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SYMPLECTIC TWISTOR OPERATOR

AND ITS SOLUTION SPACE ON R2

Marie Dostálová and Petr Somberg

Abstract. We introduce the symplectic twistor operator Ts in symplectic
spin geometry of real dimension two, as a symplectic analogue of the Dolbeault
operator in complex spin geometry of complex dimension 1. Based on the
techniques of the metaplectic Howe duality and algebraic Weyl algebra, we
compute the space of its solutions on R2.

1. Introduction and motivation

Central problems and questions in differential geometry of Riemannian spin
manifolds are usually reflected in analytic and spectral properties of two first order
differential operators acting on spinors, the Dirac operator and the twistor operator.
In particular, there is a quite subtle relation between geometry and topology of a
given manifold and the spectra resp. the solution spaces of these operators, see e.g.
[6], [1] and references therein.

Using the Segal-Shale-Weil representation, the symplectic version of Dirac
operator Ds was introduced in [10], and some of its basic analytic and spectral
properties were studied in [4], [8], [9]. Introducing the metaplectic Howe duality,
[2], a representation theoretical characterization of the solution space of symplectic
Dirac operator was determined on the symplectic space (R2n, ω). However, an
explicit analytic description of this space is still missing and this fact has also
substantial consequences for the present article.

A variant of first order symplectic twistor operator was introduced in [9] in the
framework of contact parabolic geometry, descending to the symplectic twistor
operator on symplectic leaves of foliation. Basic properties, including its solution
space, of the symplectic operator on R2n are discussed in, [5]. In particular, the
case n = 1 fits into the framework of [5] as well, but all the results for n = 1 and
n 6= 1 follow from intrinsically different reasons. Consequently, there is a substantial
difference between the case of n = 1 and n 6= 1, and the approach in [5] based
on geometrical prolongation of symplectic twistor differential equation did not
enlighten the reason for this difference. Roughly speaking, the problem behind this
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is that many first order operators (e.g., Dirac operator, twistor operator on spinors)
coincide in the case of one complex dimension to the Cauchy-Riemann (Dolbeault)
and its conjugate operators.

The aim of the present article is to fill this gap and discuss the case of n = 1 by
different methods, namely, by analytical and combinatorial techniques. A part of
the problem of finding solution space of Ts is the discovery of certain canonical
representative solutions of the symplectic Dirac operator Ds and the discovery of
certain non-trivial identities in the algebraic Weyl algebra.

The system of partial differential equations representing Ts is overdetermined,
acting on the space of functions valued in an infinite dimensional vector space of
the Segal-Shale-Weil representation, and the solution space of Ts is (even locally)
infinite dimensional. Notice that the techniques of the metaplectic Howe duality
are not restricted to (R2, ω), but it is not straightforward for (R2n, ω), n > 1, to
write more explicit formulas for solutions with values in the higher dimensional
non-commutative algebraic Weyl algebra.

The structure of our article goes as follows. In the first section we review
basic properties of symplectic spin geometry in real dimension 2, with emphasis
on metaplectic Howe duality. In the second section we give a general definition
of symplectic twistor operator Ts. The space of polynomial solutions of Ts on
R2 is analyzed in Section 3, relying on two basic principles. The first one is
representation theoretical, coming from the action of the metaplectic Lie algebra on
function space of interest. The second one is then the construction of representative
solutions in particular irreducible subspaces of the function space. As a byproduct
of our approach, we construct specific polynomial solutions of the symplectic Dirac
operator Ds, which is also a novelty. In the last Section 4 we indicate the collection
of unsolved problems directly related to the topic of the present article.

Throughout the article, we use the notation N0 for the set of natural numbers
including zero and N for the set of natural numbers without zero.

1.1. Metaplectic Lie algebra mp(2,R), symplectic Clifford algebra and a
class of simple lowest weight modules for mp(2,R). In the present section
we recollect basic algebraic and representation theoretical information needed in
the analysis of the solution space of the symplectic twistor operator Ts, see e.g.,
[2], [4], [7], [8], [9].

Let us consider a 2-dimensional symplectic vector space (R2, ω = dx∧dy), and a
symplectic basis {e, f} with respect to the non-degenerate two form ω ∈ ∧2R2? . The
linear action of sp(2,R) ' sl(2,R) on R2 induces action on its tensor representations,
and we have g?ω = ω for all g ∈ sp(2,R). The set of three matrices

H =
(

1 0
0 −1

)
, X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
is a basis of sp(2,R).

The metaplectic Lie algebra mp(2,R) is the Lie algebra of the twofold group
covering π : Mp(2,R)→ Sp(2,R) of the symplectic Lie group Sp(2,R). It can be
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realized by homogeneity two elements in the symplectic Clifford algebra Cls(R2, ω),
where the homomorphism π? : mp(2,R)→ sp(2,R) is given by

π?(e · e) = −2X ,

π?(f · f) = 2Y ,(1)

π?(e · f + f · e) = 2H .

Definition 1.1. The symplectic Clifford algebra Cls(R2, ω) is an associative unital
algebra over C, realized as a quotient of the tensor algebra T (e, f) by a two-sided
ideal 〈I〉 ⊂ T (e, f), generated by

vi · vj − vj · vi = −2ω(vi, vj)

for all vi, vj ∈ R2.

The symplectic Clifford algebra Cls(R2, ω) is isomorphic to the Weyl algebra
W2 of complex valued algebraic differential operators on the real line R, and the
symplectic Lie algebra sp(2,R) can be realized as a subalgebra of W2. In particular,
the Weyl algebra is an associative algebra generated by {q, ∂q}, the multiplication
operator by q and differentiation ∂q, and the symplectic Lie algebra sp(2,R) has a
basis {− i2q

2,− i2
∂2

∂q2 , q
∂
∂q + 1

2}.
The symplectic spinor representation is an irreducible Segal-Shale-Weil represen-

tation of Cls(R2, ω) on L2(R, e−
q2
2 dqR), the space of square integrable functions

on (R, dµ = e−
q2
2 dqR) with dqR the Lebesgue measure. Its action, the symplectic

Clifford multiplication cs, preserves the subspace of C∞(smooth)-vectors given by
Schwartz space S(R) of rapidly decreasing complex valued functions on R as a dense
subspace. The space S(R) can be regarded as a smooth (Frechet) globalization of
the space of K̃ = Ũ(1)-finite vectors in the representation, where K̃ ⊂ Mp(2,R) is
the maximal compact subgroup given by the double cover of K = U(1) ⊂ Sp(2,R).
Though we shall work in the smooth globalization S(R), our representative vectors
constructed in Section 3 will always belong to the underlying Harish-Chandra mo-
dule of K̃ = Ũ(1)-finite vectors preserved by cs, too. The function spaces associated
to Segal-Shale-Weil representation are supported on R ⊂ R2, a maximal isotropic
subspace of (R2, ω).

In its restriction to mp(2,R), it decomposes into two unitary representations
realized on the subspace of even resp. odd functions:

(2) % : mp(2,R)→ End
(
S(R)

)
,

where the basis vectors act by

(3)

%(e · e) = iq2 ,

%(f · f) = −i∂2
q ,

%(e · f + f · e) = q∂q + ∂qq .
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In this representation Cls(R2, ω) acts on L2(R, e−
q2
2 dqR) by continuous unbounded

operators with domain S(R). The space of K̃ = Ũ(1)-finite vectors has a basis
{qje−

q2
2 }∞j=0, its even mp(2,R)-submodule {q2je−

q2
2 }∞j=0 resp. odd mp(2,R)-sub-

module {q2j+1e−
q2
2 }∞j=0. It is also an irreducible representation of mp(2,R) n h(2),

the semidirect product of mp(2,R) and a 3-dimensional Heisenberg Lie algebra
spanned by {e, f, Id}. In the article we denote the Segal-Shale-Weil representation
by S and we have S ' S+ ⊕ S− as mp(2,R)-module.

