)∆s ≥ (λrnt)α−1
∫ τ(λ1+rn t)

λrn t

p(s)∆s ≥ L∗ − ε

for all n ∈ N ∪ {0}. Hence,

tα−1
∫ λrn+1 t

λrn t

p(s)∆s ≥ L∗ − ε
(λα−1)n

for all n ∈ N ∪ {0} .

Summing this inequality for n from 0 to ∞ we get

tα−1
∫ ∞
t

p(s) ∆s ≥ (L∗ − ε)
∞∑
n=0

1
(λα−1)n

= (L∗ − ε)λα−1

λα−1 − 1 ,

which implies

lim inf
t→∞

tα−1
∫ ∞
t

p(s) ∆s ≥ L∗λ
α−1

λα−1 − 1 .

Now suppose that there exist λ > 1 and L∗ > 0 such that

lim sup
t→∞

tα−1
∫ τ(λt)

t

p(s) ∆s ≤ L∗.

Let ε > 0. Take t ∈ T sufficiently large. Then

(λrnt)α−1
∫ τ(λ1+rn t)

λrn t

p(s)∆s ≤ L∗ + ε for all n ∈ N ∪ {0} .
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Hence,

tα−1
∫ τ(λ1+rn t)

λrn t

p(s)∆s ≤ L∗ + ε

(λα−1)rn
for all n ∈ N ∪ {0} .

Summing this inequality for n from 0 to ∞ we get

tα−1
∞∑
n=0

∫ τ(λ1+rn t)

λrn t

p(s)∆s ≤ (L∗ + ε)
∞∑
n=0

1
(λα−1)rn

.(39)

In view of property (ii), it is clear that the series on the right-hand side of the
inequality (39) can be majorized by the convergent series

∞∑
n=0

1
(λα−1)n−1

for each sufficiently large t. Hence, using the property (iv), resp. 1+rn(t)→ rn+1(t)
as t→∞ following from (iv), (39) implies

lim sup
t→∞

tα−1
∞∑
n=0

∫ λrn+1 t

λrn t

p(s)∆s ≤ L∗
∞∑
n=0

1
(λα−1)n

,

i.e.,

lim sup
t→∞

tα−1
∫ ∞
t

p(s) ∆s ≤ L∗λα−1

λα−1 − 1 .

Therefore, if L = L∗ = L∗ part “If ” follows.

“Only if ”: Let P = A and let λ > 1 be an arbitrary real number. Then

tα−1
∫ ∞
t

p(s) ∆s = tα−1
∫ τ(λt)

t

p(s) ∆s+ tα−1
∫ ∞
τ(λt)

p(s) ∆s

= tα−1
∫ τ(λt)

t

p(s) ∆s+ tα−1

(τ(λt))α−1 (τ(λt))α−1
∫ ∞
τ(λt)

p(s) ∆s.

Since (τ(λt))α−1 ∫∞
τ(λt) p(s) ∆s→ A and t/τ(λt)→ 1/λ as t→∞, we get

A = Pλ + 1
λα−1 A , i.e., Pλ = A(λα−1 − 1)

λα−1 .

�

In view of the previous results, we get the following statement.

Corollary 1. All positive solutions of (5) are Karamata functions if and only if
for every λ > 1 there exists the (finite or infinite) limit

(40) lim
t→∞

t

∫ τ(λt)

t

p(s)∆s .
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All positive decreasing solutions of (4) are Karamata functions if and only if for
every λ > 1 there exists the (finite or infinite) limit

lim
t→∞

tα−1
∫ τ(λt)

t

p(s)∆s.

6. Concluding comments and open problems

Similarly as in the theory of regular variation on time scales, see [24], in the
theory of rapid variation on T we distinguish three cases:

(i) µ(t) = o(t)
If we want to obtain a reasonable theory, which corresponds from a certain point
of view to the continuous (or discrete) theory, we need this additional requirement
on the graininess of the time scale, which cannot be improved. Indeed, consider
the graininess µ(t) = O(t) such that µ(t) 6= o(t) and take, e.g., the function
f(t) = (1/2)t on T = qN0 := {qk : k ∈ N0}, q > 1 (µ(t) = (q − 1)t). We expect that
f ∈ (N )RPVT(−∞). But

lim
t→∞

t f∆(t)
f(t) = 1

1− q 6= −∞ .

