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¢-LAPLACIAN BVPS WITH LINEAR
BOUNDED OPERATOR CONDITIONS

KAaMAL BACHOUCHE, SMAIL DJEBALI, AND TOUFIK MOUSSAOUI

ABSTRACT. The aim of this paper is to present new existence results for
¢-Laplacian boundary value problems with linear bounded operator conditions.
Existence theorems are obtained using the Schauder and the Krasnosel’skii
fixed point theorems. Some examples illustrate the results obtained and
applications to multi-point boundary value problems are provided.

1. INTRODUCTION

This paper is concerned with the existence of positive solutions to the following
boundary value problem with linear bounded operator conditions:

{—((;S(u/))l(x) =M (z,u(z),v/ (), 0<z<l
u(0) = Lo(u), u(l) = Li(u),
where A > 0, f: [0,1] x RT x R — R* is L!-Carathéodory function, i.e.

(a) the map z —— f(x,u,v) is measurable for all (u,v) € RT x R,

(1)

(b) the map (u,v) — f(z,u,v) is continuous for a.e. z € [0, 1].

(c) For every r > 0, there exists h, € L1([0,1],RT) such that 0 < f(z,u,v) <
hy-(z), for a.e. z € [0,1] and for all (u,v) € RT x R with 0 < u < r and
lv| <.

The nonlinear derivation operator ¢: R — R is an odd increasing homeomorphism
such that ¢ is sub-multiplicative, i.e. Vo, 8 € RT, ¢(a-B) < ¢(a)- ¢(8), extending
the p-Laplacian derivation operator ¢(s) = |s[P=2s, p > 1. More generally, one
may consider as well the class of sub-multiplicative-like functions introduced in
[TO] (see, also [I1]), that is increasing homeomorphisms ¢ of the real line, vanished
at 0, such that there exists an increasing homeomorphism ® of [0, +o0) with
d(a-B) < B(a)-¢(B3), for all a, B € R, Notice that (see [2]) if ¢ is sub-multiplicative,
then ¢! is super-multiplicative, i.e.

(2) Va,B€RT, ¢ (a- )= ¢ (a) ¢~ (B).
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Moreover, there exists ®* € (0, 1) such that

(3) Vo, BeRT, ¢ (a) +¢71(8) = 277 (a+ ).
Finally Lo, L; are linear bounded increasing operators from E := C([0,1],R™)

to Rt such that L;(1) < 1 (i = 1,2). Here E denotes the Banach space of all
continuous functions from [0, 1] to RT with the norm

[ullo = sup {|u(z)|, 0 <z <1}.

El = C1(]0,1],RT) will refer to the space of continuously differentiable functions
from [0, 1] to R*; equipped with the norm |Ju|| = max (||ullo, [|«|l0), this is a Banach
space. The boundary value problem (bvp in short) was studied in [I2] where the
author proved existence of positive solutions under appropriate conditions on the
level of growth of the response operator F' defined by Fu(x) = f(z,u(z)). In this
paper, new conditions including sub-linear and super-linear growth nonlinearities
are assumed to prove existence of solutions lying either in balls or in positive
cones of Banach spaces. In [3] [2, 4], the authors studied two-point Dirichlet bvps
associated to the ¢-Laplacian equation —(¢(u')'(z) = f(x, u(z)); the Schauder fixed
point theorem is used in [4] while existence of positive solutions is obtained via the
Krasnosel’skii fixed point theorem in [3]; [2] is mainly concerned with multiplicity
results via the Leggett-Williams fixed point theorem. Notice that multi-point bvps
with the classical p-Laplacian as a nonlinear derivation operator are intensively
studied in the literature; see [6 [9, [15], 19] and the references therein. In [19],
existence of solution is obtained for the equation (pu/(x)) + f(xz,u) =0,0 < z < 1.
In [6], existence of positive solutions in a cone of a Banach space is obtained via the
Krasnosel’skii fixed point theorem for the equation (¢(u'(x))) + ¢(z)f(z,u) =0,
0 < x < 1. The same equation is investigated in [I5] where the proofs of the
existence results involve computation of the fixed point index on a special cone of
a Banach space. The case when f = f(z,u(z),u (z)) is also studied by the same
authors in [I6]. To our knowledge, only Karakostas [I2] extends the multi-point
boundary conditions to more general bounded linear conditions. Thus the main
motivation of this work is to provide new existence results for which extend
similar results in [3, 2, 4, [12]. The plan of the paper is organized as follows. Section 2]
is devoted to the functional setting useful to study bvp ; this includes fixed
point formulation and a compactness criterion. Some existence results are then
presented in Sectionwhen f = f(z,u). The first one uses the Schauder fixed point
theorem while in the second one existence of positive solutions is obtained via the
Krasnosel’skii fixed point theorem; then we deal with some consequences regarding
the sub-linear and super-linear growth of the nonlinearity f. The case when the
nonlinearity also depends on the first derivative is dealt with in Section [d} a recent
variant of the Krasnosel’skii fixed point theorem is employed. Each existence result
is illustrated by means of an example of application.