Let us denote by Pol(R2) the vector space of complex valued polynomials on R2,
and by Poll(R2) the subspace of homogeneity l polynomials. The complex vector
space Poll(R2) is as an irreducible mp(2,R)-module isomorphic to Sl(C2), the l-th
symmetric power of the complexification of the fundamental vector representation
R2, l ∈ N0.

1.2. Segal-Shale-Weil representation and the metaplectic Howe duality.
Let us recall a representation-theoretical result of [3], formulated in the opposite
convention of highest weight metaplectic modules. Let λ1 be the fundamental
weight of the Lie algebra sp(2,R), and let L(λ) denotes the simple module over
universal enveloping algebra U(mp(2,R)) of mp(2,R) generated by highest weight
vector of the weight λ. Then the Segal-Shale-Weil representation for mp(2,R) is the
highest weight representation L(− 1

2λ1)⊕ L(− 3
2λ1). The highest weight vector is

the eigenvector of the generator of 1-dimensional maximal commutative subalgebra
of mp(2,R).

The decomposition of the space of polynomial functions on R2 valued in the
Segal-Shale-Weil representation corresponds to the tensor product of L(− 1

2λ1)⊕
L(− 3

2λ1) with symmetric powers Sl(C2n), l ∈ N0, of the fundamental vector
representation C2 of sp(2,R). Note that all summands in the decomposition are
again irreducible representations of mp(2,R).

Lemma 1.2 ([3]). Let l ∈ N0.

(1) We have for L
(
− 1

2λ1
)

and all l:

L
(
− 1

2λ1
)
⊗ Sl(C2) ' L

(
− 1

2λ1
)
⊕ L

(
λ1 − 1

2λ1
)
⊕ . . .

⊕ L
(
(l − 1)λ1 − 1

2λ1
)
⊕ L

(
lλ1 − 1

2λ1
)
,

(2) We have for L(− 3
2λ1) and all l:

L
(
− 3

2λ1
)
⊗ Sl(C2) ' L

(
− 3

2λ1
)
⊕ L

(
λ1 − 3

2λ1
)
⊕ . . .

⊕ L
(
(l − 1)λ1 − 3

2λ1
)
⊕ L

(
lλ1 − 3

2λ1
)
.

Another way of realizing this decomposition is the content of metaplectic Howe
duality, [2]. The metaplectic analogue of the classical theorem on the separation
of variables allows to decompose the space Pol(R2) ⊗ S of complex polynomials
valued in the Segal-Shale-Weil representation under the action of mp(2,R) into a
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direct sum of simple lowest weight mp(2,R)-modules

(4) Pol(R2)⊗ S '
∞⊕
l=0

∞⊕
j=0

XjsMl ,

where we use the notation Ml := M+
l ⊕M

−
l . This decomposition takes the form of

an infinite triangle

P0 ⊗ S P1 ⊗ S P2 ⊗ S P3 ⊗ S P4 ⊗ S P5 ⊗ S

M0 // XsM0
⊕

// X2
sM0
⊕

// X3
sM0
⊕

// X4
sM0
⊕

// X5
sM0
⊕

M1 // XsM1
⊕

// X2
sM1
⊕

// X3
sM1
⊕

// X4
sM1
⊕

M2 // XsM2
⊕

// X2
sM2
⊕

// X3
sM2
⊕

M3 // XsM3
⊕

// X2
sM3
⊕

M4 // XsM4
⊕

M5

(5)

Let us now explain the notation used in the previous scheme. First of all, we
used the shorthand notation Pl = Poll(R2), l ∈ N0, and all spaces and arrows on
the picture have the following meaning. The three operators (i ∈ C is the complex
unit)

(6)

Xs = y∂q + ixq ,

Ds = iq∂y − ∂x∂q ,
E = x∂x + y∂y ,

whereDs acts horizontally asXs but in the opposite direction, fulfill the sl(2,R)-com-
mutation relations:

[E + 1, Ds] = −Ds ,

[E + 1, Xs] = Xs ,(7)

[Ds, Xs] = E + 1 .

Let s(x, y, q) ∈ Pol(R2)⊗ S, h ∈ Mp(2,R) and π(h) = g ∈ Sp(2,R) for the double
cover map π : Mp(2,R)→ Sp(2,R). We define the action of Mp(2,R) to be

%̃(h)s(x, y, q) = %(h)s(π(g−1)
(
x
y

)
, q) = %(h)s(dx− by,−cx+ ay, q) ,

g =
(
a b
c d

)
∈ SL(2,R) ,(8)
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where % acts on the Segal-Shale-Weil representation via (2). Passing to the infini-
tesimal action, we get the operators representing the basis elements of mp(2,R):

d

dt

∣∣∣
t=0

%̃(exp(tX))s(x, y, q) = d

dt

∣∣∣
t=0

%

(
1 t
0 1

)
s(x− yt, y, q)

= − i2q
2e−

i
2 tq

2
s(x− yt, y, q)

∣∣∣
t=0

+ e−
i
2 tq

2 d

dt
s(x− yt, y, q)

∣∣∣
t=0

=
(
− i

2q
2 − y ∂

∂x

)
s(x, y, q) ,

d

dt

∣∣∣
t=0

%̃(exp(tH))s(x, y, q) = d

dt

∣∣∣
t=0

%

(
et t
0 e−1

)
s(xe−t, yet, q)

= 1
2e

1
2 ts(xe−t, yet, qet) + e

1
2 t
d

dt
s(xe−t, yet, qet)

∣∣∣
t=0

=
(1

2 − x
∂

∂x
+ y

∂

∂y
+ q

∂

∂q

)
s(x, y, q) ,

%̃(X) = −y ∂
∂x
− i

2q
2, %̃(Y ) = −x ∂

∂y
− i

2
∂2

∂q2 ,

%̃(H) = −x ∂

∂x
+ y

∂

∂y
+ q

∂

∂q
+ 1

2 ,(9)

and they satisfy commutation rules of the Lie algebra mp(2,R):
[%̃(X), %̃(Y )] = %̃(H),

[%̃(H), %̃(X)] = 2%̃(X),

[%̃(H), %̃(Y )] = −2%̃(Y ) .

Notice that we have not derived the explicit formula for %̃(Y ), because it easily
follows from the previous Lie algebra structure. Observe that the three operators
preserve homogeneity in x, y. The Casimir operator Cas ∈ U(mp(2,R))⊗Cls(R2, ω):

Cas = %̃(H)2 + 1 + 2%̃(X)%̃(Y ) + 2%̃(Y )%̃(X) ,
acts by differential operator

Cas = x2∂2
x + y2∂2

y + 2x∂x + 4y∂y + 2xy∂x∂y + 1
4

− 2xq∂x∂q + 2yq∂y∂q + 2iy∂x∂2
q + 2ixq2∂y

= Ex(Ex − 1) + Ey(Ey − 1) + 2Ex + 4Ey + 2ExEy + 1
4

− 2ExEq + 2EyEq + 2iy∂x∂2
q + 2ixq2∂y.(10)

Here we introduced the notation ∂x := ∂
∂x , ∂x := ∂

∂x and Ex = x∂x, Ey = y∂y,
Eq = q∂q for the Euler homogeneity operators.
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Lemma 1.3. The operators Xs and Ds commute with operators %̃(X), %̃(Y ) and
%̃(H). In other words, they are mp(2,R) intertwining differential operators on
complex polynomials valued in the Segal-Shale-Weil representation.

Proof. For example, we have
(11) [Ds, %̃(H)] = iq∂y[∂y, y] + iq∂q[q, ∂q] + ∂x∂q[∂x, x]− ∂x∂q[∂q, q] = 0,
and all remaining commutators are computed analogously. �

The action of mp(2,R)× sl(2,R) generates the multiplicity free decomposition of
the representation and the pair of Lie algebras in the product is called metaplectic
Howe dual pair. The operators Xs, Ds act on the previous picture horizontally
and isomorphically identify the two neighbouring mp(2,R)-modules. The modules
Ml, l ∈ N on the most left diagonal are termed symplectic monogenics, and are
characterized as l-homogeneous solutions of the symplectic Dirac operator Ds. Thus
the decomposition is given as a vector space by tensor product of the symplectic
monogenics multiplied by polynomial algebra of invariants C[Xs]. The operator Xs
maps polynomial symplectic spinors valued in the odd part of S into symplectic
spinors valued in the even part of S. This means that M−m is valued in S−, XsM−m
is valued in S+, etc.

