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PERIODIC SOLUTIONS FOR A CLASS OF FUNCTIONAL
DIFFERENTIAL SYSTEM

WEIBING WANG AND BAISHUN LAI

ABSTRACT. In this paper, we study the existence of periodic solutions to a
class of functional differential system. By using Schauder’s fixed point theorem,
we show that the system has aperiodic solution under given conditions. Finally,
four examples are given to demonstrate the validity of our main results.

1. INTRODUCTION

In this article, we study the existence of w-periodic solutions to the following
functional differential system
(1.1)

‘T;(t) = a;(t)gi(zi(t)) — filt,z1(t = 71(8) .., 20t —70(t))), i=1,2,...,m,
where a;, 7;: R — R are w-periodic continuous functions and a;(t) > 0 for any
t € [0,w], fi(t,u1,...,uy): R**! — R is w-periodic in ¢t and g;: R — R.

When n = 1, the problem reduces to the functional differential equation

(1.2) (1) = a(t)g(x(t)) — h(t,x(t — T(t))) .

The existence of periodic solutions for the special cases of have been considered
extensively by many authors, because includes many important models in
mathematical biology, such as, Hematopoiesis models; Nicholson’s blowflies models;
models for blood cell production, see [2, [3, 4, [8, [0, [7] and the references therein.
Recently, Wang [5] investigated existence, multiplicity and nonexistence of positive
periodic solutions for the periodic differential equation

(1.3) 2’ (t) = a(t)p(z(t))z(t) — Ar(t)h(2(t — 7(1))) .

His approach depended on fixed point theorem in a cone. An essential condition
on the function p in [5] is that p is bounded above and below by positive constants
on [0,4+00). Hence, the method in [5] is not necessarily suitable for functional
differential equation with general nonlinear term p. For example, to our best
knowledge, results about periodic solutions for the following functional differential
equation

(1.4) 2'(t) = a(t)z”(t) — Mh(t) f (a(t — 7(1)))
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are few, here a # 0 is a constant and A > 0 is a positive real parameter.

In the paper, we obtain sufficient conditions for the existence of periodic solutions
for the system by using Schauder’s fixed point theorem. Our results improve
and generalize the corresponding results of [11 [6] [10].

2. MAIN RESULTS

The following well-known Schauder’s fixed point theorem is crucial in our
arguments.

Lemma 2.1. Let X be a Banach space with D C X closed and convex. Assume
that T: D — D is a completely continuous map, then T has a fized point in D.

Put C, = {u € C(R,R) : u(t +w) = u(t),t € R} with the norm defined by

[ullc, = maxo<i<e [u(t)| and

E={x=(21(t),...,zn(t)) : 2, € C,}, z|lg= Z lzillc, -

Then C,, and E are Banach spaces.
Let p, g € C,, and consider the following two differential equations

(2.1) a'(t) = —p(t)x(t) + q(t),
(2.2) 2'(t) = p(t)a(t) — q(t).
Lemma 2.2. Assume that fowp(t)dt # 0, then has a unique w-periodic
solution
0= [ IR
t

exp fow p(r)dr —1
and (2.2)) has a unique w-periodic solution

t+w exp f;"rw p(?") d'l"

o) = | :
¢ exp [i p(r)dr—1

Let M € R, m € R: M > m and define
<o) = {it gi(m) < gi(M),1 < i <n},

=tm,m) = {0 gi(m) > gi(M),1 <i <n}.

q(s)ds.

By using Schauder’s fixed point theorem, we obtain the following existence result
on the periodic solution for (1.1)).

Theorem 2.1. Assume that there exist constants M; > m;, i = 1,2,...,n such
that g; € C([my, M;), R), fi € C(R x A, R), here A = [my, My] X -+ X [my,, M,],
and for any u; € [my, M;] and t € [0,w],

fi(t7u17"-7un)

< gi(m;) if © € [m;, M)
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and

fi<t7u1a--~7un>

a; (t)

Then (L.1) has at least one periodic solution (x5 (t),...,z5(t)) € E with m; < z} <

(2.4) gi(m;) < < gi(M;) if i E€E<pn, My -

Proof. Without loss of the generality, we assume that there exists a k: 0 < k <n
such that

i €x[m,n;) for 1<i<k, i €E<pm,ny) for k+1<i<mn,

here if i <0, =, p,)= @, if i 2+ 1, <, 1= @
Since g; € C*([m;, M;], R), there exist [; > 0 such that

1

(2.5) 1+lfg§(u)>0, u € [mi, My, i=1,2,....k,
1, .
(2.6) 1—l—_gi(u)>0, w€[mi, M], i=1+k,...,n.