2. PRELIMINARIES AND AUXILIARY LEMMAS

In order to transform bvp into a fixed point problem, we need some prelimi-
nary results which we collect in this section. For any fixed v € E', and 6 € [0, 1],
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define the quantity

¢(0,u) = aLO(/o. qﬁ_l(/sa f(mu(r),d' (1)) dT) ds)
+ /01 qﬁ_l(/:f(T,u(T),u’(T)) dr) ds
+ bL1</1 ¢_1</50 f(mu(r),' (1)) dT) ds) ,

where
(4) a=(1-Lo(1))™'>0 and b= (1-L;(1))"*>0.
Lemma 2.1 ([I2, Lemma 3.2]).

(a

¢(+,+) is continuous.

) ¢
(b) For each u € El, the correspondence 0 — ((0,u) is strictly increasing.
(c) For any u € E', there is a unique 0(u) € [0,1] such that ((6(u),u) = 0.
(d) The function u— 6(u) depends continuously on u.

Lemma 2.2 ([12, Lemma 3.3]). Let u € L'([0,1],RT). Then the boundary value
problem
{—(¢(U’))’ =u(r), O<z<l
v(0) = Lo(v), (1) = Li(v)

has a unique solution given by

aLo( [y ¢~ ([7™ u(r) dr) ds)
+ g o ([ u(rydr)ds, if 0<x<0(u)

DLy ([ &7 ( [y ulr) dr) ds)
"'le‘b (fa(u) T)dr)ds, if O(u) <z <1,

where O(u) satisfies the implicit algebraic equation ((0(u),u) = 0. Moreover, the
solution v has the following properties:

(a) it is a concave function,

(b) it is a nonnegative function,

(c) its mazimum s attained at some point of (0,1).

Remark 2.1. We can see that the function v € E' is a solution of the boundary
value problem if and only if it is a solution of the operator equation u = Tu
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with T defined by:

aLo( 5 o Y (N [2) f (7, u(r), /(7)) dr) ds)
+ fox oA fsg(") f(mu(r),u/ (7)) dr) ds,
if 0<z<60(u)
bLy ( f_l o~ (A f;(u) f(m,u(r), /(1)) dr) ds)
Jrle qb*l()\ fos(u) f(T, u(T),u’(T)) dT) ds,
if Ou)<z<1,

where (u) is as defined in Lemma Hence
67 OO () () dr), i 0<a<6(u
—o7 (A foz(u) frulr), (1)) dr), if O(u)<z<1.

Then (Tu)’(6(w)) = 0. This and the concavity of Tu imply that Tu(z) achieves its
maximum for z = 6(u). As a consequence

7ol = ato( [ o7( [ At () ar) )
+ [ "o / At () dr) ds
—ona( [ o /9 :u) A (. u(r), ol () dr ) ds )
@ +f ([ M) ar) s

(u

6) (Tu)(x)=

Lemma 2.3. The operator T: E' — E' defined by is completely continuous.

Since this lemma is only sketched in [I2], we present the proof in detail, in
particular the continuity of 7.
Proof.
(a) T is continuous. Let lim,,_, 4 ||tn, — uo||gr = 0. Then there exists some M > 0
such that |lu,|| < M, for all n € N. Let v,(-) = Af(-,un(-),u, (). Since f is
Carathéodory, v, () — v(-) = Af(-,u(-),u/()) a.e. on [0,1] as n — +o00. By the
Lebesgue dominated convergence theorem, for a.e. s € (0,6,,), we have
0, 1
0 < lim |vn(7) — v(7)|dT < lim |vp(T) — v(7)|dT =0,
n—oo n—oo 0
where 6, = 0(u,,) is as defined in Lemma Since 0 < 6,, < 1, then 6,, converges,
up to a subsequence, to some limit 6, € [0,1]. Assume 0 < 6, < 1. Again by the