2. The symplectic twistor operator Ts

We start with an abstract definition of the symplectic twistor operator Ts and
then specialize it to the symplectic space (R2, ω).

Definition 2.1. Let (M,∇, ω) be a symplectic spin manifold of dimension 2n,
∇s the associated symplectic spin covariant derivative and ω ∈ C∞(M,∧2T ?M) a
non-degenerate 2-form such that ∇ω = 0. We denote by

{e1, . . . , e2n} ≡ {e1, . . . , en, f1, . . . , fn}
a local symplectic frame. The symplectic twistor operator Ts on M is the first order
differential operator Ts acting on smooth symplectic spinors S:

∇s : C∞(M,S) −→ T ?M ⊗ C∞(M,S) ,
Ts := PKer(c) ◦ ω−1 ◦ ∇s : C∞(M,S) −→ C∞(M, T ) ,(12)

where T is the space of symplectic twistors, T ?M ⊗S ' S ⊕ T , given by algebraic
projection

PKer(cs) : T ?M ⊗ C∞(M,S) −→ C∞(M, T )
on the kernel of the symplectic Clifford multiplication cs. In the local symplectic
coframe {ε1}2nj=1 dual to the sympectic frame {ej}2nj=1 with respect to ω, we have
the local formula for Ts:

(13) Ts =
(

1 + 1
n

) 2n∑
k=1

εk ⊗∇sek + i

n

2n∑
j,k,l=1

εl ⊗ ωkjej · el · ∇sek ,

where · is the shorthand notation for the symplectic Clifford multiplication and
i ∈ C is the imaginary unit. We use the convention ωkj = 1 for j = k + n and
k = 1, . . . , n, ωkj = −1 for k = n+ 1, . . . , 2n and j = k−n, and ωkj = 0 otherwise.
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The symplectic Dirac operator Ds, defined as the image of the symplectic Clifford
multiplication cs, has the explicit form (6).

Lemma 2.2. The symplectic twistor operator Ts is Mp(2n,R)-invariant.

Proof. The property of invariance is a direct consequence of equivariance of
symplectic covariant derivative and invariance of algebraic projection PKer(cs), and
amounts to show that

(14) Ts(%̃(g)s) = %̃(g)(Tss)

for any g ∈ Mp(2n,R) and s ∈ C∞(M,S). Using the local formula (13) for Ts in a
local chart (x1, . . . , x2n), both sides of (14) are equal(

1 + 1
n

) 2n∑
k=1

εk ⊗ %(g) ∂

∂xk
[
s
(
π(g)−1x

)]
+ i

n

2n∑
j,k,l=1

εl ⊗ ωkjej · el ·
[
%(g) ∂

∂xk
[
s
(
π(g)−1x

)]]
and the proof follows. �

In the case M = (R2n, ω), the symplectic twistor operator is

(15) Ts =
(

1 + 1
n

) 2n∑
k=1

εk ⊗ ∂

∂xk
+ i

n

2n∑
j,k,l=1

εl ⊗ ωkjej · el ·
∂

∂xk
.

Lemma 2.3. In the case of the symplectic space (R2, ω) with coordinates x, y and
ω = dx∧ dy, a symplectic frame {e, f} and its dual coframe {ε1, ε2}, the symplectic
twistor operator Ts : C∞(R2,S)→ C∞(R2, T ) acts on a smooth symplectic spinor
s(x, y, q) ∈ C∞(R2,S) as

(16) Ts(s) = ε1 ⊗
( ∂s
∂x
− q ∂

2s

∂q∂x
+ iq2 ∂s

∂y

)
+ ε2 ⊗

(
2∂s
∂y

+ i
∂3s

∂q2∂x
+ q

∂2s

∂q∂y

)
.

The last display follows from (15) by direct substitution of symplectic Clifford
endomorphisms. The next lemma simplifies the condition on a symplectic spinor to
be in the kernel of Ts.

Lemma 2.4. A smooth symplectic spinor s(x, y, q) ∈ C∞(R2,S) is in the kernel
of Ts if and only if it fulfills the equation( ∂

∂x
− q ∂2

∂q∂x
+ iq2 ∂

∂y

)
s = 0 .(17)

Proof. The claim is a consequence of Lemma 2.3, because the covectors ε1, ε2 are
linearly independent and the differential operators in (16) (the two components
of Ts by ε1 and ε2) have the same solution space (i.e., s solving one of them
implies that s solves the second one.) This implies the equivalence statement in
the lemma. �
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Notice that %̃(X), %̃(Y ) and %̃(H) preserve the solution space of the twistor
equation (17), i.e. if the symplectic spinor s solves (17) then %̃(X)s, %̃(Y )s and
%̃(H)s solve (17). This is a consequence of mp(2,R)-invariance of the twistor
operator Ts on R2 (in fact, the same observation is true in any dimension.) By
abuse of notation, we use Ts in Section 3 to denote the operator (17) and call
it symplectic twistor operator – this terminology is justified by the reduction
in Lemma 2.4. In the article we work with polynomial (in x, y or z, z̄) smooth
symplectic spinors Pol(R2,S).

3. The polynomial solution space of the symplectic twistor operator
Ts on R2

Let us consider the complex vector space of symplectic spinor valued polynomials
Pol(R2,S), S ' S−⊕S+, together with its decomposition on irreducible subspaces
with respect to the natural action of mp(2,R). It follows from mp(2,R)-invariance
of the symplectic twistor operator that it is sufficient to characterize its behaviour
on any non-zero vector in an irreducible mp(2,R)-submodule, and that its action
preserves the subspace of homogeneous symplectic spinors. This is what we are
going to accomplish in the present section. Note that the meaning of the natural
number n ∈ N used in previous sections to denote the dimension of the underlying
symplectic space is different from its use in the present section.

The main technical difficulty consists of finding suitable representative smooth
vectors in each irreducible mp(2,R)-subspace. We shall find a general characterizing
condition for a polynomial (in variables x, y) valued in the Schwartz space S(R)
(in the variable q) as a formal power series, and the representative vectors are
always conveniently chosen as polynomials (weighted by exponential e−

q2
2 ) in q. In

other words, the constructed vectors are K̃ = Ũ(1)-finite vectors in S(R). These
representative vectors are then tested on the symplectic twistor operator Ts and
the final conclusion is reached.

First of all, the constant symplectic spinors belong to the solution space of Ts.
We have

Lemma 3.1.

Ts(Xse−
q2
2 ) = Ts

(
ie−

q2
2 q(x+ iy)

)
= 0 ,(18)

Ts(Xsqe−
q2
2 ) = Ts(e−

q2
2
(
iq2(x+ iy) + y)

)
= 0 .(19)

The next lemma is preparatory for further considerations.

Lemma 3.2. We have for any n ∈ N0, (Xs)n ∈ End(Pol(R2,S)), the identity

(20) (Xs)n =
bn2 c∑
j=0

n−2j∑
k=0

Anjky
n−j−k(ix)j+kqk∂n−2j−k

q .
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Here
⌊
n
2
⌋

is the floor function applied to n2 , and the coefficients Anjk ∈ C fulfill the
4-term recurrent relation
(21) Anjk = A

(n−1)
jk +A

(n−1)
j(k−1) + (k + 1)A(n−1)

(j−1)(k+1).

We use the normalization A0
00 = 1, and Anjk 6= 0 only for n ∈ N0, j = 0, . . . ,

⌊
n
2
⌋
,

and k = 0, . . . , n− 2j.

