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LEFSCHETZ COINCIDENCE NUMBERS OF SOLVMANIFOLDS

WITH MOSTOW CONDITIONS

Hisashi Kasuya

Abstract. For any two continuous maps f , g between two solvmanifolds of
the same dimension satisfying the Mostow condition, we give a technique of
computation of the Lefschetz coincidence number of f , g. This result is an
extension of the result of Ha, Lee and Penninckx for completely solvable case.

1. Introduction

For two compact oriented manifolds M1 and M2 of the same dimension, for two
continuous maps f, g : M1 →M2, as generalizations of the Lefschetz number and
the Nielsen number for topological fixed point theory, the Lefschetz coincidence
number L(f, g) and the Nielsen coincidence number N(f, g) are defined. The
Nielsen coincidence number N(f, g) is a lower bound for the number of connected
components of coincidences of f and g. But computing the Nielsen coincidence
number is very difficult. For some classes of manifolds, we have relationships
between the Lefschetz coincidence number L(f, g) and the Nielsen coincidence
number N(f, g).

Let G be a simply connected solvable Lie group with a lattice (i.e. cocompact
discrete subgroup of G) Γ. We call G/Γ a solvmanifold. If G is nilpotent, we call
G/Γ a nilmanifold.

For two solvmanifolds G1/Γ1 and G2/Γ2 with two continuous maps f , g : G1/Γ1
→ G2/Γ2, in [18], Wang showed the inequality

|L(f, g)| ≤ N(f, g).

Hence by Lefschetz coincidence number L(f, g) we can estimate the number of
coincidences of f, g. Suppose that G1 and G2 are completely solvable i.e. for
any element of G the all eigenvalues of the adjoint operator of g are real. Then
the de Rham cohomologies of solvmanifolds G1/Γ1 and G2/Γ2 are isomorphic
to the cohomologies of the Lie algebras of G1 and G2. Moreover for the induced
maps f∗, g∗ : π1(G1/Γ1) ∼= Γ1 → Γ2 ∼= π1(G2/Γ2), we can take homomorphisms
Φ, Ψ: G1 → G2 which are extensions of f∗, g∗. In [4], Ha, Lee and Penninckx
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computed the Lefschetz coincidence number L(f, g) by using “linearizations” Φ, Ψ
of f and g.

In this paper, for a solvmanifold G/Γ we consider the Mostow condition: “Ad(G)
and Ad(Γ) have the same Zariski-closure in Aut(gC)” where Ad is the adjoint repre-
sentation of a Lie group G. The condition: “G is completely solvable” is a special
case of the Mostow condition (see [17] and [3]). In [12], Mostow showed that for a
solvmanifold G/Γ satisfying the Mostow condition, the de Rham cohomology of
G/Γ is also isomorphic to the cohomology of the Lie algebra of G. However, for two
solvmanifolds G1/Γ1 and G2/Γ2 satisfying the Mostow conditions, extendability
of homomorphisms between lattices Γ1 and Γ2 is not valid. (For isomorphisms,
“virtually” extendability is known ([17])). Thus in order to compute the Lefschetz
coincidence number L(f, g) of two continuous maps f , g : G1/Γ1 → G2/Γ2 bet-
ween solvmanifolds satisfying the Mostow condition, we should give new idea of
“linearizations”.

In this paper, we give a technique of linearizations of all maps between solvma-
nifolds satisfying the Mostow condition and we give a formula for the Lefschetz
coincidence number which is similar to the result by Ha, Lee and Penninckx ([4]).

2. Lefschetz numbers and spectral sequences

Let V ∗ be a finite dimensional graded vector space and f∗ : V ∗ → V ∗ a graded
linear map. Then we denote

L(f) =
∑
i

(−1)itr f i .

Lemma 2.1. Let C∗ be a bounded filtered cochain complex and f∗ : C∗ → C∗ a mor-
phism of filtered cochain complex with the induced map H∗(f) : H∗(C∗)→ H∗(C∗).
Consider the spectral sequences E∗,∗r (C∗) of C∗ and the map E∗,∗r (f) : E∗,∗r (C∗)→
E∗,∗r (C∗) induced by f∗. Consider the graded linear map Tot∗E∗,∗r (f) : Tot∗E∗,∗r (C∗)
→ Tot∗E∗,∗r (C∗) for the total complex. We suppose that for some integer s, for
r ≥ s, the Er-term E∗,∗r (C∗) is finite dimensional.

