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SINGULAR φ-LAPLACIAN THIRD-ORDER BVPS

WITH DERIVATIVE DEPENDANCE

Smaïl Djebali and Ouiza Saifi

Abstract. This work is devoted to the existence of solutions for a class of
singular third-order boundary value problem associated with a φ-Laplacian
operator and posed on the positive half-line; the nonlinearity also depends
on the first derivative. The upper and lower solution method combined with
the fixed point theory guarantee the existence of positive solutions when the
nonlinearity is monotonic with respect to its arguments and may have a space
singularity; however no Nagumo type condition is assumed. An example of
application illustrates the applicability of the existence result.

1. Introduction

In this paper, we are concerned with the existence of positive solutions to the
following third-order boundary value problem for a φ-Laplacian operator:

(1.1)
{

(φ(−x′′))′(t) + f
(
t, x(t), x′(t)

)
= 0 , t > 0 ,

x(0) = µx′(0), x′(+∞) = x′′(+∞) = 0 ,

where µ ≥ 0 is a constant and the function f = f(t, x, y) : R+×(0,+∞)×R+ −→ R+

is continuous with possible space singularity at x = 0. Here R+ = [0,+∞). The
operator of derivation φ : R −→ R is a continuous increasing homeomorphism such
that φ(0) = 0, extending the p-Laplacian ϕp(s) = |s|p−1s, for p > 1.

Many applied problems modeling various phenomena in physics, epidemiology,
combustion theory, mechanics (see, e.g., [2] and the references therein) are governed
by boundary value problems (bvps for short) posed on the half-axis [0,+∞); we
quote for instance the propagation of a flame in a long tube. A large amount
of research papers have been devoted to these problems, in particular for the
second-order boundary value problems; we refer the reader to [4], [5], [6], [7], [8], [9],
[12], [15], [16], [17], and the references therein. However problems with higher-order
differential equations on [0,+∞) have not been so extensively investigated; we can
only cite [13], [14], [18], and [19]. When f does not depend on the first derivative,
problem (1.1) in investigated in [11].
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These recent papers have motivated the present work.
To study problem (1.1), we will employ an upper and lower solution technique

adapted to this problem combined with the Schauder fixed point theorem. We only
suppose a monotonic condition on f but no Nagumo-type restriction is assumed.
This paper contains three sections. In Section 2, we present some preliminaries and
basic notions needed in this paper. Problem (1.1) is rewritten as a nonlinear integral
equation. In Section 3, we prove the main existence result when the nonlinearity f
is monotonic with respect to x and y but may be singular at x = 0. The case where
f is not singular at x = 0 is also considered with less hypotheses. An example
of application is included to illustrate the existence theorem. We say that x is a
solution of problem (1.1) if it belongs to the space

(1.2) X =
{
x | x ∈ C2((0,∞),R) and φ(−x′′) ∈ C1((0,∞),R)

}
and satisfies (1.1). x is called a positive solution if further x(t) > 0, for every
t ∈ (0,+∞).

2. Preliminaries

The basic space to study problem (1.1) is

E =
{
x ∈ C1([0,∞),R) | lim

t→+∞

x(t)
1 + t

= lim
t→+∞

x′(t) = 0
}
.

The motivation of the space E comes from the fact that the positivity of f
and x′′(+∞) = 0 imply the concavity of x which in turn guarantees that x is
nondecreasing for x′(+∞) = 0. As a consequence, x has a possibly infinite limit
at positive infinity. L’Hopital’s rule then yields lim

t→+∞
x(t)
1+t = lim

t→+∞
x′(t) = 0.

Notice that (E, ‖ · ‖) is a Banach space with norm ‖x‖ = max{‖x‖1, ‖x‖2}, where
‖x‖1 = sup

t∈R+

|x(t)|
1+t and ‖x‖2 = sup

t∈R+
|x′(t)|. However since for physical considerations,

we are interested in positive solutions, the natural set for solutions is the positive
cone:

(2.1) S =
{
x ∈ E | x(t) ≥ 0, concave on [0,+∞), x(0) = µx′(0)

}
.