Proof. The proof is by induction on n ∈ N0. The claim is trivial for n = 0, and
for n = 1 we have

(Xs)1 = A1
00y∂q +A1

01ixq,

where A1
00 = A0

00 = 1 and A1
01 = A0

00 = 1.
We assume that the formula holds for n− 1 and aim to prove it for n:

(y∂q + ixq)
(⌊n−1

2

⌋∑
j=0

n−1−2j∑
k=0

A
(n−1)
jk

yn−1−j−k(ix)j+kqk∂n−1−2j−k
q

)

=

⌊
n−1

2

⌋∑
j=0

n−1−2j∑
k=0

A
(n−1)
jk

(
yn−j−k(ix)j+kqk∂n−2j−k

q

+ yn−1−j−k(ix)j+k+1qk+1∂n−1−2j−k
q + kyn−j−k(ix)j+kqk−1∂n−1−2j−k

q

)
=

⌊
n−1

2

⌋∑
j=0

n−1−2j∑
k=0

(
A

(n−1)
jk

+A(n−1)
j(k−1)+(k + 1)A(n−1)

(j−1)(k+1)

)
yn−j−k(ix)j+kqk∂n−2j−k

q

+
(
A

(n−1)
j(n−3) + (n− 1)A(n−1)

(j−1)(n−1)

)
yj(ix)n−jqn−2j

+A(n−1)(⌊
n−1

2

⌋)(
n−2
⌊
n−1

2

⌋
−1
)(n− 2

⌊
n− 1

2

⌋
− 1
)
y

⌊
n−1

2

⌋
+1(ix)n−

⌊
n−1

2

⌋
−1

Now we apply the induction argument to the first term, the identity(
A

(n−1)
j(n−3) + (n− 1)A(n−1)

(j−1)(n−1)
)

= A
(n−1)
j(n−2)

to the second term, and as for the third term we take j to sum up to
⌊
n
2
⌋

because for
even n we have

(
n− 2

⌊
n−1

2
⌋
− 1
)

= 1 while for odd n this is equal to 0. Therefore,
the previous expression equals to

bn2 c∑
j=0

n−2j∑
k=0

Anjky
n−j−k(ix)j+kqk∂n−2j−k

q ,

which completes the required statement. �

Remark 3.3. Notice that for j = 0, the solution of recurrent relation in (21)
corresponds to binomial coefficients. It follows from A

(n−1)
(−1)(k+1) = 0,

An0k = A
(n−1)
0k +A

(n−1)
0(k−1) ,

and therefore, An0k =
(
n
k

)
.
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Lemma 3.4. We have An1(n−2) = n(n−1)
2 =

(
n
n−2
)
.

Proof. We use the relation An1(n−2) = A
(n−1)
1(n−2) +A

(n−1)
1(n−3) + (n− 1)A(n−1)

0(n−1), where
An−1

1(n−2) = 0 (because it is out of the range for the index k in the equation (21)). The
proof goes by induction in n: we start with A2

10 = A1
01 = 1, and claim An1(n−2) =

n(n−1)
2 . The induction step gives A(n+1)

1(n−1) = An1(n−2)+nAn0n = n2−n
2 +n = n2+n

2 . �

Let us remark that the composition Ts ◦ (Xs)n for n = 2, 3, acting on e−
q2
2 and

qe−
q2
2 , is non-vanishing. This means that some irreducible mp(2,R)-components

in the decomposition (5) are not in the kernel of Ts:

(22)

Ts(X2
s e
− q

2
2 ) = e−

q2
2 (q2x+ iy + iq2y) 6= 0 ,

Ts(X2
s qe
− q

2
2 ) = e−

q2
2 (q3x+ iq3y) 6= 0,

Ts(X3
s e
− q

2
2 ) = e−

q2
2 (3iq3x2 − 6q3xy − 3iq3y2) 6= 0,

Ts(X3
s qe
− q

2
2 ) = e−

q2
2 (3iq4x2 + 6q2xy − 6q4xy + 3iy2

+ 6iq2y2 − 3iq4y2) 6= 0 ,

Lemma 3.5. Let n ∈ N0. Then

Ts ◦ (Xs)n =
bn2 c∑
j=0

n−2j∑
k=0

Anjk
(
i(j + k)yn−j−k(ix)j+k−1qk∂n−2j−k

q

+ yn−j−k(ix)j+kqk∂x∂n−2j−k
q − i(j + k)yn−j−k(ix)j+k−1qk+1∂n−2j−k+1

q

− yn−j−k(ix)j+kqk+1∂x∂
n−2j−k+1
q − ik(j + k)yn−j−k(ix)j+k−1qk∂n−2j−k

q

− kyn−j−k(ix)j+kqk∂x∂n−2j−k
q + i(n− j − k)yn−j−k−1(ix)j+kqk+2∂n−2j−k

q

+ iyn−j−k(ix)j+kqk+2∂y∂
n−2j−k
q

)(23)

In particular, Ts((Xs)ne−
q2
2 ) 6= 0 and Ts((Xs)nqe−

q2
2 ) 6= 0 for all n > 1.

Proof. The proof is based on the identity in Lemma 3.2. The non-triviality
of the composition is detected by the coefficient by monomial xn−1qne−

q2
2 in

Ts((Xs)ne−
q2
2 ). It follows from the identity (23) that this coefficient is (i ∈ C is

the complex unit)

in
(
An0nn−An0nn2 +An1(n−2)

)
xn−1qne−

q2
2

= in
((

n

n

)
(n− n2) +

(
n

n− 2

))
xn−1qne−

q2
2

= − inn(n− 1)
2 xn−1qne−

q2
2 ,(24)
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which is non-zero for all n > 1.
As for the action on the vector qe−

q2
2 , the situation is analogous. The coeffi-

cient by monomial xn−1qn+1e−
q2
2 in Ts((Xs)nqe−

q2
2 ) is −in n(n−1)

2 , which is again
non-zero for all n > 1. The proof is complete. �

In the next part we focus for a while on symplectic spinors given by iterative
action of Xs on S+, and complete the task of finding all subspaces of polynomial
solutions of Ts (expressed in the real variables x, y).

Lemma 3.6. The vectors e−
q2
2 (x + iy)m ∈ Polm(R2,S+), m ∈ N0, are in the

kernel of Ds, but not in the kernel of the symplectic twistor operator Ts.

Proof. We get by direct computation,

Ds
(
e−

q2
2 (x+ iy)m

)
= iq∂ye

− q
2

2 (x+ iy)m − ∂x∂qe−
q2
2 (x+ iy)m

= e−
q2
2 (−mq(x+ iy)m−1 +mq(x+ iy)m−1) = 0 ,

Ts
(
e−

q2
2 (x+ iy)m

)
= ∂xe

− q
2

2 (x+ iy)m − q∂x∂qe−
q2
2 (x+ iy)m

+ iq2∂ye
− q

2
2 (x+ iy)m = e−

q2
2 m(x+ iy)m−1 6= 0

for any natural number m > 0. �

Lemma 3.7. Let m ∈ N0. Then the vectors Xse−
q2
2 (x+ iy)m in Polm+1(R2,S+)

are in the kernel of the twistor operator Ts.

Proof. We have

Ts
(
Xse

− q
2

2 (x+ iy)m
)

= Ts
(
iqe−

q2
2 (x+ iy)m+1)

= i(m+ 1)e−
q2
2 (q − q + q2 − q2)(x+ iy)m = 0 .

�

Remark 3.8. The non-trivial elements in Ker(Ts) are

(25) qe−
q2
2 (x+ iy)k , k ∈ N0 .

The next lemma completes the information on the behaviour of Ts for remaining
mp(2,R)-modules coming from the action of Xs on S+.

Lemma 3.9. For all natural numbers n > 1 and all m ∈ N0, we have

Ts
(
(Xs)ne−

q2
2 (x+ iy)m

)
6= 0 .(26)
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Proof. We focus on the coefficient by the monomial xn−1+mqne−
q2
2 in

Ts((Xs)ne−
q2
2 ). It follows from (23) that the contribution to this coefficient is

in(An0nn−An0nn2 +An1(n−2) +An0nm−An0nmn)xn−1+mqne−
q2
2

= in
((

n

n

)
(n− n2 +m−mn) +

(
n

n− 2

))
xn−1+mqne−

q2
2

= − in (n+ 2m)(n− 1)
2 xn−1+mqne−

q2
2 ,(27)

which is non-zero for all natural numbers n > 1 and all m ∈ N0. �

Let us summarize the previous lemmas in the final Theorem.