Assume that (z1(t),...,2,(t)) € F is a solution of (1.1)), then

(1) = i (1)) a1 g Cra0) + ) - P T

Cli(t)
21(t) = Lias(t)i(t) —ai ) s (6)— giwi (1)) + JW} i k4lm
and
e q,(s) ex tsliair dr (s, X (s—7(s
B e

i=1,2,...,k,

(0 /H‘“ a;(s) exp fst—w lia;(r) dr
Zi = w
¢ exp [y liai(r)dr — 1

i=k+1,...,n,

[lixi(s) —9i (CUZ(S)) +

where f;(t, X(t —7(t)) = fi(t,z1(t — 71(1)), ..., xn(t — T (t))).
Define a set €2 in E and an operator T: F — E by

Q={zeFE:m; <z, <M;,i=1,2...,n},

(T.’I?)(t) = ((Txl)(t)> (Tx2)(t)’ SRR (T‘T’ﬂ)(t)) , L= (.’1?1(t>, s ,!L‘n(t)> er,
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where

t+waiSQX SiGiT "
(Txi)(t)._/t (s)exp [, Liai(r)d

N exp fow Lia;(r)dr — 1

s, X(s = 7(5))
a;i(s)

X [gl(a:,(s)) + Lixi(s) } ds, 1<:<k,

v a,(s) exp ft“} lia;(r) dr
)= [ P,
¢ exp [y liai(r)dr —1
fi(s, X (s —7(s)))
ai(s)
First, we show that T(Q2) C Q. Using (2.5) and (2.6)), we obtain that for 2 € Q,

X [lixi(s)fgi(a:i(s))+ }ds, E+1<i<mn.

1 1 1
m; + l‘gi(mi) <zi(t) + fgz(xz(t)) <M;+ fgz(Mz)v i=1,2,...k,
1 1 1 .

Using (2.3) and (2.4)), we have
e lai(s)exp [ liai(r)drrl fi(s, X (s—7(5)))
Tz;)(t) = —t —gilT; i(s)— ==
(Tz;)(t) /t exp [ ay(r) dr — 1 [lig (zi(s)) +2i(s) lia;(s)
. [m< /H'“’ lia;(s) exp f; lLia;(r)dr ds M /H"" lia;(s) exp f: lia;(r) dr ds}
“J exp f(;u lLia;(r)dr —1 L exp f(;d lLia;(r)dr —1

| s

:[mi7Ml']7 i:1,2,...,k,

fis, X(s = 7(s)))

ai(s)

@ a,(s) ex b jai(r)dr
(o =[S et

exp fow Liai(r)dr — 1 [lil’i(s)—gi(xi(s))+

}@

) [ /H—w Liai(s)exp [ Liai(r) dr Y /“’“’ Liai(s) exp [1 Lias(r) dr]
m; w 8, i @
t exp [y Liai(r)dr — 1 t exp Jo" liai(r) dr — 1

:[mi7Mi]7 z:k—|—17k—|—2,,n

Next, we show that T: Q —  is completely continuous. Obviously, T'(2) is a
uniformly bounded set and T is continuous on €2, so it suffices to show T'(2) is
equi-continuous by Ascoli-Arzela theorem. For any x € 2, we have

(T2 (0) = ~bas O (T)0) + ast)[s(as(0) + () - L2 LEZTON]
i=1,2,....k,

(T:) () = Liaa (t) (Ta) (1) = ai(8) liwa(t) = gula(t)) +
i=k+1,....n.

filt, X (¢t - T(t)))]
al(t) ’
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Since T'(2) is bounded and f;, g;, a; are continuous, there exists p > 0 such that
|(Tx:) ()| <p, z€Q, i=12,...,n

which implies that T'(£2) is equi-continuous. So T is a completely continuous operator
on €. Clearly, €2 is a close and convex set in . Therefore, T" has a fixed point z* € {2
by Lemma [2.1] Furthermore, m; < x}(t) < M;, which means (23(t),...,2}(t)) € E
is a w-periodic solution of . The proof is complete. O

Remark 2.1. Assume that all conditions of Theorem B.1] are satisfies. Further
suppose that there exist 1 < iy < n and ¢y € [0,w] such that any u; € [m;, M;],

fio(t07ula' '-7un)

(27) P (to) < gio(mio) if ’io 6>—[mi0,Mz‘g]
%0
and
io (L0, UL, ..oy Up P
(2.8) ioto: 1 ) > gio(Miy) I do €<y 0] -

ai, (to)
Then z} > m;, for any t € [0,w].
Proof. Assume that there is a t* € [0,w] such that z} (t*) = m;,. Then
I /t*“’ aio (s) exp [ Ligaiy (1) dr