Then for each r ≥ s, we have

L(H∗(f)) = L(Tot∗E∗,∗r (f)) .

Proof. By the assumption, sufficiently large r, we have

Ep+qr (C) ∼= F pHp+q(C)/F p+1Hp+q(C) .

Hence by using the property of trace (see [6, Proposition 2.3.11]) we have∑
p+q=k

trEp,qr (f) = trHk(f) .

By the Hopf lemma for trace (see [6, Lemma 2.3.23]), we have∑
p,q

(−1)p+qtrEp,qr (f) =
∑
p,q

(−1)p+qtrEp,qr−1(f)
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and inductively for s ≤ r, we have∑
p,q

(−1)p+qtrEp,qr (f) =
∑
p,q

(−1)p+qtrEp,qs (f) .

Hence the lemma follows. �

Let A∗ be a finite-dimensional graded commutative C-algebra.

Definition 2.2. A∗ is of degree n Poincaré duality type (n-PD-type) if the following
conditions hold:
• A∗<0 = 0 and A0 = R1 where 1 is the identity element of A∗.
• For some positive integer n, A∗>n = 0 and An = Rv for v 6= 0.
• For any 0 < i < n the bi-linear map Ai × An−i 3 (α, β) 7→ α · β ∈ An is

non-degenerate. Hence we have an isomorphism Di : An−i ∼= (Ai)∗ where (Ai)∗ is
the dual space of Ai.

LetA∗1 andA∗2 be finite-dimensional graded commutative R-algebras of n-PD-type
and f∗ : A∗2 → A∗1 and g∗ : A∗2 → A∗1 graded linear maps. By isomorphisms
: Ai1 ∼= (An−i1 )∗ and : Ai2 ∼= (An−i2 )∗, we have the map Di(g∗) : Ai1 → Ai2
which corresponds to the dual map (An−i1 )∗ → (An−i2 )∗ of gn−i. Define the map
θi(f, g) = Di(g∗) ◦ f i. We denote

L(f, g) = L
(
θi(f, g)

)
.

For two compact oriented manifolds M1 and M2 of the same dimension, for
two continuous maps f , g : M1 → M2, we consider the induced maps H∗(f),
H∗(g) : H∗(M2) → H∗(M1). Then the Lefschetz coincidence number L(f, g) is
defined as L(f, g) = L(H∗(f), H∗(g)).

Definition 2.3. A differential graded algebra (DGA) is a graded commutative
R-algebra A∗ with a differential d of degree +1 so that d ◦ d = 0 and d(α · β) =
dα · β + (−1)pα · dβ for α ∈ Ap.

Definition 2.4. A finite-dimensional DGA (A∗, d) is of n-PD-type if the following
conditions hold:
• A∗ is a finite-dimensional graded R-algebra of n-PD-type.
• dAn−1 = 0 and dA0 = 0.

As similar to the Poincaré duality of the cohomology of compact Riemannian
manifold, we can prove the following lemma.

Lemma 2.5 ([7]). Let (A∗, d) be a finite dimensional DGA of n-PD-type. Then the
cohomology algebra H∗(A) is a finite dimensional graded commutative R-algebra of
n-PD-type.

Then the following lemma follows from Lemma 2.5 inductively.

Lemma 2.6. Let A∗ be a bounded filtered differential graded algebra. Suppose that:
– The cohomology H∗(A∗) is a finite dimensional graded algebra of n-PD-type.
– For some integer s, the total complex (Tot∗E∗,∗s (A∗), ds) of the Es-term of

the spectral sequence is a finite dimensional graded algebra of n-PD-type.
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Then for each r ≥ s, the total complex (Tot∗E∗,∗r (g), dr) of the Er-term of the
spectral sequence is also a graded algebra of n-PD-type.

