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φ-LAPLACIAN BVPS WITH LINEAR
BOUNDED OPERATOR CONDITIONS

Kamal Bachouche, Smaïl Djebali, and Toufik Moussaoui

Abstract. The aim of this paper is to present new existence results for
φ-Laplacian boundary value problems with linear bounded operator conditions.
Existence theorems are obtained using the Schauder and the Krasnosel’skii
fixed point theorems. Some examples illustrate the results obtained and
applications to multi-point boundary value problems are provided.

1. Introduction

This paper is concerned with the existence of positive solutions to the following
boundary value problem with linear bounded operator conditions:

(1)
{
−
(
φ(u′)

)′(x) = λf
(
x, u(x), u′(x)

)
, 0 < x < 1

u(0) = L0(u) , u(1) = L1(u) ,

where λ > 0, f : [0, 1]× R+ × R→ R+ is L1-Carathéodory function, i.e.
(a) the map x 7−→ f(x, u, v) is measurable for all (u, v) ∈ R+ × R,
(b) the map (u, v) 7−→ f(x, u, v) is continuous for a.e. x ∈ [0, 1].
(c) For every r > 0, there exists hr ∈ L1([0, 1],R+) such that 0 ≤ f(x, u, v) ≤

hr(x), for a.e. x ∈ [0, 1] and for all (u, v) ∈ R+ × R with 0 ≤ u ≤ r and
|v| ≤ r.

The nonlinear derivation operator φ : R→ R is an odd increasing homeomorphism
such that φ is sub-multiplicative, i.e. ∀α, β ∈ R+, φ(α ·β) ≤ φ(α) ·φ(β), extending
the p-Laplacian derivation operator φ(s) = |s|p−2s, p > 1. More generally, one
may consider as well the class of sub-multiplicative-like functions introduced in
[10] (see, also [11]), that is increasing homeomorphisms φ of the real line, vanished
at 0, such that there exists an increasing homeomorphism Φ of [0,+∞) with
φ(α·β) ≤ Φ(α)·φ(β), for all α, β ∈ R+. Notice that (see [2]) if φ is sub-multiplicative,
then φ−1 is super-multiplicative, i.e.
(2) ∀α, β ∈ R+ , φ−1(α · β) ≥ φ−1(α) · φ−1(β) .
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Moreover, there exists Φ∗ ∈ (0, 1) such that

(3) ∀α, β ∈ R+ , φ−1(α) + φ−1(β) ≥ Φ∗φ−1(α+ β) .
Finally L0, L1 are linear bounded increasing operators from E := C([0, 1],R+)
to R+ such that Li(1) < 1 (i = 1, 2). Here E denotes the Banach space of all
continuous functions from [0, 1] to R+ with the norm

‖u‖0 = sup
{
|u(x)|, 0 ≤ x ≤ 1

}
.

E1 := C1([0, 1],R+) will refer to the space of continuously differentiable functions
from [0, 1] to R+; equipped with the norm ‖u‖ = max

(
‖u‖0, ‖u′‖0

)
, this is a Banach

space. The boundary value problem (bvp in short) (1) was studied in [12] where the
author proved existence of positive solutions under appropriate conditions on the
level of growth of the response operator F defined by Fu(x) = f(x, u(x)). In this
paper, new conditions including sub-linear and super-linear growth nonlinearities
are assumed to prove existence of solutions lying either in balls or in positive
cones of Banach spaces. In [3, 2, 4], the authors studied two-point Dirichlet bvps
associated to the φ-Laplacian equation −(φ(u′)′(x) = f(x, u(x)); the Schauder fixed
point theorem is used in [4] while existence of positive solutions is obtained via the
Krasnosel’skii fixed point theorem in [3]; [2] is mainly concerned with multiplicity
results via the Leggett-Williams fixed point theorem. Notice that multi-point bvps
with the classical p-Laplacian as a nonlinear derivation operator are intensively
studied in the literature; see [6, 9, 15, 19] and the references therein. In [19],
existence of solution is obtained for the equation (pu′(x))′ + f(x, u) = 0, 0 < x < 1.
In [6], existence of positive solutions in a cone of a Banach space is obtained via the
Krasnosel’skii fixed point theorem for the equation (φ(u′(x)))′ + q(x)f(x, u) = 0,
0 < x < 1. The same equation is investigated in [15] where the proofs of the
existence results involve computation of the fixed point index on a special cone of
a Banach space. The case when f = f(x, u(x), u′(x)) is also studied by the same
authors in [16]. To our knowledge, only Karakostas [12] extends the multi-point
boundary conditions to more general bounded linear conditions. Thus the main
motivation of this work is to provide new existence results for (1) which extend
similar results in [3, 2, 4, 12]. The plan of the paper is organized as follows. Section 2
is devoted to the functional setting useful to study bvp (1); this includes fixed
point formulation and a compactness criterion. Some existence results are then
presented in Section 3 when f = f(x, u). The first one uses the Schauder fixed point
theorem while in the second one existence of positive solutions is obtained via the
Krasnosel’skii fixed point theorem; then we deal with some consequences regarding
the sub-linear and super-linear growth of the nonlinearity f . The case when the
nonlinearity also depends on the first derivative is dealt with in Section 4; a recent
variant of the Krasnosel’skii fixed point theorem is employed. Each existence result
is illustrated by means of an example of application.

2. Preliminaries and auxiliary lemmas

In order to transform bvp (1) into a fixed point problem, we need some prelimi-
nary results which we collect in this section. For any fixed u ∈ E1, and θ ∈ [0, 1],
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define the quantity

ζ(θ, u) = aL0

(∫ ·
0
φ−1

(∫ θ

s

f
(
τ, u(τ), u′(τ)

)
dτ
)
ds
)

+
∫ 1

0
φ−1

(∫ θ

s

f
(
τ, u(τ), u′(τ)

)
dτ
)
ds

+ bL1

(∫ 1

·
φ−1

(∫ θ

s

f
(
τ, u(τ), u′(τ)

)
dτ
)
ds
)
,

where

(4) a = (1− L0(1))−1 > 0 and b = (1− L1(1))−1 > 0 .