Theorem 3.10. The solution space of the symplectic twistor operator Ts acting
on Pol(R2,S+) consists of the set of mp(2,R)-modules in the boxes, realized in the
decomposition of Pol(R2,S+) on mp(2,R) irreducible subspaces:

M+
0

e−
q2
2

// XsM
+
0

⊕

// X2
sM

+
0

⊕

// X3
sM

+
0

⊕

// X4
sM

+
0

⊕

// X5
sM

+
0

⊕

. . .

M+
1

e−
q2
2 (x+iy)

// XsM
+
1

⊕

// X2
sM

+
1

⊕

// X3
sM

+
1

⊕

// X4
sM

+
1

⊕

. . .

M+
2

e−
q2
2 (x+iy)2

// XsM
+
2

⊕

// X2
sM

+
2

⊕

// X3
sM

+
2

⊕

. . .

M+
3

e−
q2
2 (x+iy)3

// XsM
+
3

⊕

// X2
sM

+
3

⊕

. . .

M+
4

e−
q2
2 (x+iy)4

// XsM
+
4

⊕

. . .

M+
5

. . .

(28)

Notice that non-zero representative vectors in the solution space of Ds are pictured
under the spaces of symplectic monogenics.

This completes the picture in the case of S+. As we shall see, the representative
solutions of Ds in an arbitrary homogeneity are far more complicated for S− than
for S+, which were chosen to be the powers of z = (x+ iy). A rather convenient way
to simplify the presentation is to pass from the real coordinates x, y to the complex
coordinates z, z for the standard complex structure on R2, where ∂x = (∂z + ∂z̄)
and ∂y = i(∂z − ∂z̄).

Lemma 3.11. The operators Xs, Ds and Ts are in the complex coordinates z, z̄
given by

(29)
Xs = i

2
(
(q − ∂q)z + (q + ∂q)z̄

)
,

Ds = −
(
(q + ∂q)∂z + (−q + ∂q)∂z̄

)
,

Ts =
(
(1− q∂q − q2)∂z + (1− q∂q + q2)∂z̄

)
.
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In the rest of the article we suppress the overall constants by Xs, Ds, Ts.
The reason is that both the metaplectic Howe duality and the solution space of
Ds, Ts are independent of the normalization of Xs, Ds, Ts. In other words, the
representative solutions differ by a non-zero multiple, a property which has no
effect on the results in the article.

We start with the characterization of elements in the solution space of Ds, both
for S+ and S−.

Theorem 3.12. (1) The homogeneity m ∈ N0 in z, z̄ symplectic spinor

(30) s = e−
q2
2 q
(
Am(q)zm +Am−1(q)zm−1z̄ + · · ·+A1(q)zz̄m−1 +A0(q)z̄m

)
,

with coefficients in the formal power series in q,
Ar(q) = ar0 + ar2q

2 + ar4q
4 + . . . , ark ∈ C , r = 0, . . . ,m, k ∈ 2N0

is in the kernel of Ds provided the coefficients ark satisfy the system of
recursion relations

(31)

0 = m(k + 1)amk + (k + 1)am−1
k − 2am−1

k−2 ,

0 = (m− 1)(k + 1)am−1
k + 2(k + 1)am−2

k − 4am−2
k−2 ,

. . .

0 = 2(k + 1)a2
k + (m− 1)(k + 1)a1

k − 2(m− 1)a1
k−2 ,

0 = (k + 1)a1
k +m(k + 1)a0

k − 2ma0
k−2 ,

equivalent to
(32) (m− p)(k + 1)am−pk + (p+ 1)(k + 1)am−1−p

k − 2(p+ 1)am−1−p
k−2 = 0 ,

for all p = 0, 1, . . . ,m− 1.
(2) The homogeneity m ∈ N0 in z, z̄ symplectic spinor s,

(33) s = e−
q2
2
(
Am(q)zm +Am−1(q)zm−1z̄ + · · ·+A1(q)zz̄m−1 +A0(q)z̄m

)
,

with coefficients in the formal power series in q,
Ar(q) = ar0 + ar2q

2 + ar4q
4 + . . . , ark ∈ C, r = 0, . . . ,m, k ∈ 2N0

is in the kernel of Ds provided the coefficients ark satisfy the system of
recursion relations

(34)

0 = mkamk + kam−1
k − 2am−1

k−2 ,

0 = (m− 1)kam−1
k + 2kam−2

k − 4am−2
k−2 ,

. . .

0 = 2ka2
k + (m− 1)ka1

k − 2(m− 1)a1
k−2 ,

0 = ka1
k +mka0

k − 2ma0
k−2 ,

equivalent to
(35) (m− p)kam−pk + (p+ 1)kam−1−p

k − 2(p+ 1)am−1−p
k−2 = 0 ,

for all p = 0, 1, . . . ,m− 1.
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Proof. Because

(q + ∂q)e−
q2
2 qAr(q) = e−

q2
2 [q2 + 1− q2 + q∂q]Ar(q) ,

(−q + ∂q)e−
q2
2 qAr(q) = e−

q2
2 [−q2 + 1− q2 + q∂q]Ar(q) ,

the action of Ds on the vector e−
q2
2 qAr(q) is

Ds

(
e−

q2
2 q
(
Am(q)zm +Am−1(q)zm−1z̄ + · · ·+A1(q)zz̄m−1 +A0(q)z̄m

))
= e−

q2
2

(
zm−1(m[1 + q∂q]Am(q) + [1 + q∂q − 2q2]Am−1(q)

)
zm−2z̄

(
(m− 1)[1 + q∂q]Am−1(q) + 2[1 + q∂q − 2q2]Am−2(q)

)
...
zz̄m−1(2[1 + q∂q]A2(q) + (m− 1)[1 + q∂q − 2q2]A1(q)

)
z̄m
(
[1 + q∂q]A1(q) +m[1 + q∂q − 2q2]A0(q)

))
.(36)

The action of [1 + q∂q] on Ar(q) yields
∑
k∈2N(k + 1)arkqk, and the action of

[1 + q∂q − 2q2] on Ar(q) gives
∑
k∈2N((k + 1)ark − 2ark−2)qk, for all r = 0, . . . ,m.

As for the second part, we have

(q + ∂q)e−
q2
2 Ar(q) =e−

q2
2 [∂q]Ar(q) ,

(−q + ∂q)e−
q2
2 Ar(q) =e−

q2
2 [−2q + ∂q]Ar(q) ,

and the rest of the proof is analogous to the first part. The proof is complete. �

Remark 3.13. We observe that the choice of the constant A0(q) = a0
0 6= 0, i.e.

a0
k 6= 0 only for k = 0, leads to the solution (polynomial in q) of the recursion

relation for all coefficients in the symplectic spinor (30).

A0(q) = a0
0,

A1(q) =
(
− 1 + 2

3q
2
)(m

1

)
a0

0 ,

. . .

Ar(q) =
(

(−1)r + · · ·+ 2r

(2r + 1)!!q
2r
)(m

r

)
a0

0 ,

. . .

Am(q) =
(

(−1)m + · · ·+ 2m

(2m+ 1)!!q
2m
)(m

m

)
a0

0 ,

where (2m+1)!! = (2m+1)·(2m−1) · · · 3·1. In this way we get simple representative
vectors in the kernel of Ds, valued in S− for each homogeneity m. We have for
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m = 1, 2, 3:

e−
q2
2 q

((
− 1 + 2

3q
2
)
z + z̄

)
a0

0 ,

e−
q2
2

(
q
(

1− 4
3q

2 + 4
15q

4
)
z2 +

(
− 2 + 4

3q
2
)
zz̄ + z̄2

)
a0

0 ,

e−
q2
2

(
q
(
− 1 + 2q2 − 12

15q
4 + 8

105q
6
)
z3 +

(
3− 4q2 + 4

5q
4
)
z2z̄

+(−3 + 2q2)zz̄2 + z̄3
)
a0

0 .(37)

The same formulas expressed in the real variables x, y:
2
3e
− q

2
2

(
q3(x+ iy)− 3iqy

)
a0

0 ,

4
15e
− q

2
2

(
q5(x+ iy)2 + 10q3y(−ix+ y)− 15qy2

)
a0

0 ,

8
105e

− q
2

2

(
q7(x+ iy)3 − 21iq5(x+ iy)2y − 105q3(x+ iy)y2 + 105iqy3

)
a0

0 .(38)

Another observation is that for a chosen homogeneity m in z, z̄, the highest exponent
of q is at least 2m+ 1 and our solution realizes this minimum. The representative
symplectic monogenics valued in S+ were already given for each homogeneity in
Lemma 3.6.