Proof. Since we have H0(A∗) ∼= R, Hn(A∗) ∼= R, Tot0E∗,∗s (A∗) ∼= R and
TotnE∗,∗s (A∗) ∼= R, we have ds(Tot0E∗,∗s (A∗)) = 0 and ds(Totn−1E∗,∗s (A∗)) = 0.
Hence the total complex (Tot∗E∗,∗s (A∗), ds) of the Es-term is a DGA of n-PD-type
and by Lemma 2.5, the total complex Tot∗E∗,∗s+1(A∗) is a graded algebra of
n-PD-type. �

By Lemma 2.1, we have:

Lemma 2.7. Let A∗1 and A∗2 be bounded filtered DGAs and f∗, g∗ : A∗2 → A∗1
morphisms of filtered DGA with the induced maps H∗(f), H∗(g) : H∗(A∗2) →
H∗(A∗1). Consider the spectral sequences E∗,∗r (A1) and E∗,∗r (A2) of A∗1 and A∗2 and
the maps E∗,∗r (f), E∗,∗r (g) : E∗,∗r (A2)→ E∗,∗r (A1) induced by f , g.

We suppose that:
– The cohomologies H∗(A∗1) and H∗(A∗2) are finite dimensional graded algebra

of n-PD-type.
– For some integer s, the total complexes Tot∗E∗,∗r (A1) and Tot∗E∗,∗r (A2) of
Er-terms are finite dimensional graded algebras of n-PD-type. Hence inducti-
vely the lemma follows.

Then for each r ≥ s, we have

L(H∗(f), H∗(g)) = L
(
Tot∗E∗,∗r (f),Tot∗E∗,∗r (g)

)
.

3. The Ha-Lee-Penninckx formula

Let V be a n-dimensional vector space. Consider the exterior algebra
∧
V . Then∧

V is a finite-dimensional graded commutative C-algebras of n-PD-type. In [4],
Ha-Lee-Penninckx showed:

Theorem 3.1 ([4]). Let V1, V2 be n-dimensional vector spaces and Φ,Ψ : V2 → V1
linear maps. Consider the exterior algebras

∧
V1 and

∧
V2 and the extended map

∧Φ,∧Ψ:
∧
V2 →

∧
V1. Take representation matrices A, B of Φ and Ψ associated

with basis of V1 and V2. Then we have

L(∧Φ,∧Ψ) = det(A−B) .

4. Lie algebra cohomology

Let g be a n-dimensional solvable Lie algebra. We consider the DGA
∧

g∗ with
the differential d which is the dual to the Lie bracket of g. We suppose that g is
unimodular. Then

∧
g∗ is a DGA of n-PD-type. Take a basis X1, . . . , Xn of g and

its dual basis x1, . . . , xn of g∗.
Let n be a ideal of g. We consider the spectral sequence (Ep,qr (g), dr) given by the

extension 0→ n→ g→ g/n→ 0. This spectral sequence is given by the filtration

F p
p+q∧

g∗ = {ω ∈
p+q∧

g∗|ω(Y1, . . . , Yp+1) = 0 for Y1, . . . , Yp+1 ∈ n} .



LEFSCHETZ COINCIDENCE NUMBERS OF SOLVMANIFOLDS 31

We have
E∗,∗0 (g) =

∧
(g/n)∗ ⊗

∧
n∗

with the differential d0 = 1⊗ d∧ n∗ ,

E∗,∗1 (g) =
∧

(g/n)∗ ⊗H∗(n)

whose differential d1 is the differential on
∧

(g/n)∗ ⊗H∗(n) twisted by the action
of g/n on H∗(n) and

E∗,∗2 (g) = H∗ (g/n, H∗(n)) .

Since we suppose that g is unimodular, we have d
(∧n−1

g∗
)

= 0 and so
∧

g∗

is a finite dimensional DGA of n-PD-type. By Lemma 2.6, the total complex
(Tot∗E∗,∗r (g), dr) of each Er-term of the spectral sequence is also a graded algebra
of n-PD-type.

5. de Rham cohomology of solvamanifolds with Mostow conditions

Let G be a simply connected solvable Lie group with a lattice Γ. We suppose
the Mostow condition: Ad(G) and Ad(Γ) have the same Zariski-closure in Aut(gC).
Then we have:

Proposition 5.1 ([2]). Discrete subgroups [Γ,Γ] and Γ ∩ [G,G] are lattices in the
Lie group [G,G] and the subgroup Γ[G,G] is closed in G.