Lemma 2.1 ([12, Lemma 3.2]).

(a) ζ(·, ·) is continuous.

(b) For each u ∈ E1, the correspondence θ 7→ ζ(θ, u) is strictly increasing.

(c) For any u ∈ E1, there is a unique θ(u) ∈ [0, 1] such that ζ(θ(u), u) = 0.

(d) The function u 7→ θ(u) depends continuously on u.

Lemma 2.2 ([12, Lemma 3.3]). Let u ∈ L1([0, 1],R+). Then the boundary value
problem {

−(φ(v′))′ = u(x) , 0 < x < 1

v(0) = L0(v) , v(1) = L1(v)

has a unique solution given by

v(x) =



aL0
( ∫ ·

0 φ
−1( ∫ θ(u)

s
u(τ) dτ

)
ds
)

+
∫ x

0 φ−1( ∫ θ(u)
s

u(τ) dτ
)
ds , if 0 ≤ x ≤ θ(u)

bL1
( ∫ 1
· φ
−1( ∫ s

θ(u) u(τ) dτ
)
ds
)

+
∫ 1
x
φ−1( ∫ s

θ(u) u(τ) dτ
)
ds , if θ(u) ≤ x ≤ 1 ,

where θ(u) satisfies the implicit algebraic equation ζ(θ(u), u) = 0. Moreover, the
solution v has the following properties:
(a) it is a concave function,
(b) it is a nonnegative function,
(c) its maximum is attained at some point of (0, 1).

Remark 2.1. We can see that the function u ∈ E1 is a solution of the boundary
value problem (1) if and only if it is a solution of the operator equation u = Tu
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with T defined by:

(5) Tu(x) =



aL0
( ∫ ·

0 φ
−1(λ ∫ θ(u)

s
f
(
τ, u(τ), u′(τ)

)
dτ
)
ds
)

+
∫ x

0 φ−1(λ ∫ θ(u)
s

f
(
τ, u(τ), u′(τ)

)
dτ
)
ds ,

if 0 ≤ x ≤ θ(u)

bL1
( ∫ 1
· φ
−1(λ ∫ s

θ(u) f
(
τ, u(τ), u′(τ)

)
dτ
)
ds
)

+
∫ 1
x
φ−1(λ ∫ s

θ(u) f
(
τ, u(τ), u′(τ)

)
dτ
)
ds ,

if θ(u) ≤ x ≤ 1 ,

where θ(u) is as defined in Lemma 2.2. Hence

(6) (Tu)′(x) =

φ
−1(λ ∫ θ(u)

x
f
(
τ, u(τ), u′(τ)

)
dτ
)
, if 0 ≤ x ≤ θ(u)

−φ−1(λ ∫ x
θ(u) f

(
τ, u(τ), u′(τ)

)
dτ
)
, if θ(u) ≤ x ≤ 1 .

Then (Tu)′(θ(u)) = 0. This and the concavity of Tu imply that Tu(x) achieves its
maximum for x = θ(u). As a consequence

‖Tu‖ = aL0

(∫ ·
0
φ−1

(∫ θ(u)

s

λf
(
τ, u(τ), u′(τ)

)
dτ
)
ds
)

+
∫ θ(u)

0
φ−1

(∫ θ(u)

s

λf
(
τ, u(τ), u′(τ)

)
dτ
)
ds

= bL1

(∫ 1

·
φ−1

(∫ s

θ(u)
λf
(
τ, u(τ), u′(τ)

)
dτ
)
ds
)

+
∫ 1

θ(u)
φ−1

(∫ s

θ(u)
λf
(
τ, u(τ), u′(τ)

)
dτ
)
ds .(7)

Lemma 2.3. The operator T : E1 −→ E1 defined by (5) is completely continuous.

Since this lemma is only sketched in [12], we present the proof in detail, in
particular the continuity of T .
Proof.
(a) T is continuous. Let limn→+∞ ‖un− u0‖E1 = 0. Then there exists some M > 0
such that ‖un‖ ≤ M, for all n ∈ N. Let vn(·) = λf(·, un(·), u′n(·)). Since f is
Carathéodory, vn(·) → v(·) = λf(·, u(·), u′(·)) a.e. on [0, 1] as n → +∞. By the
Lebesgue dominated convergence theorem, for a.e. s ∈ (0, θn), we have

0 ≤ lim
n→∞

∫ θn

s

|vn(τ)− v(τ)| dτ ≤ lim
n→∞

∫ 1

0
|vn(τ)− v(τ)| dτ = 0 ,

where θn = θ(un) is as defined in Lemma 3.2. Since 0 < θn < 1, then θn converges,
up to a subsequence, to some limit θ∗ ∈ [0, 1]. Assume 0 < θ∗ < 1. Again by the
Lebesgue dominated convergence theorem, the integral

∫ x
0 φ−1( ∫ θn

s
vn(τ) dτ

)
ds

converges to
∫ x

0 φ−1( ∫ θ∗
s
v(τ) dτ

)
ds because φ is a homeomorphism. Also, the

integral L0
( ∫ ·

0 φ
−1( ∫ θn

s
vn(τ) dτ

)
ds
)

converges to L0
( ∫ ·

0 φ
−1( ∫ θ∗

s
v(τ) dτ

)
ds
)

be-
cause φ is an homeomorphism and L0 is continuous. The same holds for the second
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term in (5) with θ = θn. Tun(x) converges to Tu(x) uniformly on [0, 1] with