‘0 - exp fow ligai,(r)dr —1

[t ) by o) = L2 BT g

S, iOSka

or

J— o [ (S) exp fst*+w lioaio (’r’) dr
mi, = /t exp fow Lig iy (1) dr — 1
ig\ 2 X — T
|:llo‘rzo( ) - gio(x:O(S)) + f (8 ai(?s) (S))) d

where f;(t, X*(t — 7(t)) = fi(t, 25t — 11 (t)), ..., 25 (t — T (1))).
On the other hand, since for s € [0,w],

9io(73,(5)) | fio (s, X" (s = 7(5)))

S, i()>l€,

F(s) — —my, >0 for ip<
L + () e mi, >0 for ig <k,
7 io i X* — .
zj (s) — 9io (%7, (5)) f°<s (s—7(s)) _ m;, >0 for ig>k,
Li Lig@iy(8)

one can obtain that for any s € [0, w],

9io(3,(5)) | fio (8, X" (s = 7(5)))
lio +$i0 (S) - l alo( )

0@ (8) | fuls X = ()

l’io lZo Qi (S)

—mi, =0 for o<k

—m;, =0 for g >k,
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which is a contradiction since

io(miy) — fiy (fo, X*(to — 7(t0)))

0> >0 for ig<k,

Lig Ligaiy (to)
0> —Finlmio) | Juollo X7 — 7)) o gop o 5 g,
lio lio Qg (to)

O

Remark 2.2. Assume that all conditions of Theorem 2.1 are satisfies. Further
suppose that there exist 1 < rg < n and t; € [0,w] such that any u; € [m;, M;],

f’r’o(tlvul,~"7u’n)

(29) aro(tl) >gro(Mro) if 7o €>[mm,M7~0]
and

ro(T1, UL, ...y Unp .
(2.10) fro(t1, 1 ) < Gro(Mry) i 10 €=pmpy, M) -

Qrgy (tl)
Then z; < M,, for any t € [0,w].

Consider the equations
(2.11) a'(t) = —a(t)a(t) + f(t.x(t — 7(t)));
(2.12) o' (t) = a(t)z(t) — f(t, z(t — 7(t)))

where f is w-periodic in ¢, a, 7 are w-periodic continuous functions and a(t) > 0
for all t € R.

Corollary 2.1. Assume that there exist constants M > m such that f € C(R X
[m, M], R) and for any u € [m, M| and t € [0, w]

ma(t) < f(t,u) < Ma(t).
Then (2.11) (or (2.12))) has at least one periodic solution m < x < M.

Next, we consider the existence of a positive w-periodic solution for problem .
We give explicit intervals of A such that has at least one positive w-periodic
solution.

In the following, we assume that a, h, 7: R — R are w-periodic continuous
functions and a(t) > 0,h(t) > 0 for any t € [0,w]. f: (0,400) — (0,400) is
continuous.

Put
- ft) TR () R f@t) S
Fo=tmeup G5 gy =lmint G0 T =lmap 52, S = lmint 50
* = max @, = mi @
tefo,w] a(t) telo,w] a(t)

Theorem 2.2. The problem (1.4) has at least one positive periodic solution if one
of the following conditions holds:
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(Hy) a <0, liminf, o+ f(t) > 0, limsup,_,, ., f(t) < 400 and

(£ )7 <A< (fod") ™!
(H2) >0, limsup,_+ f(t) < 400, liminf; o0 f(t) > 0 and

(fe)H <A< (foe0")™!

Proof. Assume that (H;) holds. From the definition of f,, [, and (Hi), there
exist ry > 0 and 7y > ry such that

M) f(u) _ o

< 0 < f
o) <u®, <u<ry, uel(Itl)rl}f( u) >
AR()f (1) > u”, u >, sup  f(u) < +o0.
a(t) w€[r1,+00)
Let A € (é, ?015*). It is easy to check that
o [ AR(E) f(u) _
fq—"F——>:t =
inf {25 5t €0l u e (O]} =pn >0,
Ah(t
sup{(agtf)(u) (tef0,w],ue [r1,+oo)} =1 < +00.
Put
m = mm{%1 ﬁlé}, Mzmax{?fl,ylé},
then
MO <y < )\h(t()t];(u) P <m m<u<r,
a
MO < 2o < Ah(t) f(u) < <m®. B <u<M
a(t)
On the other hand
M < gy < Ah(;()g;(“) <@ <m®, n<u<nh

Hence,

o < MOS0 _
- alty —

By Theorem (1.4) has at least one periodic solution z € C,,: 0 <m < x < M.

m<u<M.