Set [G,G] = N , G/N = A and n the Lie algebra of N and a the Lie algebra of
A. By Proposition 5.1, we have the fiber bundle structure

N/Γ ∩N → G/Γ→ G/ΓN

of the solvmanifold G/Γ with base space torus G/ΓN = A/p(Γ) and fiber nilmani-
fold N/Γ ∩N where p : G→ G/N is the quotient map.

We consider the filtration

F p
p+q∧

g∗ = {ω ∈
p+q∧

g∗|ω(X1, . . . , Xp+1) = 0 for X1, . . . , Xp+1 ∈ n} .

This filtration gives the filtration of the cochain complex
∧

g∗ and the filtration of
the de Rham complex A∗(G/Γ). We consider the spectral sequence E∗,∗∗ (g) of

∧
g∗

and the spectral sequence E∗,∗∗ (G/Γ) of A∗(G/Γ). Then we have the commutative
diagram

E∗,∗2 (g) //

∼=
��

E∗,∗2 (G/Γ)

∼=
��

H∗ (a, H∗(n)) // H∗ (A/p(Γ),H∗(N/Γ ∩N))

where H∗(N/Γ ∩N) is the local system on the cohomology of fiber induced by the
fiber bundle (see [5], [15, Section 7]).

Theorem 5.2. The induced map E∗,∗2 (g)→ E∗,∗2 (G/Γ) is an isomorphism.
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Proof. We first show that for each r, the induced map E∗,∗r (g) → E∗,∗r (G/Γ) is
injective. A simply connected solvable Lie group with a lattice is unimodular (see
[15, Remark 1.9]). Let dµ be a bi-invariant volume form such that

∫
G/Γ dµ = 1.

For α ∈ Ap(G/Γ), we have a left-invariant form αinv ∈
∧p

g∗ defined by

αinv(X1, . . . , Xp) =
∫
G/Γ

α(X̃1, . . . , X̃p)dµ

for X1, . . . , Xp ∈ g where X̃1, . . . , X̃p are vector fields on G/Γ induced by X1, . . . Xp.
We define the map I : A∗(M) →

∧
g∗ by α 7→ αinv. Then this map is a cochain

complex map (see [8]) such that I ◦ i = id|∧
g∗

. The map I is compatible with the

filtration as above. Hence I induces a homomorphism E∗,∗r (G/Γ)→ E∗,∗r (g). This
implies that the induced map E∗,∗r (g)→ E∗,∗r (G/Γ) is injective.

Consider the A-action on H∗(n) which is the extension of the a-action on H∗(n)
given by 0 → n → g → a → 0. Since we have H∗(n) ∼= H∗(N/Γ ∩N). The local
system H∗(N/Γ ∩N) is given by the Γ-action on H∗(n) which is the restriction
of the A-action on H∗(n). Since Ad(G) and Ad(Γ) have the same Zariski-closure
in Aut(gC), the images of actions A→ Aut(H∗(n)) and p(Γ)→ Aut(H∗(n)) have
also the same Zariski-closure in Aut(H∗(n)). Then by [15, Theorem 7.26] we have

H∗ (a, H∗(n)) ∼= H∗ (A/p(Γ),H∗(N/Γ ∩N))

Hence the theorem follows. �

6. Linearizations of solvamanifolds with Mostow conditions

Consider two simply connected solvable Lie groups G1 and G2 with lattices Γ1
and Γ2. We assume that they satisfy the Mostow condition. Let φ : Γ1 → Γ2 be a
homomorphism. Then we have

φ([Γ1,Γ1]) ⊂ [Γ2,Γ2].

Hence φ induces the homomorphism φ̄ : Γ1/[Γ1,Γ1]→ Γ2/[Γ2,Γ2]. We show

Lemma 6.1. φ(Γ1 ∩ [G1, G1]) ⊂ Γ2 ∩ [G2, G2].

Proof. Consider the surjection

Γ1/[Γ1,Γ1] 3 (g mod [Γ1,Γ1]) 7→ (g mod Γ1 ∩ [G1, G1]) ∈ Γ/Γ1 ∩ [G1, G1].