Tu(x) =


aL0

( ∫ ·
0 φ
−1(λ ∫ θ

s
f
(
τ, u(τ), u′(τ)

)
dτ
)
ds
)

+
∫ x

0 φ−1(λ ∫ θ
s
f
(
τ, u(τ), u′(τ)

)
dτ
)
ds , if 0 ≤ x ≤ θ < 1

bL1
( ∫ 1
· φ
−1(λ ∫ s

θ
f
(
τ, u(τ), u′(τ)

)
dτ
)
ds
)

+
∫ 1
x
φ−1(λ ∫ s

θ
f
(
τ, u(τ), u′(τ)

)
dτ
)
ds , if 0 < θ ≤ x ≤ 1 ,

where θ = θ(u) is uniquely defined in Lemma 2.1. Since

aL0

(∫ ·
0
φ−1

(
λ

∫ θn

s

f
(
τ, u(τ), u′(τ)

)
dτ
)
ds
)

+
∫ 1

0
φ−1

(
λ

∫ θn

s

f
(
τ, u(τ), u′(τ)

)
dτ
)
ds

+ bL1

(∫ 1

·
φ−1(λ

∫ θn

s

f
(
τ, u(τ), u′(τ)

)
dτ
)
ds
)

= 0 ,

invoking once again the Lebesgue dominated convergence theorem, and passing to
the limit as n→ +∞, we find that

aL0

(∫ ·
0
φ−1

(
λ

∫ θ∗

s

f
(
τ, u(τ), u′(τ)

)
dτ
)
ds
)

+
∫ 1

0
φ−1

(
λ

∫ θ∗

s

f
(
τ, u(τ), u′(τ)

)
dτ
)
ds

+ bL1

(∫ 1

·
φ−1

(
λ

∫ θ∗

s

f
(
τ, u(τ), u′(τ)

)
dτ
)
ds
)

= 0 .

By uniqueness of θ, we get θ∗ = θ. Now, assume that θ∗ = 0. Then

aL0

(∫ ·
0
φ−1

(
λ

∫ s

0
f
(
τ, u(τ), u′(τ)

)
dτ
)
ds
)

+
∫ 1

0
φ−1

(
λ

∫ s

0
f
(
τ, u(τ), u′(τ)

)
dτ
)
ds

+ bL1

(∫ 1

·
φ−1

(
λ

∫ s

0
f
(
τ, u(τ), u′(τ)

)
dτ
)
ds
)

= 0 .

Since all the terms are nonnegative, we obtain

φ−1
(
λ

∫ t

0
f
(
·, u(·), u′(·)

)
ds
)

= 0 , t ∈ [0, 1]

and f(·, u(·), u′(·)) = 0 a.e. on [0, 1], leading to a contradiction. Analogously, we can
check that θ∗ 6= 1. In the same way, we prove the uniform convergence of (Tun)′(x)
to (Tu)′(x), proving the continuity of T and ending the proof of our claim.
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(b) T is totally bounded. Let B be a bounded subset in E1 and M > 0 a constant
such that ‖u‖ ≤M for all u ∈ B. We have∫ ·

0
φ−1

(
λ

∫ θ(u)

s

f
(
τ, u(τ), u′(τ)

)
dτ
)
ds ≤

∫ 1

0
φ−1

(
λ

∫ 1

0
f
(
τ, u(τ), u′(τ)

)
dτ
)
ds

≤ φ−1
(
λ

∫ 1

0
f
(
τ, u(τ), u′(τ)

)
dτ
)

≤ φ−1(λ|hM |1) ,

where |hM |1 =
∫ 1

0 hM (τ)dτ . Since L0 is increasing, we deduce that

L0

(∫ ·
0
φ−1

(
λ

∫ θ(u)

s

f
(
τ, u(τ), u′(τ)

)
dτ
)
ds
)

≤ L0
(
φ−1(λ|hM |1)

)
= φ−1(λ|hM |1)L0(1) .

From (6) and (7), we deduce that

‖Tu‖0 ≤ (aL0(1) + 1)φ−1(λ|hM |1) and ‖(Tu)′‖0 ≤ φ−1(λ|hM |1) .

This implies the boundedness of T (B). To show the equicontinuity of T (B), notice
that for x ∈ [0, 1] and u ∈ B, we have

|(Tu)′(x)| ≤ φ−1
(∫ 1

0
λf
(
x, u(x), u′(x)

)
dx
)
≤ φ−1(λ|hM |1) .

Therefore, if x1, x2 ∈ [0, 1], then |(Tu)(x1) − (Tu)(x2)| ≤ φ−1(λ|hM |1)|x1 − x2|
and the right hand-side term tends to 0 as |x1 − x2| → 0. Finally (6) gives the
estimate:

|(φ(Tu))′(x1)− (φ(Tu))′(x2)| ≤
∣∣∣ ∫ x2

x1

hM (τ)dτ
∣∣∣

which also tends to 0 when |x1 − x2| → 0 for hM ∈ L1([0, 1],R+). Since φ is a
homeomorphism, this shows the equicontinuity of T (B). Finally, the Arzéla-Ascoli
theorem then concludes the proof. �

3. The case f = f(x, u)

The following classical theorems will be the main tools used in this section.

Theorem A (Schauder’s fixed point theorem. (See [5, Thm. 8.8, p. 60], [14, Thm.
2.3.7, p. 15], [18, Thm. 2.A, p. 57])). Let X be a Banach space and C ⊂ X a
bounded, closed, convex subset of E. If T : C → C is a completely continuous
operator, then T has a fixed point in C.