Lebesgue dominated convergence theorem, the integral [ ¢~ ( fj" vy (1) d7) ds
converges to for ¢_1( fj* v(T) dT) ds because ¢ is a homeomorphism. Also, the

integral Lo(fd o ( ff” v, (7) d7) ds) converges to Lo(fd o ( ff* v(7) dr) ds) be-
cause ¢ is an homeomorphism and L is continuous. The same holds for the second
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term in with 6 = 6,,. Tu,(x) converges to Tu(z) uniformly on [0, 1] with
- )
aLo( Jyo ™ (A [, f
+ [Tt (A
Tu(z) = fo ¢ ( fs /

bLl(f,1 o1 (A fg f(mu(r),u/ (7)) dr) ds) -
+ Lo (N2 f(ru(r),u(n)) dr)ds, if 0<B<a<I,

(ryu(r), (7)) dr) ds)
(r,u(r),u/(7))dr)ds, if 0<2z<f<1

S

where 6 = 0(u) is uniquely defined in Lemma Since

aLo(/Oﬁ—l(A/;"f(T,u(T),u’(T)) dT) ds)
+ /01 (b_l()\ /S(’n f(mu(r),' (1)) dT) ds
+bL1(/1¢1()\/Senf(7',u(7'),u’(7)) dr)ds) =0,

invoking once again the Lebesgue dominated convergence theorem, and passing to
the limit as n — +o00, we find that

aLO(/O. ¢t </\ /50* f(mu(r),d' (7)) dr) ds)
1 0.
+ /0 ot ()\/S f(T,u(T),u'(T)) d7'> ds
1 0.
+ bL1</ ¢! (A/ £ (ru(r), /(7)) dT) ds) = 0.
By uniqueness of 0, we get 0, = 0. Now, assume that 6, = 0. Then
aL0</O. ¢! ()\ /05 f('r, u(T),u/(T)) dT) ds)
+ /01 ¢! ()\ /0S f(mu(r),d' (1)) dr) ds
+bL1</1gzb_l()\-/osf(T,u(T)m’(T)) dT) ds) =0.
Since all the terms are nonnegative, we obtain
¢_1()\/0tf(-,u(-),u’(-))ds) 0, telo1]

and f(-,u(-),v'(-)) = 0 a.e. on [0, 1], leading to a contradiction. Analogously, we can
check that 6, # 1. In the same way, we prove the uniform convergence of (Tu,) (x)
to (Tw)(z), proving the continuity of 7' and ending the proof of our claim.



126 K. BACHOUCHE, S. DJEBALI AND T. MOUSSAOUI

(b) T is totally bounded. Let B be a bounded subset in E' and M > 0 a constant
such that ||u|| < M for all w € B. We have

4 0(u) 1 1
/0 1) ()\/S f(T,u(T),u (7')) dr) ds < /0 10) (xl\/o f(T,u(T),u (T)) dT) ds
< qs—l(A/O f(7,u(r), (7)) dr)

¢~ (Alharl)

where |hp|1 = fol has(7)dr. Since Ly is increasing, we deduce that

Lo / o1 / " F(ru(r), ' (7)) dr) ds)

< Lo(¢™ (Aharh)) = ¢~ (Alharl1) Lo(1) -
From @ and @, we deduce that
I Tullo < (aLo(1) + )¢~ (Alharh) and  [[(Tw)'llo < ¢~ (Alharl1) -

This implies the boundedness of T'(B). To show the equicontinuity of T'(B), notice
that for z € [0,1] and u € B, we have

(@) < o7 ([ Ao @) de) < 67 ).

Therefore, if z1,22 € [0,1], then |(Tw)(z1) — (Tw)(z2)] < ¢~ (Mhar]1)|21 — 22
and the right hand-side term tends to 0 as |z; — 2| — 0. Finally @ gives the
estimate:

(0T (@) = (@(Tw) () < | [ty

which also tends to 0 when |77 — z2| — 0 for hy, € L(]0,1],RT). Since ¢ is a
homeomorphism, this shows the equicontinuity of T'(B). Finally, the Arzéla-Ascoli
theorem then concludes the proof. (I

3. THE CASE f = f(z,u)

The following classical theorems will be the main tools used in this section.