By Proposition 5.1, two nilpotent groups [Γ1,Γ1] and Γ1 ∩ [G1, G1] have same rank
and hence the kernel of this surjection consists of torsions. This implies that for
g ∈ Γ1 ∩ [G1, G1], the element

φ̄(g mod [Γ1,Γ1]) = φ(g) mod [Γ2,Γ2]

is a torsion. Since the group Γ2/Γ2 ∩ [G2, G2] is a lattice in G2/[G2, G2], Γ2/Γ2 ∩
[G2, G2] is torsion-free. Hence we have

(φ(g) mod Γ2 ∩ [G2, G2]) = (0 mod Γ2 ∩ [G2, G2])

for g ∈ Γ1 ∩ [G1, G1]. Thus the lemma follows. �
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Set N1 = [G1, G1], N2 = [G2, G2], A1 = G1/N1 and A2 = G2/N2. Let n1, n2, a1
and a2 be the Lie algebras of N1, N2, A1 and A2 respectively. Consider the quotient
maps p1 : G1 → A1 and p2 : G2 → A2. By Lemma 6.1, we have the commutative
diagram

1 // Γ1 ∩N1 //

φ

��

Γ1 //

φ

��

p1(Γ1) //

φ̄

��

1

1 // Γ2 ∩N2 // Γ2 // p2(Γ2) // 1
Since Γ1 ∩ N1, Γ2 ∩ N2, p1(Γ1) and p2(Γ2) are lattices in N1, N2, A1 and A2

respectively, we can take unique Lie group homomorphisms Φ1 : N1 → N2 and
Φ2 : A1 → A2 which are extensions of φ : Γ1∩N1 → Γ2∩N2 and φ̄ : p1(Γ1)→ p2(Γ2).

Lemma 6.2. We consider the spectral sequences

E∗,∗0 (g1) =
∧

a∗1 ⊗
∧

n∗1,

E∗,∗0 (g2) =
∧

a∗2 ⊗
∧

n∗2

and
E∗,∗1 (g1) =

∧
a∗1 ⊗H∗(n1),

E∗,∗1 (g2) =
∧

a∗2 ⊗H∗(n2)
Then the linear map

∧Φ∗2 ⊗ ∧Φ∗1 : E∗,∗0 (g2) =
∧

a∗2 ⊗
∧

n∗2 →
∧

a∗1 ⊗
∧

n∗1 = E∗,∗0 (g1)

is a cochain complex map and induced map

∧Φ∗2 ⊗H∗(∧Φ∗1) : E∗,∗1 (g2) =
∧

a∗2 ⊗H∗(n2)→
∧

a∗1 ⊗H∗(n1) = E∗,∗1 (g1)

is a cochain complex map.

Proof. Since Φ1 is a homomorphism of Lie group, the linear map

∧Φ∗2 ⊗ ∧Φ∗1 : E∗,∗0 (g2) =
∧

a∗2 ⊗
∧

n∗2 →
∧

a∗1 ⊗
∧

n∗1 = E∗,∗0 (g1)

is cochain complex map. We consider the induced map

∧Φ∗2 ⊗H∗(∧Φ∗1) : E∗,∗1 (g2) =
∧

a∗2 ⊗H∗(n2)→
∧

a∗1 ⊗H∗(n1) = E∗,∗1 (g1).

We show that this map is a cochain complex homomophism.
We consider the group cohomologies H∗(Γ1∩N1,R) and H∗(Γ2∩N2,R) and the

induced map H∗(φ) : H∗(Γ2 ∩N2,R)→ H∗(Γ1 ∩N1,R) of φ : Γ1 ∩N1 → Γ2 ∩N2.
By the commutative diagram

1 // Γ1 ∩N1 //

φ

��

Γ1 //

φ

��

p1(Γ1) //

φ̄

��

1

1 // Γ2 ∩N2 // Γ2 // p2(Γ2) // 1 ,
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for the p1(Γ1)-action δ1 : p1(Γ1) → Aut(H∗(Γ1 ∩ N1,R)) and the p2(Γ2)-action
δ2 : p2(Γ2)→ Aut(H∗(Γ2 ∩N2,R)), we have

H∗(φ) ◦ δ2(φ̄(g)) = δ1(g) ◦H∗(φ) .