Theorem B (Krasnosel’skii’s fixed point theorem. (See [13, 8])). Let X be a
Banach space, K ⊂ X a cone and Ω1,Ω2 two bounded open subsets satisfying
0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2. Let T : K ∩ (Ω2 \Ω1)→ K be a completely continuous operator
such that:
(a) either ‖Tv‖ ≤ ‖v‖ for v ∈ K ∩ ∂Ω1 and ‖Tv‖ ≥ ‖v‖ for v ∈ K ∩ ∂Ω2,
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(b) or ‖Tv‖ ≥ ‖v‖ for v ∈ K ∩ ∂Ω1 and ‖Tv‖ ≤ ‖v‖ for v ∈ K ∩ ∂Ω2.
Then T has at least a fixed point in K ∩ (Ω2 \ Ω1).

3.1. An existence theorem by the Schauder fixed point theorem. Our
first existence result in this section is:

Theorem 3.1. Assume that there exists R ≥ 1 such that

(8)
∫ 1

0
f(x,R) dx ≥ R .

Then, for sufficiently small λ, bvp (1) has at least one nonnegative solution u such
that ‖u‖0 ≤ R.

Proof. Let gR(x) = max
0≤y≤R

f(x, y), then∫ 1

0
gR(τ) dτ ≥

∫ 1

0
f(τ,R) dτ ≥ R ≥ 1 .

Let a be given by (4) and

λ? = φ(1/aL0(1) + 1)
|gR|1

.

Let u ∈ B := {u ∈ E, ‖u‖0 ≤ R}. Arguing as in the proof of Lemma 2.3, we find
that, for 0 < λ ≤ λ?, we have

‖Tu‖0 ≤ (aL0(1) + 1)φ−1(λ|gR|1) ≤ 1 ≤ R .

Therefore, the operator T maps the ball B into itself. By Theorem A and Lemma 2.3,
T has a fixed point u such that ‖u‖0 ≤ R. �

Example 3.1. Consider the boundary value problem:

(9)
{
− (|u′|u′)′ (x) = λ|(x− 1

4 )(eu − 2)| ln(|u|+ 1) , 0 < x < 1
u(0) =

∫ 1
0 u(s)dµ1(s) , u(1) =

∫ 1
0 u(s)dµ2(s) .

Here φ = φ3, f(x, u) = |(x− 1
4 )(eu−2)| ln(|u|+1), and µ1, µ2 are two nondecreasing

functions on [0, 1] of bounded variation V 1
0 (µi) < 1, (i = 0, 1). This condition

ensures that the Stieltjes integrals do exist. Then, for sufficiently small λ > 0, bvp
(9) has a solution u such that ‖u‖0 ≤ 3. Indeed, for R = 3 we have∫ 1

0
f(x,R) dx = 5

16(eR − 2) ln(R+ 1) ≥ R .

3.2. Existence results by the Krasnosel’skii fixed point theorem. Let the
operator T be as defined in (5) and consider the positive cone

(10) K = {u ∈ E and u is concave on (0, 1)} .

It is clear that T maps K into itself and (Tu)(0) ≥ 0, (Tu)(1) ≥ 0. To prove
existence of positive solutions, we need some preliminary results:
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Lemma 3.2 ([3, Lemma 2.3] or [12, Lemma 3.1]). Let p(x) = min(x, 1− x), x ∈
[0, 1]. If u ∈ K, then for all x ∈ [0, 1]

u(x) ≥ p(x)‖u‖0 , ∀x ∈ [0, 1] .

Lemma 3.3 ([3], [2, Lemma 2.6]). Let 0 < σ < 1
2 an arbitrary real number. Then

for every u ∈ E, the operator T verifies

‖Tu‖0 ≥



σφ−1( ∫ 1−σ
θ(u) λf

(
τ, u(τ)

)
dτ
)
, if θ(u) ≤ σ

σφ−1( ∫ θ(u)
σ

λf
(
τ, u(τ)

)
dτ
)
, if θ(u) ≥ 1− σ

σ
2φ
−1( ∫ θ(u)

σ
λf
(
τ, u(τ)

)
dτ
)

+ σ
2φ
−1( ∫ 1−σ

θ(u) λf
(
τ, u(τ)

)
dτ
)
,

if σ ≤ θ(u) ≤ 1− σ ,
where θ(u) is as defined in Lemma 2.2.

3.3. The super-linear-like case.

Theorem 3.4. Suppose that the following condition holds:

lim sup
u→0+

f(x, u)
φ(u) = 0 and lim inf

u→+∞

f(x, u)
φ(u) = +∞ , uniformly in x ∈ [0, 1] .

Then bvp (1) has at least one positive solution u ∈ E for all positive λ.

Proof.
Claim 1. Let ε > 0 satisfy

(11) 0 < ε ≤ 1
λφ(aL0(1) + 1) .

Since lim
u→0+

f(x,u)
φ(u) = 0, uniformly in x ∈ [0, 1], then there exists r > 0 such that

0 ≤ f(x, u) ≤ εφ(u), for x ∈ [0, 1] and 0 ≤ u ≤ r. Let Ω1 := {u ∈ E, ‖u‖0 < r} and
u ∈ K ∩ ∂Ω1, then φ(u(s)) ≤ φ(‖u‖0) = φ(r), for all s ∈ [0, 1]. So, for ε satisfying
(11) and using (2), we have the estimates

‖Tu‖0 ≤ aL0

(∫ 1

0
φ−1

(∫ 1

0
λf
(
τ, u(τ)

)
dτ
)
ds
)

+
∫ 1

0
φ−1

(∫ 1

0
λf
(
τ, u(τ)

)
dτ
)
ds

≤ (aL0(1) + 1)
∫ 1

0
φ−1

(∫ 1

0
λεφ(r) dτ

)
ds

=
(
aL0(1) + 1

)
φ−1(ελφ(r)

)
= φ−1(φ(aL0(1) + 1)

)
· φ−1(ελφ(r)

)
≤ φ−1(φ(aL0(1) + 1) · ελφ(r)

)
= r = ‖u‖0 .