Theorem A (Schauder’s fixed point theorem. (See [5, Thm. 8.8, p. 60], [I4, Thm.
2.3.7, p. 15], [18, Thm. 2.A, p. 57])). Let X be a Banach space and C C X a
bounded, closed, convex subset of E. If T: C — C is a completely continuous
operator, then T has a fixed point in C'.

Theorem B (Krasnosel’skii’s fixed point theorem. (See [13, R])). Let X be a
Banach space, K C X a cone and 1,8y two bounded open subsets satisfying
00 CQ CQy. Let T: KN (Q2\ Q1) — K be a completely continuous operator
such that:

(a) either ||Tv|| < |v]| for ve KNI and || To|| > |jv| for v e KN oQ,,
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(b) or | Tv|| > |lv|| for ve KN and |[To|| <] for v e K NOQy.
Then T has at least a fixed point in K N (Qg \ Q).

3.1. An existence theorem by the Schauder fixed point theorem. Our
first existence result in this section is:

Theorem 3.1. Assume that there exists R > 1 such that

(8) /0 f(z, R)dz > R.

Then, for sufficiently small A, bup has at least one nonnegative solution u such
that |lullo < R.

Proof. Let gr(x) = 0r<na<XRf(x,y), then
<y<

1 1
/ gR(T)dTZ/ f(r,R)dr > R>1.
0 0

Let a be given by and
¢(1/aLlo(1) +1)
l9r[1

Let u € B :={u € E, |lullp < R}. Arguing as in the proof of Lemma [2.3] we find
that, for 0 < XA < A\*, we have

[Tullo < (aLo(1) + 1)~ (Algrh) <1< R.

Therefore, the operator 7' maps the ball B into itself. By Theorem[A]and Lemmal[2.3]
T has a fixed point u such that |Jullo < R. O

A=

Example 3.1. Consider the boundary value problem:

) { (Iu’lu)'( )—M( —i)(e —2)|1n(IUI+1) O<z<1
fo s)dpa(s), fo s)dpz(s

Here ¢ = ¢3, f(x,u) =|(z— i)(e“—2)| In(Jul+1), and pq, pe are two nondecreasing
functions on [0, 1] of bounded variation Vg (u;) < 1, (i = 0,1). This condition
ensures that the Stieltjes integrals do exist. Then, for sufficiently small A > 0, bvp
([©) has a solution u such that |jul|o < 3. Indeed, for R =3 we have

1
5
/ f(z,R)dx = 1f6(eR —-2)In(R+1) > R.
0
3.2. Existence results by the Krasnosel’skii fixed point theorem. Let the
operator T be as defined in and consider the positive cone
(10) K ={u € E and u is concave on (0,1)} .

It is clear that T' maps K into itself and (T'u)(0) > 0, (T'w)(1) > 0. To prove
existence of positive solutions, we need some preliminary results:
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Lemma 3.2 ([3, Lemma 2.3] or [I2, Lemma 3.1]). Let p(x) = min(z,1 —z), z €
[0,1]. If u € K, then for all z € [0, 1]

u(z) > p(z)|ullo, Yz el0,1].

Lemma 3.3 ([3], [2, Lemma 2.6]). Let 0 < o < 3 an arbitrary real number. Then
for every uw € E, the operator T verifies

3¢ oy M (Tu(r)) dr), if 8(u) <
o~ (fe(u))\f(ru( ))dr), if 6u)=1-0

7 (S A (ru(r) dr) + 5671 ( Sy M (7 u(n) dr),
if o0<fu)<1l-o0,

where (u) is as defined in Lemma 2.3

[Tullo >

3.3. The super-linear-like case.

Theorem 3.4. Suppose that the following condition holds:

: [z, u) (@, u) , :
lim sup =0 and liminf =400, wuniformly in x €[0,1].
P W) M) o
Then bup has at least one positive solution u € E for all positive A.
Proof.
Claim 1. Let € > 0 satisfy
1

(11) 0<e< oM TT"

Since lim £&% = 0, uniformly in x € [0,1], then there exists 7 > 0 such that

u—0+t P(u)
0 < f(z,u) <ep(u), for x € [0,1] and 0 < u < 7. Let 3 := {u € E, |Jullo < r} and
u € K NoQy, then ¢(u(s)) < o(||ullo) = ¢(r), for all s € [0, 1]. So, for € satistying
and using , we have the estimates