This nonempty subset enjoys the following properties:

Lemma 2.1. For every x ∈ S, there exists a positive constant Mx > 0 such that

0 ≤ x′(t) ≤Mx , ∀ t ≥ 0 .

Proof. Since x′ is nonincreasing, then

0 = x′(+∞) ≤ x′(t) ≤ x′(0) = Mx , ∀ t ≥ 0 .

�

The proof of the following lemma can be found in [11, Lemma 2.5].

Lemma 2.2. Let x ∈ S \ {0}. Then there exists a positive constant λx such that
(a) for all θ > 1, x(t) ≥ λx

θ , ∀ t ∈ [1/θ, θ],
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(b) Let

(2.2) ρ(t) =
{
t , t ∈ [0, 1]
1 , t ≥ 1 .

Then
x(t) ≥ λxρ(t) , ∀ t ≥ 0 .

Lemma 2.3. Let x, y ∈ S be such that x′(t) ≥ y′(t), for all t ≥ 0. Then

x(t) ≥ y(t) , ∀ t ≥ 0 .

Proof. Since x′(0)− y′(0) ≥ 0, then x(0)− y(0) = µ(x′(0)− y′(0)) ≥ 0. Now x− y
is nondecreasing implies that (x− y)(t) ≥ x(0)− y(0) ≥ 0 , ∀ t ≥ 0. �

Define the functional space

Cl([0,∞),R) =
{
x ∈ C([0,∞),R) | lim

t→+∞
x(t) exists

}
.

Endowed with the norm ‖x‖l = sup
t∈R+

|x(t)|, this is a Banach space. A mapping

defined on a Banach space is said to be completely continuous if it is continuous and
maps bounded sets into relatively compact sets. We recall a classical compactness
criterion:
Lemma 2.4 ([3]). Let M ⊆ Cl(R+,R). Then M is relatively compact in Cl(R+,R)
if the following three conditions hold:

(a) M is uniformly bounded in Cl(R+,R).

(b) The functions belonging to M are almost equicontinuous on R+, i.e. equi-
continuous on every compact interval of R+.

(c) The functions from M are equiconvergent, that is, given ε > 0, there
corresponds T (ε) > 0 such that |x(t)− x(+∞)| < ε for any t ≥ T (ε) and
x ∈M .

We can then deduce:

Lemma 2.5. Let M ⊆ E. Then M is relatively compact in E if the following
conditions hold:

(a) M is bounded in E,

(b) the functions belonging to {u | u(t) = x(t)
1+t , x ∈ M} and to {z | z(t) =

x′(t), x ∈M} are almost equicontinuous on [0,+∞),

(c) the functions belonging to {u | u(t) = x(t)
1+t , x ∈ M} and to {z | z(t) =

x′(t), x ∈M} are equiconvergent at +∞.

The Green’s function of the linear problem −x′′ = x(0)− µx′(0) = x′(+∞) = 0
is

G(t, s) = µ+ min(s, t) , s, t ≥ 0 .
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We have

Lemma 2.6. Let δ ∈ C(R+,R+) be such that
∫ +∞

0 δ(s) ds < +∞ and put
x(t) =

∫ +∞
0 G(t, s)δ(s) ds. Then

(2.3)

x
′′(t) + δ(t) = 0 , t > 0 ,

x(0) = µx′(0) , lim
t→+∞

x′(t) = 0 .

Lemma 2.7. Let δ ∈ C(R+,R+) ∩ L1(r,+∞) for all r > 0 and∫ +∞

0
φ−1

(∫ +∞

s

δ(τ) dτ
)
ds < +∞ .

If x(t) =
∫ +∞

0 G(t, s)φ−1( ∫ +∞
s

δ(τ)dτ
)
ds, then x ∈ X and

(2.4)
{

(φ(−x′′(t)))′ + δ(t) = 0 , t > 0 ,

x(0) = µx′(0) , x′(+∞) = x′′(+∞) = 0 .