Claim 2. Let λ > 0, 0 < σ < 1/2 be arbitrary and let k satisfy
(12) k ≥ max(φ(1/σ2) , φ(2/σ2Φ∗))/λ(1− 2σ) .
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Since lim inf
u→∞

f(x,u)
kφ(u) = +∞ uniformly in x ∈ [0, 1], then there exists R > 0 such

that f(x, u) ≥ kφ(u), for x ∈ [0, 1] and u ≥ R. Let R̃ ≥ R/σ and define the
open set Ω2 :=

{
u ∈ E : ‖u‖0 < R̃

}
. Then u ∈ K and ‖u‖0 = R̃ imply that

u(x) ≥ p(x)‖u‖0 ≥ σR̃ ≥ R, for all x ∈ [σ, 1 − σ]. Two distinct cases are then
discussed separately.

Case (a): If θ(u) < σ or θ(u) > 1− σ, then by Lemma 3.3 and using (2), (12), and
the fact that φ is increasing, we get

‖Tu‖0 ≥ σφ−1
(∫ 1−σ

σ

λf
(
τ, u(τ)

)
dτ
)

≥ σφ−1
(∫ 1−σ

σ

kλφ
(
u(τ)

)
dτ
)

≥ σφ−1(kλ(1− 2σ)φ(σR̃)
)

≥ σ2R̃φ−1(kλ(1− 2σ)
)
≥ R̃ = ‖u‖0 .

Case (b): If θ(u) ∈ [σ, 1− σ], then again by Lemma 3.3 together with (3) and (12),
we have the estimates:

‖Tu‖0 ≥
σ

2φ
−1
(∫ θ(u)

σ

λf
(
τ, u(τ)

)
dτ
)

+ σ

2φ
−1
(∫ 1−σ

θ(u)
λf
(
τ, u(τ)

)
dτ
)

≥ σ

2 Φ∗φ−1
(∫ 1−σ

σ

λf
(
τ, u(τ)

)
dτ
)

≥ σ

2 Φ∗φ−1
(∫ 1−σ

σ

kλφ
(
u(τ)

)
dτ
)

≥ σ

2 Φ∗φ−1(kλ(1− 2σ)φ(σR̃)
)

≥ σ2

2 R̃Φ∗φ−1(kλ(1− 2σ)
)
≥ R̃ = ‖u‖0 .

Therefore, in both cases, we have ∀u ∈ K ∩ ∂Ω2, ‖Tu‖0 ≥ ‖u‖0. By Theorem B,
bvp (1) admits a positive solution u such that min(r, R̃) ≤ ‖u‖0 ≤ max(r, R̃). �

Corollary 3.5. Assume there exist continuous nonnegative functions ϕ, ψ on R+

and ω, ρ ∈ L1([0, 1],R+) such that

ρ(x)ϕ(u) ≤ f(x, u) ≤ ω(x)ψ(u) , on [0, 1]× R+

and

lim
u→0+

ψ(u)
φ(u) = 0 , lim

u→+∞

ϕ(u)
φ(u) = +∞ .

Then bvp (1) has at least one positive solution for every λ > 0.

Also, we have
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Corollary 3.6. Let q ∈ C([0, 1],R+) with min
x∈[0,1]

q(x) > 0 and F : R+ −→ R+

satisfies
lim sup
s→0+

F (s)
φ(s) = 0 and lim inf

s→+∞

F (s)
φ(s) = +∞ .

Then, the boundary value problem

(13)
{
−(φ(u′))′ = λq(x)F (u) , 0 < x < 1 ,
u(0) = L0(u) , u(1) = L1(u)

has at least one positive solution for every λ > 0.
Example 3.2. Consider the boundary value problem:

(14)
{
−
(
φ3(u′)

)′(x) = q(x)
(
φ4(u) + φ5(u)

)
, 0 < x < 1

u(0) =
∫ 1

0 u(s) dµ1(s) , u(1) =
∫ 1

0 u(s) dµ2(s) ,

where the function q ∈ C([0, 1], (0,+∞)). µ1, µ2 are two nondecreasing functions
on [0, 1] of bounded variation V 1

0 (µi) < 1, (i = 0, 1). Let ψ(u) = φ4(u) + φ5(u) and
ϕ(u) = φ4(u). Then,

lim
u→0+

ψ(u)
φ(u) = lim

u→0+
(u+ u2) = 0 and lim

u→+∞

ϕ(u)
φ(u) = lim

u→+∞
u = +∞ .

By Corollary 3.5, bvp (14) has at least one positive solution.

3.4. The sub-linear-like case.
Theorem 3.7. Suppose that the following condition holds:

lim inf
u→0+

f(x, u)
φ(u) = +∞ and lim sup

u→+∞

f(x, u)
φ(u) = 0 , uniformly in x ∈ [0, 1] .

Then bvp (1) has at least one positive solution for sufficiently small λ > 0.
Proof.
Claim 1. Let λ > 0, 0 < σ < 1/2 be fixed constants, and pick k such that (12) is
satisfied. Since lim inf

u→0+

f(x,u)
kφ(u) = +∞, uniformly in x ∈ [0, 1], then there exists r > 0

such that λf(x, u) ≥ kφ(u), for u ∈ [0, r]. Consider the open ball Ω1 := B(0, r)
and let u ∈ K ∩ ∂Ω1, that is u ∈ K and ‖u‖0 = r. Then, in one hand, we have
that u(x) ≥ p(x)‖u‖0 ≥ σ‖u‖0 for any x ∈ [σ, 1 − σ] and in the other hand, the
following discussion holds true:

Case (a): If θ(u) < σ or θ(u) > 1 − σ, then by Lemma 3.3 we get, since φ is
increasing

‖Tu‖0 ≥ σφ−1
(∫ 1−σ

σ

λf(τ, u(τ))dτ
)

≥ σφ−1
(∫ 1−σ

σ

kλφ(u(τ))dτ
)

≥ σφ−1
(
kλ(1− 2σ)φ(σ‖u‖0)

)
.