7l < Lo [ o / () dr) )
+/01 ¢_1</01 M (m,u(T)) dT) ds

< (aLo(1) + 1)/01 ¢1(/01 Aeo(r) dT) ds

= (aLo(1) + 1)¢~ " (eA(r))
“HplaLo(1) +1)) - ¢~ (eAo(r))
“HplaLo(1) +1) - eXg(r)) =7 = |ulo-

¢
¢

IN

Claim 2. Let A > 0, 0 < 0 < 1/2 be arbitrary and let k satisfy
(12) k> max(¢p(1/0%), #(2/0?®*)) /(1 — 20).
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Since lim inf J;g(’;‘)) = 400 uniformly in = € [0, 1], then there exists R > 0 such

that f(z,u) > ké(u), for € [0,1] and v > R. Let R > R/o and define the
open set g = {u EE: ||ullo < E} Then v € K and |juljp = R imply that

w(z) > p(z)||ullo > oR > R, for all z € [0,1 — o]. Two distinct cases are then
discussed separately.

Case (a): If 6(u) < o or §(u) > 1 — o, then by Lemma [3.3) and using (2)), (12), and
the fact that ¢ is increasing, we get

Tulo = 007 ( [

o

e /\f(T7 u(T)) dT)

1—0o

> a¢—1( / ke (u(r)) dT)
> ¢ (kA1 — 20)¢(dR))
> o?Ro™H (kA1 — 20)) > R = |Jullo .

Case (b): If 6(u) € [0,1 — o], then again by Lemma 3.3 together with and (12)),
we have the estimates:

I Tullo > ;¢1</06(u) M (m,u(r)) dr) + %(;5*1(/0

>

l1—0o

" )\f(T,u(T)) dT)

>

Q N9 Q9

> S0 (kA(1 — 20)p(0 R))

0.2

2
Therefore, in both cases, we have Vu € K N dQs, ||[Tullo > ||ullo. By Theorem [B]
bvp admits a positive solution u such that min(r, R) < |Jullp < max(r, R). O

[\V]

> —RO*¢H (kA1 — 20)) > R = |Jullo-

Corollary 3.5. Assume there exist continuous nonnegative functions o, 1 on RT
and w,p € L*([0,1],R") such that
p()p(u) < flz,u) Sw(@)y(u), on [0,1] x RT

and

oY) Loew)
g~ ot

Then bup has at least one positive solution for every A > 0.

Also, we have
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Corollary 3.6. Let q € C([0,1],RT) with rn[(i)nl] q(z) > 0 and F: Rt — R*
xe|0,

lim su =0 and liminf
s—»O‘*’p ¢(8) s—+oo ¢(8)

Then, the boundary value problem
—(¢(u)) = Aq(z)F(u), 0<z<1,
u(0) = Lo(u), u(l) = L1(u)

has at least one positive solution for every A > 0.

satisfies

= +00

(13)

Example 3.2. Consider the boundary value problem:

((153( ))'( ) =qlz )(¢4( )+¢5( )), 0< z<1
fo s) dus(s), fo s) dua(s
where the function ¢ € C(]0, 1], (0, +oo)). 1, o are two nondecreasing functions
on [0, 1] of bounded variation Vi (u;) < 1, (i = 0,1). Let ¥(u) = ¢4(u) + ¢5(u) and
©(u) = ¢4(u). Then,
lim M— lim (u+u2):0 and  lim M: lim u=+o0
u—0t ¢(u)  u—0t u—too ¢(u)  u—+oo '

By Corollary bvp (14) has at least one positive solution.

(14)

3.4. The sub-linear-like case.

Theorem 3.7. Suppose that the following condition holds:

flaa) )
T R S )

Then bup has at least one positive solution for sufficiently small A > 0.

Proof.
Claim 1. Let A > 0, 0 < 0 < 1/2 be fixed constants, and pick k such that is

satisfied. Since hm 1nf ng( u)) = 400, uniformly in z € [0, 1], then there exists r > 0

such that Af(z, u) 2 k¢p(u), for u € [0,r]. Consider the open ball ©; := B(0,r)
and let w € K N9y, that is w € K and ||ullp = r. Then, in one hand, we have
that u(x) > p(z)|ullo > o||ullo for any = € [0,1 — o] and in the other hand, the
following discussion holds true:

=0, uniformly in z €[0,1].