In the following theorem we characterize the solution space for Ts separately in
the even case (including both even powers of Xs acting on S+ and odd powers of
Xs acting on S−) and the odd case (including both odd powers of Xs acting on S+
and even powers of Xs acting on S−).
Theorem 3.14. (1) The homogeneity m ∈ N0 in z, z̄ symplectic spinor

(39) s = e−
q2
2 q
(
Am(q)zm +Am−1(q)zm−1z̄ + · · ·+A1(q)zz̄m−1 +A0(q)z̄m

)
with coefficients in the formal power series in q,
Ar = ar0 + ar2q

2 + ar4q
4 + . . . , ark ∈ C, r = 0, . . . ,m, k ∈ 2N0,

is in the kernel of the symplectic twistor operator Ts provided the coefficients
ark satisfy the recursion relations

(40)

0 = mkamk + kam−1
k − 2am−1

k−2 ,

0 = (m− 1)kam−1
k + 2kam−2

k − 4am−2
k−2 ,

. . .

0 = 2ka2
k + (m− 1)ka1

k − 2(m− 1)a1
k−2 ,

0 = ka1
k +mka0

k − 2ma0
k−2 ,

equivalent to
(41) (m− p)kam−pk + (p+ 1)kam−1−p

k − 2(p+ 1)am−1−p
k−2 = 0 ,

for all p = 0, 1, . . . ,m− 1.
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(2) The homogeneity m ∈ N0 in z, z̄ symplectic spinor

(42) s = e−
q2
2
(
Am(q)zm +Am−1(q)zm−1z̄ + · · ·+A1(q)zz̄m−1 +A0(q)z̄m

)
with coefficients in the formal power series in q,

Ar = ar0 + ar2q
2 + ar4q

4 + . . . , ark ∈ C, r = 0, . . . ,m, k ∈ 2N0 ,

is in the kernel of the symplectic twistor operator Ts provided the coefficients
ark satisfy the recursion relations

(43)

0 = m(k − 1)amk + (k − 1)am−1
k − 2am−1

k−2 ,

0 = (m− 1)(k − 1)am−1
k + 2(k − 1)am−2

k − 4am−2
k−2 ,

. . .

0 = 2(k − 1)a2
k + (m− 1)(k − 1)a1

k − 2(m− 1)a1
k−2 ,

0 = (k − 1)a1
k +m(k − 1)a0

k − 2ma0
k−2 ,

equivalent to

(44) (m− p)(k − 1)am−pk + (p+ 1)(k − 1)am−1−p
k − 2(p+ 1)am−1−p

k−2 = 0 ,

for all p = 0, 1, . . . ,m− 1.

Proof. Concerning the first part, we have

Ts

(
e−

q2
2 q
(
Am(q)zm +Am−1(q)zm−1z̄ + · · ·+A1(q)zz̄m−1 +A0(q)z̄m

))
= e−

q2
2 q2(zm−1 (m[−∂q]Am(q) + [2q − ∂q]Am−1(q)

)
+ zm−2z̄

(
(m− 1)[−∂q]Am−1(q) + 2[2q − ∂q]Am−2(q)

)
. . .

+ z̄m
(
[−∂q]A1(q) +m[2q − ∂q]A0(q)

) )
= 0 ,

where

[−∂q]Ar(q) = − 2ar2q − 4ar4q3 − 6ar6q5 − . . . ,

[2q − ∂q]Ar(q) = (2ar0 − 2ar2)q + (2ar2 − 4ar4)q3 + . . . ,

etc. Then the coefficients of Ar(q) = ar0 + ar2q
2 + ar4q

4 + . . . , r = 0, . . . ,m satisfy
the recursion relations

(m− p)kam−pk + (p+ 1)kam−1−p
k − 2(p+ 1)am−1−p

k−2 = 0 , p = 0, . . . ,m− 1 .

As for the second part, we get

(1− q∂q − q2)e−
q2
2 Ar(q) = e−

q2
2 [1− q∂q]Ar(q) ,

(1− q∂q + q2)e−
q2
2 Ar(q) = e−

q2
2 [1 + 2q2 − q∂q]Ar(q) .
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The annihilation condition for the symplectic twistor operator Ts acting on (42) is
equivalent to

(45)

Ts

(
e−

q2
2
(
Am(q)zm +Am−1(q)zm−1z̄ + · · ·+A1(q)zz̄m−1 +A0(q)z̄m

))
= e−

q2
2
(
zm−1(m[1− q∂q]Am(q) + [1 + 2q2 − q∂q]Am−1(q)

)
zm−2z̄

(
(m− 1)[1− q∂q]Am−1(q) + 2[1 + 2q2 − q∂q]Am−2(q)

)
...
zz̄m−1(2[1− q∂q]A2(q) + (m− 1)[1 + 2q2 − q∂q]A1(q)

)
z̄m
(
[1− q∂q]A1(q) +m[1 + 2q2 − q∂q]A0(q)

))
,

and this completes the proof of the theorem. �

Remark 3.15. The explicit solution vectors for the symplectic twistor operator
Ts are, for the choice of A0(q) = a0

0 6= 0, given in homogeneities m = 1, 2, 3 by

e−
q2
2
( (
−1 + 2q2) z + z̄

)
a0

0 ,

e−
q2
2

((
1− 4q2 + 4

3q
4
)
z2 +

(
−2 + 4q2) zz̄ + z̄2

)
a0

0 ,

e−
q2
2

((
− 1 + 6q2 − 4q4 + 8

15q
6
)
z3 +

(
3− 12q2 + 4q4) z2z̄

+
(
−3 + 6q2) zz̄2 + z̄3

)
a0

0 .

The same solutions expressed in the variables x, y are

2e−
q2
2
(
q2(x+ iy)− iy

)
a0

0 ,

4
3e
− q

2
2
(
q4(x+ iy)2 + 6q2y(−ix+ y)− 3y2) a0

0 ,

8
15e
− q

2
2
(
q6(x+ iy)3 − 15iq4(x+ iy)2y − 45q2(x+ iy)y2 + 15iy3) a0

0 .(46)

Theorem 3.16. Let s = s(z, z̄, q) ∈ Pol(R2,S−) be a polynomial symplectic spinor
in the solution space of the symplectic Dirac operator Ds, i.e. the symplectic spinor
s satisfies the recursion relations in the first part of Theorem 3.12. Then Xs(s) is
in kernel of the symplectic twistor operator, Ts(Xs(s)) = 0.

Proof. Let us consider polynomial symplectic spinor of homogeneity m,

s = e−
q2
2 q
(
Am(q)zm +Am−1(q)zm−1z̄ + · · ·+A1(q)zz̄m−1 +A0(q)z̄m

)
,

where Ar(q) = ar0 + ar2q
2 + ar4q

4 + . . . , r = 0, . . . ,m satisfies the recursive relations
(32). We use the notational simplification s(z, z̄, q) = e−

q2
2 qW , W = W (z, z̄, q).

Then
Xs(e−

q2
2 qW ) = e−

q2
2
(
[2q2 − 1− q∂q]zW + [1 + q∂q]z̄W

)
,
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which can be rewritten as

Xs(e−
q2
2 qW ) = e−

q2
2
(
Bm+1(q)zm+1 +Bm(q)zmz̄ + · · ·+B0(q)z̄m+1) ,

where Br(q) = br0 + br2q
2 + br4q

4 + . . . , r = 0, . . . ,m+ 1, and the coefficients of this
formal power series satisfy
(47) bmk = 2am−1

k−2 + (k + 1)(amk − am−1
k ) .