The proofs of the lemmas are immediate and are omitted.

3. Main results

We start with

Definition 3.1. A function α ∈ X is called lower solution of (1.1) if(φ(−α′′(t)))′ + f(t, α(t), α′(t)) ≥ 0 , t > 0

α(0) ≤ µα′(0), lim
t→+∞

α′(t) ≤ 0, lim
t→+∞

α′′(t) ≥ 0 .

An upper solution of (1.1) is defined when the above inequalities are reversed.
Assume that

(H1) f ∈ C(R+× (0,+∞)×R+,R+) and f(t, x, y) is nonincreasing with respect
to the second and third arguments.

(H2) For every λ > 0, ∫ +∞

0
f(τ, λρ(τ), 0) dτ < +∞

and ∫ +∞

0
φ−1

(∫ +∞

s

f
(
τ, λρ(τ), 0

)
dτ
)
ds < +∞ .

(H3) There exists a function a ∈ S \ {0} such that the function b defined by

b(t) =
∫ +∞

0
G(t, s)φ−1

(∫ +∞

s

f
(
τ, a(τ), a′(τ)

)
dτ
)
ds

satisfies

b′(t) ≥
∫ +∞

t

φ−1
(∫ +∞

s

f
(
τ, b(τ), b′(τ)

)
dτ
)
ds ≥ a′(t) , ∀ t ≥ 0 .
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Define the fixed point operator T on E by

Tx(t) =
∫ +∞

0
G(t, s)φ−1

(∫ +∞

s

f
(
τ, x(τ), x′(τ)

)
dτ
)
ds .

Remark 3.1. (a) Since

(Tx)′(t) =
∫ +∞

t

φ−1
(∫ +∞

s

f
(
τ, x(τ), x′(τ)

)
dτ
)
ds,

the inequalities in (H3) read
(3.1) b′(t) ≥ (Tb)′(t) ≥ a′(t) , ∀ t ≥ 0
or equivalently

(Ta)′(t) ≥ (T 2a)′(t) ≥ a′(t) , ∀ t ≥ 0 .
(b) Since a ∈ S then b ∈ S and so Tb ∈ S. Using part (a) and Lemma 2.3, we get
the estimates
(3.2) Ta(t) ≥ T 2a(t) ≥ a(t) , ∀ t ≥ 0 .

Lemma 3.1. Let (H1)–(H2) hold. Then the operator T maps S \ {0} into X ∩ S.
Moreover

(3.3)
{(
φ(−(Tx)′′)

)′(t) + f
(
t, x(t), x′(t)

)
= 0 , t > 0 ,

(Tx)(0) = µ(Tx)′(0) , (Tx)′(+∞) = (Tx)′′(+∞) = 0 .

Proof. (a) For λ > 0, let

Fλ(t) =
∫ +∞

0
G(t, s)φ−1

(∫ +∞

s

f
(
τ, λρ(τ), 0

)
dτ
)
ds .

Then
lim

t→+∞

Fλ(t)
1 + t

= 0 .

By the convergence of the second integral in (H2), we get

lim
t→+∞

F ′λ(t) = lim
t→+∞

∫ +∞

t

φ−1
(∫ +∞

s

f
(
τ, λρ(τ), 0

)
dτ
)
ds = 0 .

Then Fλ is monotone nondecreasing and

lim
t→+∞

Fλ(t)
1 + t

=

0 , if lim
t→+∞

Fλ(t) <∞ ,

lim
t→+∞

F ′λ(t) = 0 , if lim
t→+∞

Fλ(t) =∞ .