φ-LAPLACIAN BVPS WITH LINEAR BOUNDED OPERATOR CONDITIONS 131

Owing to (2) and (12), we deduce that
‖Tu‖0 ≥ σ2‖u‖0φ

−1 (kλ(1− 2σ)) ≥ ‖u‖0 = r .

Case (b): If θ(u) ∈ [σ, 1− σ], then again by Lemma 3.3 both with (3), we obtain
the estimates:

‖Tu‖0 ≥
σ

2φ
−1
(∫ θ

σ

λf(τ, u(τ))dτ
)

+ σ

2φ
−1
(∫ 1−σ

θ

λf(τ, u(τ))dτ
)

≥ σ

2φ
−1
(∫ θ

σ

kλφ(u(τ))dτ
)

+ σ

2φ
−1
(∫ 1−σ

θ

kλφ(u(τ))dτ
)

≥ σ

2φ
−1(kλ(θ − σ)φ(σ‖u‖0)

)
+ σ

2φ
−1(kλ(1− σ − θ)φ(σ‖u‖0)

)
≥ σ

2 Φ∗φ−1(kλ(1− 2σ)φ(σ‖u‖0)
)
.

Hence
‖Tu‖0 ≥

σ2

2 Φ∗‖u‖0φ
−1(kλ(1− 2σ)

)
≥ ‖u‖0 = r .

Therefore, in both cases, we arrive at the estimate
∀u ∈ K ∩ ∂Ω1, ‖Tu‖0 ≥ ‖u‖0 .

Claim 2. Since lim sup
u→∞

f(x,u)
φ(u) = 0 uniformly in x ∈ [0, 1]. then there exists R > 0

such that 0 ≤ f(x, u) ≤ φ(u) for x ∈ [0, 1] and u ≥ R. So, there exists C > 0
such that 0 ≤ f(x, u) ≤ φ(u) + C for (x, u) ∈ [0, 1] × R+. Now let the open ball
Ω2 := B(0, R) and u ∈ K ∩ ∂Ω2. If v = Tu, then v verifies{

−(φ(v′))′(x) = λf(x, u) , 0 < x < 1
v(0) = L0(u) , v(1) = L1(u) .

By Lemma 2.2(c), there exists xm ∈ (0, 1) such that v′(xm) = 0. Then for any
s ∈ [0, 1]. We have

φ
(
v′(s)

)
= λ

∫ xm

s

f
(
τ, u(τ)

)
dτ .

Hence

|φ(v′(s))| = φ(|v′(s)|) ≤ λ
∫ 1

0
f(τ, u(τ))dτ

≤ λ
∫ 1

0
(φ(u(τ)) + C) dτ ≤ λ

(
φ(R) + C

)
.

Thus |v′(s)| ≤ φ−1(λ(φ(R) + C)
)
, ∀ s ∈ [0, 1]. Since L0 is increasing, we deduce

that

v(t) = v(0) +
∫ t

0
v′(s)ds = L0(u) +

∫ t

0
v′(s) ds

≤ L0(R) + sup
t∈[0,1]

|v′(t)| ≤ L0(R) + φ−1(λ(φ(R) + C
))
.



132 K. BACHOUCHE, S. DJEBALI AND T. MOUSSAOUI

Since 0 < L0(R) < R, choose 0 < λ ≤ λ? := φ(R− L0(R))/(φ(R) + C) to obtain
that v(t) ≤ R = ‖u‖0, that is ∀u ∈ K ∩ ∂Ω2, ‖Tu‖0 ≤ ‖u‖0. By Theorem B, for
0 < λ ≤ λ?, bvp (1) admits a positive solution u such that min(r,R) ≤ ‖u‖0 ≤
max(r,R). �

As a consequence, we deduce

Corollary 3.8. Let q ∈ C([0, 1],R+) with min
x∈[0,1]

q(x) > 0 and F : R+ −→ R+

satisfies
lim inf
s→0+

F (s)
φ(s) = +∞ and lim sup

s→+∞

F (s)
φ(s) = 0 .

Then, the boundary value problem

(15)
{
−(φ(u′))′ = λq(x)F (u) , 0 < x < 1 ,
u(0) = L0(u) , u(1) = L1(u)

has at least one positive solution for sufficiently small λ > 0.

Example 3.3. Consider the multi-point boundary value problem:

(16)

− (φ(u′))′ (x) = λq(x)g(u(x)) , 0 < x < 1

u(0) =
n∑
i=1

aiu(ξi) , u(1) =
n∑
i=1

biu(ξi) ,

where q ∈ C([0, 1], (0,+∞)), ξi ∈ (0, 1) with 0 < ξ1 < ξ2 < · · · < ξn < 1,
and ai, bi ≥ 0 are such that

n∑
i=1

ai < 1 and
n∑
i=1

bi < 1. With L0(u) = u(0) and

L1(u) = u(1), we have that L0(1) =
n∑
i=1

ai < 1 and L1(1) =
n∑
i=1

bi < 1. Let

φ(u) = k3φp(u) + k4φq(u), g(u) = k1φs(u) + k2φt(u), for some positive constants
ki, (i = 1, . . . , 4), and 1 < s < p < t < q. The latter condition yields that

lim g(u)
φ(u) = lim k1u

s + k2u
t

k3up + k4uq
= lim k1u

s−p + k2u
t−p

k3 + k4uq−p

=
{

0 , if u→ +∞
+∞ if u→ 0 .

By Corollary 3.8, we obtain the existence of at least one positive solution for small
parameter λ > 0.