(ii) µ(t) = (q − 1)t, with q > 1
In [21], we established the theory of q-rapid variation, which means that the
considered functions are defined as in the q-calculus, i.e., on T = qN0 , with q > 1
(µ(t) = (q − 1)t). A function f : qN0 → (0,∞) is said to be q-rapidly varying of
index ∞, resp. of index −∞ if

lim
t→∞

tDqf(t)
f(t) =∞ := [∞]q , resp. lim

t→∞

tDqf(t)
f(t) = 1

1− q := [−∞]q,

where Dqf(t) = [f(qt) − f(t)]/[(q − 1)t] is the q-derivative of a function f . The
totality of q-rapidly varying functions of index ±∞ is denoted by RPVq(±∞).
It is easy to see that the function f(t) = at with a > 1, resp. a ∈ (0, 1) is a
typical representative of the class RPVq(∞), resp. RPVq(−∞). Note that the
theory of q-rapid variation similarly as a theory of q-regular variation, see [22], was
established by using suitable modifications of the “classical” theories.

(iii) Other cases
If the graininess is eventually “very big” (or a combination of “very big” and “small”),
then the theory gives no proper results. Indeed, for instance, let T = 2pN0 = {2pk :
k ∈ N0} with p > 1. Take the function f(t) = tϑ with ϑ > 1. The function f(t) is a
typical representative of class (N )RVT(ϑ), see (6). But on this time scale we can
observe that if we use Definition 1, then tf∆(t)/f(t) = t((tp)ϑ − tϑ)/(tϑ(tp − t)) =
(tϑ(p−1) − 1)/(tp−1 − 1) → ∞ as t → ∞, hence f ∈ (N )RPVT(∞). Again, let
T = 2pN0 with p > 1. Take f(t) = at, a 6= 1. We expect that f ∈ KRPVT(∞) for
a > 1 and f ∈ KRPVT(−∞) for a < 1. But for λ > 1 we get f(τ(λt))/f(t) → 1
as t → ∞ (really, on this time scale for each λ > 1 there exists t0 ∈ T such that
τ(λt) = t for t > t0) and therefore f 6∈ KRPVT(±∞).
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From the above observations, we conclude that it is advisable to consider only
the cases (i) and (ii) in the theory of rapid variation on time scales.

At the end of this section we give few remarks about open problems and
perspectives related to the topic of this paper.

Remark 4. In view of Proposition 2, part (II), cases (iii) and (iv), we can naturally
ask, whether the following condition

lim
t→∞

f(τ(λt))
f(t) =∞ (resp. 0) λ > 1 ⇔ lim

t→∞

f(τ(λt))
f(t) = 0 (resp. ∞) λ ∈ (0, 1)

holds as in the cases T = R and T = Z. We conjecture that if f is positive and
monotone, then this equivalence holds.

Remark 5. Looking at relation (33) (resp. (37) ), which can be rewritten as

M− = M−RPV (−∞) = M−0 and M+ = M+
RPV (∞) = M+

∞ ⇐⇒ (32) (resp. (36)),

it is not known (even in continuous and discrete case) whether

(41) M+ = M+
RPV (∞) = M+

∞ =⇒ (32) (resp.(36)) .

If the implication (41) is true, then the theory of asymptotic behavior of all solutions
of equation (5) is complete and we can claim (compare with Corollary 1) :

“There exists a positive solution y of (5) such that y ∈ KFT (resp. y 6∈ KFT) if and
only if every positive solution y of (5) satisfies y ∈ KFT (resp. y 6∈ KFT) if and
only if the limit (40) exists (resp. does not exist). Specially, there exists a positive
decreasing solution u of (5) such that u ∈ RPVT(−∞) if and only if there exists
a positive increasing solution v of (5) such that v ∈ RPVT(∞) if and only if the
limit (40) is equal ∞.”

On the other hand, thanks to the existence of a function p satisfying condition
(38) we know that a positive decreasing “No-Karamata” solution u 6∈ KFT of (5)
really exists. Indeed, it can be obtained as a decreasing solution of (5) with the
mentioned coefficient p. However, the existence of an increasing solution v of (5)
such that v 6∈ KFT has not been shown yet. From the above observations, there
are three possibilities for a fundamental set of rapidly varying solutions of (5):

(i) u ∈ RPVT(−∞), v ∈ RPVT(∞).
(ii) u 6∈ KFT such that u is a positive decreasing, v ∈ RPVT(∞).
(iii) u 6∈ KFT such that u is a positive decreasing, v 6∈ KFT such that v is a

positive increasing.

Finally note that further possible research related to equation (4) could be
the following one - to establish necessary and sufficient condition for all positive
increasing solutions of (4) to be regularly varying.
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