(b) For x ∈ S \ {0}, Lemmas 2.1 and 2.2 guarantee the existence of λx > 0 such
that for all positive t, x(t) ≥ λxρ(t) and x′(t) ≥ 0. (H1) and (H2) with Part (a)
imply

Tx(t)
1 + t

=
∫ +∞

0 G(t, s)φ−1( ∫ +∞
s

f(τ, x(τ), x′(τ))dτ
)
ds

1 + t

≤
∫ +∞

0 G(t, s)φ−1( ∫ +∞
s

f(τ, λxρ(τ), 0)dτ
)
ds

1 + t
= Fλx(t)

1 + t
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and

(Tx)′(t) =
∫ +∞

t

φ−1
(∫ +∞

s

f
(
τ, x(τ), x′(τ)

)
dτ
)
ds

≤
∫ +∞

t

φ−1
(∫ +∞

s

f
(
τ, λxρ(τ), 0

)
dτ
)
ds .

Hence lim
t→+∞

Tx(t)
1+t = 0 and lim

t→+∞
(Tx)′(t) = 0. Then Tx ∈ E. In fact, we even have

that Tx ∈ X ∩ S for Tx(t) ≥ 0, Tx(0) = µ(Tx)′(0), and

(Tx)′′(t) = −φ−1
(∫ +∞

t

f
(
τ, x(τ), x′(τ)

)
dτ
)
≤ 0 .

Thus (3.3) is satisfied. �

We are now in position to prove our main existence result:

Theorem 3.1. Assume that assumptions (H1)– (H3) hold. Then the boundary
value problem (1.1) has at least one positive solution x ∈ X such that x(t) ≥ λ0ρ(t)
and 0 ≤ x′(t) ≤M , ∀ t ≥ 0, for some positive constants λ0, M .

Proof.
Step 1. Upper and lower solution method. Taking into account Remark 3.1, using
(3.1), (3.2) and the monotonicity of f , we have for all t > 0

(3.4)


(
φ(−(Tb)′′)

)′(t) + f
(
t, T b(t), (Tb)′(t)

)
≥
(
φ(−(Tb)′′)

)′(t) + f
(
t, b(t), b′(t)

)
= 0

(Tb)(0) = µ(Tb)′(0) , (Tb)′(+∞) = 0 , (Tb)′′(+∞) = 0

and

(3.5)


(
φ(−(Ta)′′)

)′(t) + f
(
t, Ta(t), (Ta)′(t)

)
≤
(
φ(−(Ta)′′)

)′(t) + f
(
t, a(t), a′(t)

)
= 0 ,

(Ta)(0) = µ(Ta)′(0) , (Ta)′(+∞) = 0 , (Ta)′′(+∞) = 0 .

Therefore the functions α = Tb, β = Ta are lower and upper solutions of problem
(1.1), respectively with α ≤ β and α′ ≤ β′.

Step 2. Consider the truncated problem:

(3.6)
{(
φ(−x′′)

)′(t) + f∗
(
t, x(t), x′(t)

)
= 0 , t > 0 ,

x(0) = µx′(0) , x′(+∞) = x′′(+∞) = 0 ,

where

(3.7) f∗(t, x, y) =


f̃(t, α, y) , x < α(t) ,

f̃(t, x, y) , α(t) ≤ x ≤ β(t) ,

f̃(t, β, y) , x > β(t) ,
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with

f̃(t, x, y) =


f(t, x, α′) , y < α′(t) ,

f(t, x, y) , α′(t) ≤ y ≤ β′(t) ,

f(t, x, β′) , y > β′(t) .
To prove that problem (3.6) has a positive solution, consider the operator A : E → E
defined by

Ax(t) =
∫ +∞

0
G(t, s)φ−1

(∫ +∞

s

f∗
(
τ, x(τ), x′(τ)

)
dτ
)
ds .

Then a fixed point of the operator A is a solution of the boundary value problem
(3.6). Since α ∈ S \ {0}, by Lemmas 2.1 and 2.2, there exists a positive constant
λα such that α(t) ≥ λαρ(t), ∀ t ≥ 0 and α′(t) ≥ 0,∀ t ≥ 0. Since f(t, x, y) is
nonincreasing in x and y, then

(3.8) f∗(t, x, y) ≤ f
(
t, α(t), α′(t)

)
≤ f

(
t, λαρ(t), 0

)
,

for all positive t.