We show that Br(q) satisfy the recursion relations (44) for p = 0, 1, . . . ,m in
Theorem 3.14. It follows from (47) that

(m+ 1− p)(k − 1)
(

2am−p
k−2 + (k + 1)(am−p+1

k
− am−p
k

)
)

+ (p+ 1)(k − 1)
(

2am−p−1
k−2 + (k + 1)(am−p

k
− am−p−1
k

)
)

− 2(p+ 1)
(

2am−p−1
k−4 + (k − 1)(am−p

k−2 − a
m−p−1
k−2 )

)
= 2
(

(m− p)(k − 1)am−p
k−2 + (p+ 1)(k − 1)am−p−1

k−2 − 2(p+ 1)am−p−1
k−4

)
+ (k − 1)

(
(m− p+ 1)(k + 1)am−p+1

k
+ p(k + 1)am−p

k
− 2pam−p

k−2

)
− (k − 1)

(
(m− p)(k − 1)am−p

k
+ (p+ 1)(k − 1)am−p−1

k
− 2(p+ 1)am−p−1

k−2

)
+ 2(k − 1)am−p

k−2 − (k − 1)(k + 1)am−p
k

+ (k − 1)(k + 1)am−p
k

− 2(k − 1)am−p
k−2

= 0,(48)

where we used for the last equality the relation (32) to verify that each of the
three rows in the last but one expression equals to zero. The proof is complete. �

Theorem 3.17. Let s = s(z, z̄, q) ∈ Polm(R2,S−) be a symplectic spinor polyno-
mial in the solution space of the symplectic Dirac operator Ds. Then s is not in
the kernel of the twistor operator Ts if and only if m ∈ N.

Proof. By our assumption, the symplectic spinor s satisfies the recursion relation
in Theorem 3.12. Recall the recursion relations for symplectic spinors valued in
S−, which are in the solution space of KerTs (see (41)):

(m− p)kam−pk + (p+ 1)kam−1−p
k − 2(p+ 1)am−1−p

k−2 = 0 , p = 0, . . . ,m− 1 .

By Theorem 3.12, the coefficients ark satisfy the relations (32)

(m− p)(k + 1)am−pk + (p+ 1)(k + 1)am−1−p
k + 2(p+ 1)am−1−p

k−2 = 0 .
The comparison of the last two relations leads to

(49) (m− p)am−pk + (p+ 1)am−1−p
k = 0

for all k, p, and these are just the coefficients by qk+1zm−1−pz̄p in Ts(s). We choose
the symplectic monogenic s according to Remark 3.13. For k = 2, p = 0, the
coefficient in Ts(s) by q3z̄m−1 is

(
a1

2 +ma0
2
)
. Our choice for s to be a solution for

Ds gives a1
2 = 2m

3 a0
0 and a0

2 = 0, therefore the coefficient in (49) will not be equal
to zero and consequently will not be in KerTs for m ∈ N. By mp(2,R)-invariance,
the whole metaplectic module does not belong to the kernel of Ts, which finishes
the proof. �
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Theorem 3.18. Let m ∈ N0, k ∈ 2N0.
(1) The recursion relations for the coefficients ark of an even (even homogeneity

in q) symplectic spinor s,

s = e−
q2
2
(
Am(q)zm +Am−1(q)zm−1z̄ + · · ·+A1(q)zz̄m−1 +A0(q)z̄m

)
,

Ar(q) = ar0 + ar2q
2 + ar4q

4 + . . . , r = 0, . . . ,m, which is in the kernel of the
square of the symplectic Dirac operator D2

s , are

(m− p)(m− p− 1)(k + 2)(k + 1)am−pk+2

+ (m− 1− p)(p+ 1)
(
2(k + 2)(k + 1)am−1−p

k+2 − 2(2k + 1)am−1−p
k

)
+ (p+ 1)(p+ 2)

(
(k + 2)(k + 1)am−2−p

k+2 − 2(2k + 1)am−2−p
k + 4am−2−p

k−2
)

= 0(50)

for p = 0, . . . ,m− 2.
(2) The recursion relations for the coefficients ark of an odd (odd homogeneity

in q) symplectic spinor s,

s = e−
q2
2 q
(
Am(q)zm +Am−1(q)zm−1z̄ + · · ·+A1(q)zz̄m−1 +A0(q)z̄m

)
,

Ar(q) = ar0 + ar2q
2 + ar4q

4 + . . . , r = 0, . . . ,m, which is in the kernel of the
square of the symplectic Dirac operator D2

s , are

(m− p)(m− p− 1)(k + 2)(k + 3)am−pk+2

+ (m− 1− p)(p+ 1)
(
2(k + 2)(k + 3)am−1−p

k+2 − 2(2k + 3)am−1−p
k

)
+ (p+ 1)(p+ 2)

(
(k + 2)(k + 3)am−2−p

k+2 − 2(2k + 3)am−2−p
k + 4am−2−p

k−2
)

= 0 .(51)

for p = 0, . . . ,m− 2.

Proof. The second power of the symplectic Dirac operator Ds is equal to

(52) D2
s = (q2 + 2q∂q + 1 + ∂2

q )∂2
z + 2(−q2 + ∂2

q )∂z∂z̄ + (q2 − 2q∂q − 1 + ∂2
q )∂2
z̄ .

In the even case, the action of D2
s results in

D2
s

(
e−

q2
2
(
Am(q)zm +Am−1(q)zm−1z̄ + · · ·+A0(q)z̄m

) )
= e−

q2
2
(
zm−2(m(m− 1)[∂2

q ]Am(q) + (m− 1)[2∂2
q − 4q∂q − 2]Am−1(q)

+ 2[∂2
q − 4q∂q − 2 + 4q2]Am−2(q)

)
+ · · ·+ z̄m−2(2[∂2

q ]A2(q)
+ (m−1)[2∂2

q−4q∂q−2]A1(q) +m(m−1)[∂2
q−4q∂q−2+4q2]A0(q)

) )
,(53)

where

[∂2
q ]Ar(q) = 2ar2 + 12ar4q2 + . . .

[2∂2
q − 4q∂q − 2]Ar(q) = 4ar2 − 2ar0 + (24ar4 − 8ar2 − 2ar2)q2 + . . .

[∂2
q − 4q∂q − 2 + 4q2]Ar(q) = 2ar2 − 2ar0 + (12ar4 − 8ar2 − 2ar2 + 4ar0)q2 + . . .
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The odd homogeneity case is analogous. Denoting s = e−
q2
2 qW , where W =

Am(q)zm + · · ·+A0(q)z̄m, we get

∂2
z (q2 + 2q∂q + 1 + ∂2

q )e−
q2
2 qW = ∂2

ze
− q

2
2 [2∂q + q∂2

q ]W ,

2∂z∂z̄(−q2 + ∂2
q )e−

q2
2 qW = 2∂z∂z̄e−

q2
2 [q∂2

q − 2q2∂q + 2∂q − 3q]W ,

∂2
z̄ (q2 − 2q∂q − 1 + ∂2

q )e−
q2
2 qW = ∂2

z̄e
− q

2
2 [q∂2

q − 4q2∂q + 2∂q + 4q3 − 6q]W ,

and the proof follows.
The irreducible mp(2,R)-submodules in the kernel of D2

s were put into boxes
on the scheme of the mp(2,R)-decomposition of Pol(R2)⊗ S:

M0 // XsM0
⊕

// X2
sM0
⊕

// X3
sM0
⊕

// X4
sM0
⊕

// X5
sM0
⊕

M1 // XsM1
⊕

// X2
sM1
⊕

// X3
sM1
⊕

// X4
sM1
⊕

M2 // XsM2
⊕

// X2
sM2
⊕

// X3
sM2
⊕

M3 // XsM3
⊕

// X2
sM3
⊕

M4 // XsM4
⊕

M5

(54)

�

Theorem 3.19. The solution space of the symplectic twistor operator Ts is a
subspace of the space of solutions of the square of the symplectic Dirac operator D2

s .
In particular, the recursion relations for D2

s specialized to even resp. odd symplectic
spinors from Theorem 3.18 are solved by (44) resp. (41).