Case (a): If (u) < o or O(u) > 1 — o, then by Lemma we get, since ¢ is
increasing

[Tullo = oaﬁl(/:g Af(T,u(T))dT)

U(b_l(/al_a kA¢(u(T))dT>

067 (kM1 ~ 20)6(c Jullo)) -

Y

Y
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Owing to and , we deduce that
ITullo > o®lullod™ (kA(L = 20)) = [lullo = .

Case (b): If §(u) € [0,1 — o], then again by Lemma [3.3] both with (3], we obtain
the estimates:

0 l1—0o
7l > G0~ ([ Asrutnar) + §o7 ([ Aru(ryar)
0 l1-0o
> %¢*1(]C kA¢@KT»dT)4*g¢7l(j£ RAG(u(7))dr )
> 267 (kA0 — 0)o(olullo)) + 567 (AL — 7 — )é(o]lull)
> Z0°67 (kA1 = 20)6(o]lulo))
Hence

2
0% . _
Tullo > Z-0 ullog™" (FACL ~ 20)) > ulo = -
Therefore, in both cases, we arrive at the estimate

Yue Kﬂan, ||TU||0 > HUHO .

Claim 2. Since lim sup f(;g(g:)‘) = 0 uniformly in = € [0, 1]. then there exists R > 0

such that 0 < f(z,u) < ¢(u) for z € [0,1] and w > R. So, there exists C' > 0
such that 0 < f(x,u) < ¢(u) + C for (z,u) € [0,1] x RT. Now let the open ball
Qy := B(0,R) and u € K N 0Qy. If v = Tu, then v verifies

{—w(v’))'(x) —M(zu), 0<z<l
v(0) = Lo(u),  v(1) = Li(u).

By Lemma [2.2|c), there exists z,,, € (0,1) such that v'(z,,) = 0. Then for any
s € [0,1]. We have

Hence

(v () = o(IV'(s)]) < A/O f(r,u(r))dr

IN

1
)\/ (p(u(r)) + C)dr < A(@(R)+C).
0

Thus [v/(s)| < ¢~ (A(@(R) + C)), Vs € [0,1]. Since Ly is increasing, we deduce
that

v(t) = v(0) —1—/0 v'(s)ds = Lo(u) —|—/0 v'(s)ds

< Lo(R) + S [v'(1)] < Lo(R) + ¢~ (M(R) + C)) .
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Since 0 < Lo(R) < R, choose 0 < A < A* := ¢(R — Lo(R))/(¢(R) + C) to obtain
that v(t) < R = [|ullo, that is Vu € K N9Qy, ||Tullo < [lullo. By Theorem [B] for
0 <A< A, bvp admits a positive solution u such that min(r, R) < ||ullp <
max(r, R).

As a consequence, we deduce

Corollary 3.8. Let g € C([0,1],R") with min ¢(z) > 0 and F: Rt — R*

z€[0,1]
satisfies
. F(s) : F(s)
liminf — =400 and limsup =0.
s—0t ¢(s) s—too B(8)

Then, the boundary value problem
—(¢(u)) = Ag(x)F(u), 0<z<1,
u(0) = Lo(u), u(l) = Li(u)

has at least one positive solution for sufficiently small X > 0.

(15)

Example 3.3. Consider the multi-point boundary value problem:

—(o()) (z) = Aq(x)g(u(z)) 0<z<l
(16) u(0) = Z a;u(&), u(l)= ;biu(&%
where ¢ € C([0,1],(0,400)), & (0,1) with 0 < & < & < -+ < & < 1,
and a;,b; > 0 are such that Z a; < 1land > b < 1. With Ly(u) = u(0) and
i=1 i=1

Li(u) = u(l), we have that Lo(1) = Zal < 1and Ly(1) = Zb < 1. Let

d(u) = ksdp(u) + kadg(u), g(u) = k1¢s( ) + koot (u), for some posmve constants
ki, (i=1,...,4),and 1 < s < p <t < q. The latter condition yields that
. g(u) o ku® + kot kTP 4 kgutP
lim ==~ =lim ——— =lim —m————
¢(u) kgui” =+ k4’l.Lq kg —+ k4uq*1"
_ {O, if u— +o00

+oo if u—0.

By Corollary we obtain the existence of at least one positive solution for small
parameter \ > 0.