4. The case f = f(x, u, v)

When the nonlinearity f also depends on the first derivative, application of the
classical Krasnosel’skii fixed point theorem turns out to be difficult. Indeed, it
not always so easy to perform the two inequalities ‖Tu‖ ≤ ‖u‖ and ‖Tu‖ ≥ ‖u‖
for instance when ‖Tu‖ is the sup-norm in the Banach space C1([0, 1],R). An
alternative way consists in employing the following recent fixed point theorem.
First, we present the general framework. Let X be a linear space such that there is
a norm ‖u‖1 under which X is a normed linear space (not necessarily complete)
and there is a semi-norm ‖ · ‖2 such that under ‖u‖ = max(‖u‖1, ‖u‖2), X is a
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Banach space. For example, equipped with ‖u‖1 = ‖u‖0, X = E1 := C1([0, 1],R)
is an incomplete normed linear space. If ‖u‖2 = ‖u′‖0, then ‖u‖2 is a semi-norm of
E1. Finally, with ‖u‖ = max(‖u‖1, ‖u‖2), E1 is a Banach space.

Theorem C ([17, Theorem 2.8]). Let Ω1 = {u ∈ X, ‖u‖1 < r} and Ω2 = {u ∈
X, ‖u‖1 < R} be two open sets in X with r < R. Let T : K ∩ (Ω̄2 \ Ω1)→ K be a
continuous map with relatively compact image T (K ∩ (Ω̄2 \ Ω1)). Suppose that one
of the following two conditions is satisfied:
(a) ‖Tv‖ ≤ ‖v‖ for v ∈ K ∩ ∂Ω1 and ‖Tv‖1 ≥ ‖v‖1 for v ∈ K ∩ ∂Ω2,
(b) ‖Tv‖1 ≥ ‖v‖1 for v ∈ K ∩ ∂Ω1 and ‖Tv‖ ≤ ‖v‖ for v ∈ K ∩ ∂Ω2.
Then T has at least a fixed point in K ∩ (Ω2 \ Ω1).

Notice that Ω1 and Ω2 need not be bounded. Then we can prove existence of
positive solutions which are only bounded with respect to the norm ‖u‖0. Arguing
as in Theorems 3.4 and 3.7, we have the following two existence theorems:

Theorem 4.1 (The super-linear-like case). Suppose

(a) there exists a nondecreasing function ψ1 ∈ C(R, (0,+∞)) with

0 <
∫ +∞

1

ψ1(t)
t2

dt < +∞ such that

lim sup
u→0+

f(x, u, v)
φ(u)ψ1(v) = 0, uniformly in x ∈ [0, 1] and v ∈ R .

(b) lim inf
u→+∞

f(x, u, v)
φ(u) = +∞, uniformly in x ∈ [0, 1] and v ∈ R .

Then bvp (1) has at least one positive solution in E1 for all positive λ.

Example 4.1. Consider the multi-point boundary value problem:

(17)

− (φ(u′))′ (x) = λq(x)g(u(x))h(u′(x)) , 0 < x < 1

u(0) =
n∑
i=1

aiu(ξi) , u(1) =
n∑
i=1

biu(ξi) ,

where q ∈ C([0, 1], (0,+∞)), ξi ∈ (0, 1) with 0 < ξ1 < ξ2 < · · · < ξn < 1,
and ai, bi ≥ 0 are such that

n∑
i=1

ai < 1 and
n∑
i=1

bi < 1. With L0(u) = u(0) and

L1(u) = u(1), we have that L0(1) =
n∑
i=1

ai < 1 and L1(1) =
n∑
i=1

bi < 1. Let

g(u) = c1φ5/2(u) + c2φ3(u) and φ(u) = c3φ3/2(u) + c4φ2(u) for some positive
constants ci, (i = 1, 4). Let h(v) = 1 + ev and ψ1(v) =

√
1 + ϑ(v) where

ϑ(s) =
{
s , if s ≥ 0
0 , otherwise .

Then
∫ +∞

1

√
1+t
t2 dt < +∞ and the ratio

g(u)h(v)
φ(u)ψ1(v) =

(c1u
5/2 + c2u

3

c3u3/2 + c4u2

)( 1 + ev√
1 + ϑ(v)

)
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tends to 0 as u→ 0 uniformly in v ∈ R. Also, the ratio
g(u)h(v)
φ(u) = (1 + ev)

(c1u
5/2 + c2u

3

c3u3/2 + c4u2

)
tends to positive infinity if u → +∞ uniformly in v ∈ R. By Theorem 4.1, we
obtain the existence of at least one positive solution for all positive λ.

Theorem 4.2 (The sub-linear-like case). Suppose
(a) there exists a nondecreasing function ψ1 ∈ C(R, (0,+∞)) with

0 <
∫ +∞

1

ψ1(t)
t2

dt < +∞ such that

lim sup
u→+∞

f(x, u, v)
φ(u)ψ1(v) = 0 , uniformly in x ∈ [0, 1] and v ∈ R .

(b) lim inf
u→0

f(x, u, v)
φ(u) = +∞ , uniformly in x ∈ [0, 1] and v ∈ R .

Then bvp (1) has at least one positive solution in E1 for every λ > 0 small enough.

Sketch of the proof.
Claim 1. As in the proof of Theorem 3.7, Assumption (b) yields some R1 > 0 such
that

∀u ∈ K ∩ ∂Ω1 , ‖Tu‖0 ≥ ‖u‖0 ,

where Ω1 :=
{
u ∈ E1 : ‖u‖0 < R1

}
and K :=

{
u ∈ E1 : u concave

}
.