Assume that (Hz) holds. There exist 0 < r3 < 1 and 75 > 1 such that
MO

<
"0 >u®, 0<u<rs, ues(l(l)gg]f(u)<+oo,
AR(8) f(u) _ .
« > f .
a(t) <u®, u>rs3, ue[;£+oo)f(u) >0
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inf{w (tef0,w],ue [r:;,—&-oo)} =p3 >0,

)
MU () (te0,w],ue (O,Fg]} = iz < +00.

< {/\h(t)
YU a()
Put
. frs L .
m:mln{;,ug}, M:max{2r3,,u3},
then

magng“, m<u<M.
a(t)

By Theorem (1.4) has at least one periodic solution z € C,,: 0 <m < x < M.
The proof is complete. ([

Corollary 2.2.

(1) Assume that « < 0 and 0 < liminf, o+ f(t) < limsup,_ o+ f(t) < +o0,
then (1.4) has at least one positive periodic solution for sufficiently large

A > 0.
(2) Assume that a < 0 and 0 < liminf, . f(t) < limsup,_,,  f(t) < +o0,

then (1.4) has at least one positive periodic solution for sufficiently small

A>0.
(3) Assume that > 0 and 0 < liminf; o+ f(t) < limsup,_, g+ f(t) < +oo,

then (L.4]) has at least one positive periodic solution for sufficiently small

A>0.
(4) Assume that a > 0 and 0 < liminf, . f(t) < limsup,_,,  f(t) < +o0,

then (1.4) has at least one positive periodic solution for sufficiently large
A > 0.

Proof. Here we only prove case (1). Since 0 < liminf; o+ f(t) < limsup,_ o+ f(¢) <
400, there exists 0 < r < 1 such that

pw:= 1inf f(t) < sup f(t):=v < +o0.
te(0,r] te(0,r]

Let A > 0 such that (Adu)s < r and set
m = (A6v)= M = (Aop)= ,
then r > M >m > 0 and

M‘lgwgm‘l, m<u<M.
a(t)

By Theorem (1.4) has at least one periodic solution z € C,,: 0 <m < x < M.
The proof is complete. O
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3. SOME EXAMPLES

In this section, we apply the main results obtained in previous section to several
examples.

Example 3.1. Consider the differential equation

1
/

(3.1) z'(t) om0 +b(t),
where b(t) is a w-periodic continuous function.

It is easy to verify form Theorem that has least two periodic solutions
0 < |z1] < 0.57 < |zo| < wif |b(t)| > 1 for all t € R. Since x; +2kn(i = 1,2,k € Z)
is also the periodic solutions of , has infinitely many periodic solutions
when [b(t)| > 1.

Example 3.2. Consider the differential equation

(3.2) /() = (1 + %)x?’(t) — f(a(t — cost))
where
~Joa, u<?,
f(u){ug—u—i—i, u>1.

In (3.2), a(t) = 1+ 0.01sint and g(x) = 3. Put m; = 0.1, My = 0.6, my = 1.1,
Ms = 2, then

g(lm;) < <g(M;), Yue[m;M],teR, i=12.

By Theorem (3.2) has two positive 2m-periodic solutions z1,x2 such that
my <z < My, me <z < M.

Example 3.3. Consider the differential equation
sint

(3.3) o' (t) = 23(t) + ﬁ - /\(1 + T) (2 — sinz(t — cost))

where A > 0 is a positive real parameter. '
In (B3), a(t) =1, g(x) = 2> + 27 and f(t,u) = A\(1 + 22L)(2 — sinu). Put

2 3/ 9A
O\ ) 1 ) ma ) 2 )

2
then for sufficiently large A > 0,
g(Ml)Sf(t,U)Sg(ml), ug[mlyMl]a tGRa

mi =

g(ma) < f(t,u) < g(Mz), wé€[mo, M), teR.

By Theorem (3.3) has two positive 2m-periodic solutions x1 € [my, Mi], 2 €
[ma, Ms] for sufficiently large A > 0.
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Example 3.4. Consider the differential system

2/(t) = (2 — cos)a(t) — (1),

(3.4)

y'(t) = —2siny(t) + exp(0.5z(t) — y(t)) .

Put D =[0.01,0.29] x [0.2,0.53], then for (u1,u2) € D and t € [0, 27],

2

001 < —2 <029, 2sin0.2 < 25142 < 26in0.53.
2 —cost

By Theorem (3.4) has a 2m-periodic solution (z(t),y(t)) such that 0.01 <
z(t) <0.29 and 0.2 < y(t) < 0.53.
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