4. THE CASE [ = f(z,u,v)

When the nonlinearity f also depends on the first derivative, application of the
classical Krasnosel’skii fixed point theorem turns out to be difficult. Indeed, it
not always so easy to perform the two inequalities || Tu|| < ||u|| and ||Tul|| > ||ul]
for instance when ||Tu| is the sup-norm in the Banach space C'([0,1],R). An
alternative way consists in employing the following recent fixed point theorem.
First, we present the general framework. Let X be a linear space such that there is
a norm ||ul|; under which X is a normed linear space (not necessarily complete)
and there is a semi-norm || - |2 such that under ||u|| = max(|lul1, ||ul2), X is a
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Banach space. For example, equipped with ||[u|; = ||Julo, X = E' := C1(]0,1],R)
is an incomplete normed linear space. If ||u|l2 = ||u/||o, then |||z is a semi-norm of
E'. Finally, with ||u|| = max(||ul|1, ||ull2), E' is a Banach space.

Theorem C ([I7, Theorem 2.8]). Let Q; = {u € X, |Jully < r} and Qs = {u €
X, |lulls < R} be two open sets in X withr < R. Let T: K N (Q2\ Q1) — K be a
continuous map with relatively compact image T(K N (Qz \ Q1)). Suppose that one
of the following two conditions is satisfied:

(@) |ITv| < ||v|| forv e KNy and [|[Tv||x > ||v]|1 for v e K NOQ,,
(b) || Tvll1 > ||v||1 for ve KNIy and ||Tv| < ||v]| for v e KN OQs.
Then T has at least a fized point in K N (2 \ Q1).

Notice that 2; and 29 need not be bounded. Then we can prove existence of
positive solutions which are only bounded with respect to the norm |lullo. Arguing
as in Theorems [3.4] and [3.7] we have the following two existence theorems:

Theorem 4.1 (The super-linear-like case). Suppose

(a) there exists a nondecreasing function 1 € C'(R, (0, +00)) with

“+oo
0< / ¢;§t) dt < +o0 such that
1

. f(z,u,v) , ,
limsup ~————= =0, uniformly in x € [0,1] and v eR.
w0t P(u)1(v) 0,1

(b)  liminf @ u,v) = 400, wuniformly in x € [0,1] and v € R.

W T

Then bup has at least one positive solution in E' for all positive \.

Example 4.1. Consider the multi-point boundary value problem:

— (@) () = Ag(2)g(u(2))h(/(z)), 0<z<1

u(0) = X aw(E). u(l) = 3 bu(&).

where ¢ € C(][0, 1],(0,+oo)),§i € (0,1) WitB 0 <& <& <o <& <1,

and a;,b; > 0 are such that >  a; < 1 and > b; < 1. With Lo(u) = u(0) and

i=1 i=1

(17)

Li(u) = u(l), we have that Lo(1) = > a; < 1 and L1(1) = > b; < 1. Let
i i=1

i=1 =
g(u) = c1dsa(u) + c2¢3(u) and @(u) = cs¢s/2(u) + cada(u) for some positive
constants ¢;, (i =1,4). Let h(v) =1+ €” and ¥1(v) = /1 + J(v) where

, i 520 oo JIFE ,
I(s) = (S) lths = Then [[" YLt < 400 and the ratio
, otherwise.

(u)h(v) c1u/? 4 cpud 14+ e?
5(“)%(”) - <03u3/2 + C4u2) ( 1+ 19(1)))



134 K. BACHOUCHE, S. DJEBALI AND T. MOUSSAOUI

tends to 0 as u — 0 uniformly in v € R. Also, the ratio
g(uw)h(v) o
=(1+4+¢€" (
o T

tends to positive infinity if v — +o0o uniformly in v € R. By Theorem (1] we
obtain the existence of at least one positive solution for all positive .

c1u + 02u3

caud/? + 04u2)

Theorem 4.2 (The sub-linear-like case). Suppose
(a) there exists a nondecreasing function 1 € C'(R, (0, +00)) with

“+oo
0< / (210 dt < +oo such that
1

12
. f(xa u, ’U) . .
limsup —————~ =0, uniformly in x € [0,1] and v € R.
LRI S () oY
(b)  lim ig)lf f(;?(u;v) =400, uniformly in xz €1[0,1] and v € R.
U— u

Then bup has at least one positive solution in E' for every A > 0 small enough.

Sketch of the proof.
Claim 1. As in the proof of Theorem Assumption (b) yields some R; > 0 such
that

Vue KNoQy, [|[Tullo > ||lulo,

where Q1 := {u € E* : ||uflo < R1} and K := {u € E' : u concave}.