Claim 2. Here we first notice that since u ∈ E1 is concave, then for any x ∈ (0, 1),
there exists η ∈ R, (0 < η < x) such that u(x) ≥ xu′(η). Hence u(x)

x ≥ u′(η) ≥
u′(x). This with Assumption (a) and since ψ1 is nondecreasing, there exists some
C > 0 such that

0 ≤ f(t, u(t), u′(t)) ≤ φ(‖u‖0)ψ1

(‖u‖0

t

)
+ C ,

for u ∈ K. Moreover, there exists R2 > 0 such that for every u ∈ K∩∂Ω2, we deduce
the estimates: ‖(Tu)′‖0 ≤ ‖u‖0 ≤ ‖u‖ and for λ small enough ‖Tu‖0 ≤ ‖u‖0 ≤ ‖u‖.
Here Ω2 :=

{
u ∈ E1 : ‖u‖0 < R2

}
. Hence

‖Tu‖ ≤ ‖u‖0 ≤ ‖u‖ .
By Theorem C, we obtain the existence of at least one positive solution u for small
parameter λ. In addition, min(R1, R2) ≤ ‖u‖0 ≤ min(R1, R2). �

Finally, we mention a third existence result proved in [1] for homogeneous
Dirichlet boundary conditions.

Theorem 4.3. Suppose that
(a) there exist r0 > 0, q1 ∈ C([0, 1],R+), ϕ1 ∈ C(R+,R+), and ψ1 ∈ C(R,R+)
where ϕ1, ψ1 are nondecreasing with∫ 1

0
q1(s)ψ1

(r0

s

)
ds ≤ 1

ϕ1(r0)φ
( r0

1 + a

)
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such that

0 ≤ λf(x, u, v) ≤ q1(x)ϕ1(u)ψ1(v), for all x ∈ [0, 1], 0 ≤ u ≤ r0, and v ∈ R .

(b) There exist 0 < σ < 1/2, R0 6= r0, q2 ∈ C([0, 1],R+), ϕ2 ∈ C(R+,R+), and
ψ2 ∈ C(R,R+) with ϕ2 nondecreasing, ψ2 nonincreasing and

0 < R0 ≤
σD(σ)

2 and
∫ 1

0
q2(s)ψ2

(R0

s

)
ds <∞

such that

λf(x, u, v) ≥ q2(x)ϕ2(u)ψ2(v) , for all x ∈ [0, 1] , σR0 ≤ u ≤ R0 , and v ∈ R .

Then, for every λ > 0, bvp (1) has at least one positive solution u ∈ E1 satisfying

min(r0, R0) ≤ ‖u‖0 ≤ max(r0, R0) .

Here

(18) D(σ) := Φ∗φ−1
(∫ 1−σ

σ

q2(s)ϕ2(σR0)ψ2

(R0

s

)
ds
)
.

Example 4.2. Consider the boundary value problem:

(19)
{
−
(
φ 7

2
(u′)

)′(x) = q(x)ϕ(u(x))h(u′(x)) , 0 < x < 1
u(0) =

∫ 1
0 u(s) dµ1(s) , u(1) =

∫ 1
0 u(s) dµ2(s) ,

where q ∈ C([0, 1], (0,+∞)) with ‖q‖0 ≤ 1, h(s) = ψ(s) + ψ2(s) with ψ2(s) =

e−s, ψ(s) =
√

1 + ϑ(s), and ϑ(s) =
{
s , if s ≥ 0
0 , otherwise.

The functions µ1, µ2 are

nondecreasing on [0, 1] of bounded variation V 1
0 (µi) < 1, (i = 0, 1) which ensures

that the Stieltjes integrals do exist. Letting L0(u) = u(0) and L1(u) = u(1), we
obtain that L0(1) =

∫ 1
0 dµ1(s) = V 1

0 (µ1) < 1 and L1(1) =
∫ 1

0 dµ2(s) = V 1
0 (µ2) < 1.

Since h(s) ≤ ψ(s) + 1, put ψ1(s) = 1 + ψ(s), then∫ 1

0
q(s)ψ1

(r0

s

)
ds ≤ ‖q‖0

∫ 1

0
ψ1

(r0

s

)
ds

≤
∫ 1

0
ψ1

(r0

s

)
ds =

∫ 1

0
1 ds+

∫ 1

0

√
1 + r0

s
ds

= 1 + r0

2

( 1√
1 + r0 − 1

+ 1√
1 + r0 + 1

− ln
(√1 + r0 − 1√

1 + r0 + 1

))
.

With ϕ1(s) = ϕ(s) = (1+s)2/3, assumption (a) in Theorem 3.1 is fulfilled whenever
there exists r > 0 such that

1√
1 + r0 − 1

+ 1√
1 + r0 + 1

− ln
(√1 + r0 − 1√

1 + r0 + 1

)
≤ 2

(1 + a) 5
2

r
3/2
0

(1 + r0)2/3 −
2
r0
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which is satisfied for r0 large enough. Moreover, with ψ2(s) = e−s, ϕ2(s) = ϕ(s) =
(1 + s)2/3, and since φ−1(s) = s2/7 for s ≥ 0, we find that

D(σ) = Φ∗
(

(1 + σR0)2/3
∫ 1−σ

σ

q(s)e−R0/s ds

)2/7

.

Hence a sufficient condition for (b) in Theorem 4.3 be satisfied is

2R0

Φ∗ ≤ σ(1 + σR0)4/21
(∫ 1−σ

σ

q(s)e−R0/s ds
)2/7

that is if
2R0

Φ∗ ≤ σ(1 + σR0)4/21q2/7(1− 2σ)2/7e−2R0/7σ ,

where q := min (q(x), σ ≤ x ≤ 1− σ) is positive. Notice that the latter condition is
satisfied for small R0. Therefore, all assumptions in Theorem 4.3 are met, hence
Problem (19) has at least one positive solution u with R0 ≤ ‖u‖0 ≤ r0.
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