By the isomorphisms,

H∗(Γ1 ∩N1,R) ∼= H∗(N1/Γ1 ∩N1,R) ∼= H∗(n1)

and
H∗(Γ2 ∩N2,R) ∼= H∗(N2/Γ2 ∩N2,R) ∼= H∗(n2) ,

we have H∗(φ) = H∗(Φ1). Consider the A1-action ∆1 : A→ Aut(H∗(n1)) induced
by the extension 1→ N1 → G1 → A1 → 1 and A2-action ∆2 : A→ Aut(H∗(n2))
induced by the extension 1 → N2 → G2 → A2 → 1. By H∗(φ) = H∗(Φ1) and
H∗(φ) ◦ δ2(φ̄(g)) = δ1(g) ◦H∗(φ), we have

H∗(Φ1) ◦∆2(Φ2(v)) = ∆1(v) ◦H∗(Φ1)

for all v ∈ p(Γ1) ⊂ A1. By the Mostow condition, ∆1(A1) × ∆2(Φ2(A2)) and
∆1(p1(Γ1)) × ∆2(Φ2(p2(Γ2))) have the same Zariski-closure in Aut(H∗(n1)) ×
Aut(H∗(n2)). By this we have

H∗(Φ1) ◦∆2(Φ2(v)) = ∆1(v) ◦H∗(Φ1)

for all v ∈ A1.
Consider the Lie algebra homomorphism Φ2∗ : a1 → a2 and the a1-action

∆1∗ : a1 → End(H∗(n1)) and a2-action ∆2∗ : a2∗ → End(H∗(n2)). Then we have

H∗(Φ1) ◦∆2∗(Φ2∗(V )) = ∆1∗(V ) ◦H∗(Φ1)

for all V ∈ a1. This implies that the map

∧Φ∗2 ⊗H∗(∧Φ∗1) : E∗,∗1 (g2) =
∧

a∗2 ⊗H∗(n2)→
∧

a∗1 ⊗H∗(n1) = E∗,∗1 (g1) .

is a cochain complex homomophism, since the differentials of the cochain complexes
E∗,∗1 (g1) =

∧
a∗1 ⊗ H∗(n1) and E∗,∗1 (g2) =

∧
a∗2 ⊗ H∗(n2) are twisted by the

a1-action ∆1∗ : a1 → End(H∗(n1)) and the a2-action ∆2∗ : a2∗ → End(H∗(n2))
respectively. �

Let f : G1/Γ1 → G2/Γ2 be a continuous map. We consider the induced map
f∗ : π1(G1/Γ1) ∼= Γ1 → Γ2 ∼= G2/Γ2. We write φ = f∗. In this case, the pair Φ1, Φ2
constructed as above is called the linearlization of f . Consider the spectral sequences
E∗,∗r (G1/Γ1) and E∗,∗r (G2/Γ2) as Section 5. Then for r ≥ 2, E∗,∗r (G1/Γ1) and
E∗,∗r (G2/Γ2) are identified with the Leray-Serre spectral sequences. By commutative
diagram

1 // Γ1 ∩N1 //

φ

��

Γ1 //

φ

��

p1(Γ1) //

φ̄

��

1

1 // Γ2 ∩N2 // Γ2 // p2(Γ2) // 1 ,
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Any continous map from G1/Γ1 to G2/Γ2 is homotopic to a continous map
f : G1/Γ1 → G2/Γ2 which is a fiber-preserving map as

1 // N1/Γ1 ∩N1 //

f

��

G1/Γ1 //

f

��

A1/p1(Γ1) //

f̄

��

1

1 // N2/Γ2 ∩N2 // G2/Γ2 // A2/p2(Γ2) // 1.

Consider the induced map E∗,∗r (f) : E∗,∗r (G1/Γ1)→ E∗,∗r (G2/Γ2). Then

E∗,∗2 (f) : H∗ (A2/p(Γ2),H∗(N2/Γ2 ∩N2))→ H∗ (A1/p(Γ1),H∗(N1/Γ1 ∩N1))

is induced by the fiber map f : N1/Γ1 ∩ N1 → N2/Γ2 ∩ N2 and the base space
map f̄ : A1/p(Γ1) → A2/p(Γ2) (see [9]). Consider the linearlization Φ1, Φ2 of f
and induced maps Φ1 : N1/Γ1 ∩N1 → N2/Γ2 ∩N2 and Φ2 : A1/p(Γ1)→ A2/p(Γ2).
Then the fiber map f : N1/Γ1 ∩ N1 → N2/Γ2 ∩ N2 and the base space map
f̄ : A1/p(Γ1) → A2/p(Γ2) are homotopic to Φ1 : N1/Γ1 ∩ N1 → N2/Γ2 ∩ N2 and
Φ2 : A1/p(Γ1)→ A2/p(Γ2) respectively. By Theorem 5.2, we have