Proof. Let us start with even symplectic spinors. It is straigtforward to rewrite
the recursion relations in Theorem 3.18,

(m− p)(m− p− 1)(k + 2)(k + 1)am−pk+2

+ (m− 1− p)(p+ 1)
(
2(k + 2)(k + 1)am−1−p

k+2 − 2(2k + 1)am−1−p
k

)
+ (p+ 1)(p+ 2)

(
(k + 2)(k + 1)am−2−p

k+2 − 2(2k + 1)am−2−p
k + 4am−2−p

k−2
)

= 0
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into

(m− 1− p)(k + 2)
(
(m− p)(k + 1)am−pk+2 + (p+ 1)(k + 1)am−1−p

k+2

− 2(p+ 1)am−1−p
k

)
+ (p+ 1)(k + 2)

(
(m− 1− p)(k + 1)am−1−p

k+2

+ (p+ 2)(k + 1)am−2−p
k+2 − 2(p+ 2)am−2−p

k

)
− 2(p+1)

(
(m−1−p)(k−1)am−1−p

k + (p+2)(k − 1)am−2−p
k − 2(p+2)am−2−p

k−2
)

= 0.

Because each of the last three rows corresponds to a recursion relation (44), the
claim follows.

In the odd case, the recursion relations

(m− p)(m− p− 1)(k + 2)(k + 3)am−pk+2

+ (m− 1− p)(p+ 1)
(
2(k + 2)(k + 3)am−1−p

k+2 − 2(2k + 3)am−1−p
k

)
+ (p+ 1)(p+ 2)

(
(k + 2)(k + 3)am−2−p

k+2 − 2(2k + 3)am−2−p
k + 4am−2−p

k−2
)

= 0 .

can be rewritten as

(m− 1− p)(k + 3)
(
(m− p)(k + 2)am−pk+2 + (p+ 1)(k + 2)am−1−p

k+2

− 2(p+ 1)am−1−p
k

)
+ (p+ 1)(k + 3)

(
(m− 1− p)(k + 2)am−1−p

k+2

+ (p+ 2)(k + 2)am−2−p
k+2 − 2(p+ 2)am−2−p

k

)
− 2(p+1)

(
(m−1−p)kam−1−p

k + (p+2)kam−2−p
k − 2(p+2)am−2−p

k−2
)

= 0 ,

and each of the last three rows corresponds to the recursion relation (41). �

Theorem 3.20. The solution space of the symplectic twistor operator Ts, acting on
Pol(R2,S), consists of the set of mp(2,R)-modules pictured in the squares realized
in the decomposition of Pol(R2,S) on mp(2,R) irreducible subspaces, (5):

1. Pol(R2,S−):

M−0

qe−
q2
2

// XsM
−
0

⊕

// X2
sM

−
0

⊕

// X3
sM

−
0

⊕

// . . .

M−1

e−
q2
2 (q3(x+iy)−3iqy)

// XsM
−
1

⊕

// X2
sM

−
1

⊕

// . . .

e−
q2
2 (q5(x+iy)2+10q3y(−ix+y)−15qy2)

M−2
// XsM

−
2

⊕

// . . .

M−3
// . . .

(55)
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2. Pol(R2,S+):

M+
0

e−
q2
2

// XsM
+
0

⊕

// X2
sM

+
0

⊕

// X3
sM

+
0

⊕

// . . .

M+
1

e−
q2
2 (x+iy)

// XsM
+
1

⊕

// X2
sM

+
1

⊕

// . . .

M+
2

e−
q2
2 (x+iy)2

// XsM
+
2

⊕

// . . .

M+
3

// . . .

(56)

Notice that the representative vectors in the solution space of Ds are pictured under
the spaces of symplectic monogenics. In the case of S+, we exploit the symplectic
monogenics constructed in Theorem 3.10.

Proof. It follows from the metaplectic Howe duality, [2], that Theorem 3.19
characterizes the mp(2,R)-submodule of Pol(R2,S) containing solution space of
Ts. Then Theorem 3.10, Theorem 3.17 and Theorem 3.18 characterize the space of
solutions as the image of the space of symplectic monogenics by Xs, in addition to
the space of constant symplectic spinors. The proof is complete. �

In previous sections, we discussed the space of polynomial solutions. A natural
question is an extension of the function space from polynomials to the class of
analytic, smooth, hyperfunction, generalized, etc., function spaces. For example,
one can consider convergent power series constructed from the polynomial solutions.
We shall not attemt to discuss this question in a wider generality, but observe the
existence of a wider class of solutions.

Let us consider the function element znf(q) for f ∈ S(R), n ∈ N0. The substi-
tution into (17) implies that it belongs to the solution space of Ts provided f(q)
solves the ordinary differential equation

(57) (1− q2)f(q) = q
∂

∂q
f(q) .

This equation has a unique solution f(q) = qe−
q2
2 in S(R), and so znqe−

q2
2 are in

the kernel of the symplectic twistor operator for all n ∈ N0.
A generalization of this result is contained in the following lemma.

Lemma 3.21. Let h(z) be an arbitrary holomorphic function on C. Then the
complex analytic symplectic spinor

h(z)qe−
q2
2(58)

is in the kernel of the symplectic twistor operator Ts.

Consequently, the space of holomorphic functions on C is embedded into the
space of smooth solutions of the symplectic twistor operator Ts.
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4. Open problems and questions

Here we comment on several issues related to the symplectic twistor operator
Ts, unresolved in the present article.

A complete understanding of the solution space of both Ts and Ds is related to
writing explicit solution of the recursion relation (21). Notice that a well-known
identity in the Weyl algebra,

(q∂q)n =
n∑
m=1

s(n,m)qm∂mq ,(59)

involves Stirling number fulfilling the 3-term recursion relation
s(n,m) = ms(n− 1,m) + s(n− 1,m− 1) , m, n ∈ N .(60)

Our problem involves another identity in the Weyl algebra. Namely, let us introduce
the variables q, ∂q, q̃ fulfilling

[∂q, q] = q̃, [∂q, q̃] = 0 , [q, q̃] = 0 ,
and define

(q + ∂q)n =
min(i,n−i)∑
r=0

n∑
i=0

s̃(n, i, r)qi−r∂n−i−rq q̃r

fulfilling the 4-term recursion relation (21). As an example, we have

(61)
n = 2 : q2 + ∂2

q + 2q∂q + q̃ ,

n = 3 : q3 + ∂3
q + 3q∂2

q + 3q2∂q + 3q̃∂q + 3q̃q .
It seems that s̃(n, i, r), its generating functions or their closed formulas for all n, i,
r were not studied in combinatorial number theory.

Another question is related to the representation theoretical problem of globaliza-
tion of a given representation. Notice that an admissible continuous representation
spaces of a reductive Lie group G can be conveniently described in terms of a
globalization of the underlying Harish-Chandra (g,K)-module, where g resp. K are
the Lie algebra resp. maximal compact subgroup of G. In this way, one has conti-
nuous representation of G on the space of analytic, smooth, Frechet, hyperfunction,
generalized, etc., functions. However, in our case of G = Mp(2,R), g = mp(2,R)
and K given by the twofold covering of U(1), the representation on symplectic
spinors is not admissible – in its composition series there are infinite multiplicities of
certain G-representations. This means that the functional analytic tools developed
in representation theory are not straightforward to apply in our case. On the other
hand, it is still natural to ask for a characterization of the space of analytic, smooth,
Frechet, hyperfunction, generalized, etc., solutions of both Ts and Ds.

Another issue is the close relationship between Riemannian and conformal
structures, especially the existence of the conformal Lie group acting on function
spaces as an organizing principle for subspaces acted upon by the Lie group of
rotations.
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