Claim 2. Here we first notice that since u € E! is concave, then for any = € (0, 1),
there exists n € R, (0 < < x) such that u(xz) > zu'(n). Hence @ >u(n) >
u/(z). This with Assumption (a) and since 1, is nondecreasing, there exists some

C > 0 such that

l[wllo
0 < f(t.u(t), 1) < o(Juloyer (14) + ¢
for u € K. Moreover, there exists Ry > 0 such that for every u € KN0$s, we deduce
the estimates: ||(Tuw)']|o < ||ullo < ||u|| and for A small enough [|Tullo < ||ullo < ||ul-

Here Q := {u € E' : |Julo < R2}. Hence
[Tull < flullo < fJull -

By Theorem [C] we obtain the existence of at least one positive solution u for small
parameter . In addition, min(Ry, R2) < |Jullo < min(Ry, Ry). O

Finally, we mention a third existence result proved in [I] for homogeneous
Dirichlet boundary conditions.

Theorem 4.3. Suppose that
(a) there exist ro > 0, ¢1 € C([0,1],R"), ¢1 € C(RT,R"), and ¥y € C(R,RY)
where p1,11 are nondecreasing with

/0 q1(s)Ur (%0) ds < s01(17“o)¢(1:?a)
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such that
0 < Af(z,u,v) < qr(x)p1(u)pr(v), forall €0,1],0<u<ry, and veR.

(b) There exist 0 < 0 < 1/2, Ry # 1o, g2 € C([0,1],RT"), po € C(RT,R"), and
1hs € C(R,RT) with o nondecreasing, s nonincreasing and

oD(o) !

— and ()1/)2( )ds<oo

0

0< Ry <

such that

M (x,u,v) > ga(x)pa(u)ha(v), forall x €[0,1],0Ry <u <Ry, and veER.

Then, for every A > 0, bup has at least one positive solution u € E' satisfying
min(ro, Ry) < |Jullo < max(rg, Ro) .

Here

(18) D(o) := ¢*¢—1(/{fl_qu(s)m((,Ro)wg(?) ds).

Example 4.2. Consider the boundary value problem:

) {(¢;<u'>)’< 2) = g(a >so< <x>>h<u’<x>>, 0<w<l
fo (s)dpa(s fo s) dpa(s
where ¢ € C([0,1], (0, +00)) with ||¢llo < 1, h(s) = ¥(s) + ¥a(s) with a(s) =

s, if s>0

0, otherwise.

e %, P(s) = /1 +9(s), and I(s) = The functions uq, ps are

nondecreasing on [0, 1] of bounded variation Vj! (1;) < 1, (i = 0,1) which ensures
that the Stieltjes integrals do exist. Letting Lo(u) = u(0) and Ly (u) = u(1l), we
obtain that Lg(1 fo dpa(s) = V(1) < 1and Ly(1) = fol dpa(s) = Vi (ue) < 1.
Since h(s) < 9(s )—|— 1, put ¢1( ) =1+ (s), then

[ oo () ds < lal [ (22) as
/wl( )ds- 0 1ds+/ \/Td

_1 LO( 1 T (\/lJrro—l))
B 2 «/1—&-7“0—1 \/1+7~0+1 Vitrg+1//°
With ¢1(s) = ¢(s) = (1+5)/3, assumption (a) in Theorem [3.1]is fulfilled whenever
there exists r > 0 such that
1 . 1 : (\/1—&-7"0—1) 2 ri/? 2
—In __ =
VIidro—1  I+r+1 VIF+ro+1/ 7 (1+a)2 (L+70)%% 10

IN
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which is satisfied for r¢ large enough. Moreover, with ¥5(s) = ™%, @a(s) = ¢(s) =
(14 )2/3, and since ¢~ (s) = s*/7 for s > 0, we find that

l1-0o 2/7
D(o) = ®* ((1+JR0)2/3/ q(s)e-RO/Sds) :

Hence a sufficient condition for (b) in Theorem be satisfied is

2R l=o 2/7

?*0 < o(1+ oRo)Y* (/ q(s)e™Fo/s ds)
that is if

2(;10 < 0_(1 + 0R0)4/21q2/7(1 _ 20_)2/76—2R0/7U ’
where ¢ := min (¢(z),0 < a <1 — o) is positive. Notice that the latter condition is
satisfied for small Ry. Therefore, all assumptions in Theorem [{.3] are met, hence

Problem has at least one positive solution u with Ry < ||ulo < 9.
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