H∗(a1, H
∗(n1)) ∼= H∗ (A1/p(Γ1),H∗(N1/Γ1 ∩N1))

and
H∗(a2, H

∗(n2)) ∼= H∗ (A2/p(Γ2),H∗(N2/Γ2 ∩N2)) .
By these isomorphisms, E∗,∗2 (f) is induced by ∧Φ∗1 :

∧
n∗2 →

∧
n∗1 and ∧Φ∗2 :

∧
a∗2 →∧

a∗1. Hence by Lemma 6.2 we have:

Lemma 6.3. The map

E2(f) : E∗,∗2 (G2/Γ2)→ E∗,∗2 (G1/Γ1)

is identified with the map

H∗(∧Φ∗2)⊗H∗(∧Φ∗1) : E∗,∗2 (g2) = H∗ (a1, H
∗(n2))→ H∗ (a1, H

∗(n1)) = E∗,∗2 (g1)

induced by the cochain complex map

∧Φ∗2 ⊗H∗(∧Φ∗1) : E∗,∗1 (g2) =
∧

a∗2 ⊗H∗(n2)→
∧

a∗1 ⊗H∗(n1) = E∗,∗1 (g1)

as in Lemma 6.2.

7. Lefschetz coincidence numbers of Mostow solvamanifolds

Theorem 7.1. Let G1 and G2 be simply connected solvable Lie groups of the same
dimension with lattices Γ1 and Γ2. We assume they satisfy the Mostow condition.
Let f , g : G1/Γ1 → G2/Γ2 be continuous maps. Take linearizations Φ1, Φ2 of f
and Ψ1, Ψ2 of g as Section 6. Take representation matrices A1, A2, B1 and B2 of
Φ1∗, Φ2∗, Ψ1∗ and Ψ2∗ associated with basis of Lie algebras. Let A = A1 ⊕A2 and
B = B1 ⊕B2. Then we have

L(f, g) = det(A−B) .



36 H. KASUYA

Proof. By Lemma 2.7, we have
L(f, g) = L

(
Tot∗E∗,∗2 (f),Tot∗E∗,∗2 (g)

)
.

By Lemma 6.3 and the Hopf lemma, we have
L
(
Tot∗E∗,∗2 (f),Tot∗E∗,∗2 (g)

)
= L

(
∧ Φ∗2 ⊗ ∧Φ∗1,∧Ψ∗2 ⊗ ∧Ψ∗1

)
.

Take bases {X1
1 , . . . , X

1
n}, {Y 1

1 , . . . , Y
1
m}, {X2

1 , . . . , X
2
n′} and {Y 2

1 , . . . , Y
2
m′} of n1,

a1, n2 and a2 which give representation matrices A1, A2, B1 and B2 of Φ1∗,
Φ2∗, Ψ1∗ and Ψ2∗ respectively. Consider the dual bases {x1

1, . . . , x
1
n}, {y1

1 , . . . , y
1
m},

{x2
1, . . . , x

2
n′} and {y2

1 , . . . , y
2
m′} of these bases respectively Then we have∧

a∗1 ⊗
∧

n∗1 =
∧
〈x1

1, . . . , x
1
n, y

1
1 , . . . , y

1
m〉,∧

a∗2 ⊗
∧

n∗2 =
∧
〈x2

1, . . . , x
2
n, y

2
1 , . . . , y

2
m〉

and the maps ∧Φ∗2 ⊗ ∧Φ∗1 and ∧Ψ∗2 ⊗ ∧Ψ∗1 are represented by ∧A∗ and ∧B∗
respectively. Hence we have

L(f, g) = L(∧Φ∗2 ⊗ ∧Φ∗1,∧Ψ∗2 ⊗ ∧Ψ∗1) = L(∧A∗,∧B∗).
By Theorem 3.1, we have

L(∧A∗,∧B∗) = det(A∗ −B∗) = det(A−B) .
Hence the theorem follows. �
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