(a) A(E) ⊆ E. For x ∈ E and t ∈ R+, we have

Ax(t)
1 + t

=
∫ +∞

0 G(t, s)φ−1(
∫ +∞
s

f∗(τ, x(τ), x′(τ))dτ) ds
1 + t

≤
∫ +∞

0 G(t, s)φ−1(
∫ +∞
s

f(τ, λαρ(τ), 0)dτ)ds
1 + t

= Fλα(t)
1 + t

and

(Ax)′(t) =
∫ +∞

t

φ−1
(∫ +∞

s

f∗
(
τ, x(τ), x′(τ)

)
dτ
)
ds

≤
∫ +∞

t

φ−1
(∫ +∞

s

f
(
τ, λαρ(τ), 0

)
dτ
)
ds .

Then lim
t→+∞

Ax(t)
1+t = 0 and lim

t→+∞
(Tx)′ = 0 which implies that A(E) ⊆ E.

(b) A is continuous.
Let {xn}n≥1 ⊆ E be a sequence converging to some limit x0 ∈ E. Then

‖Axn −Ax0‖1 = sup
t∈R+

|Axn(t)−Ax0(t)|
1 + t

= sup
t∈R+

∫ +∞

0

G(t, s)
1 + t

∣∣∣φ−1
(∫ +∞

s

f∗
(
τ, xn(τ), x′n(τ)

)
dτ
)

− φ−1
(∫ +∞

s

f∗
(
τ, x0(τ), x′0(τ)

)
dτ
)∣∣∣ ds
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≤ max(1, µ)
∫ +∞

0
φ−1

(∫ +∞

s

f∗
(
τ, xn(τ), x′n(τ)

)
dτ
)

− φ−1
(∫ +∞

s

f∗
(
τ, x0(τ)x′0(τ)

)
dτ
)∣∣∣ ds

and

‖Axn −Ax0‖2 = sup
t∈R+

∣∣(Axn)′(t)− (Ax0)′(t)
∣∣

≤ sup
t∈R+

∫ +∞

t

∣∣∣φ−1
(∫ +∞

s

f∗
(
τ, xn(τ), x′n(τ)

)
dτ
)

− φ−1
(∫ +∞

s

f∗
(
τ, x0(τ), x′0(τ)

)
dτ)
∣∣∣ ds

≤
∫ +∞

t

φ−1
(∫ +∞

s

f∗
(
τ, xn(τ), x′n(τ)

)
dτ
)

− φ−1
(∫ +∞

s

f∗
(
τ, x0(τ), x′0(τ)

)
dτ
)∣∣∣ ds .

Since∣∣∣φ−1
(∫ +∞

s

f∗
(
τ, xn(τ), x′n(τ)

)
dτ
)
− φ−1

(∫ +∞

s

f∗
(
τ, x0(τ)

)
, x′0(τ) dτ

)∣∣∣
≤ 2φ−1

(∫ +∞

0
f
(
τ, λαρ(τ)

)
, 0
)
dτ ,

then the continuity of f∗, φ−1, assumption (H2), and the Lebesgue dominated
convergence theorem guarantee that ‖Axn −Ax0‖ −→ 0, as n −→ +∞.
(c) A(E) is relatively compact. We will make use of Lemma 2.5.

(i) A(E) is uniformly bounded. For x ∈ E, we have

‖Ax‖1 = sup
t∈R+

|Ax(t)|
1 + t

≤ sup
t∈R+

∫ +∞

0

G(t, s)
1 + t

φ−1
(∫ +∞

s

f∗
(
τ, x(τ), x′(τ)

)
dτ
)
ds

≤ max(1, µ)
∫ +∞

0
φ−1

(∫ +∞

s

f∗
(
τ, x(τ), x′(τ)

)
dτ
)
ds

≤ max(1, µ)
∫ +∞

0
φ−1

(∫ +∞

s

f
(
τ, λαρ(τ), 0

)
dτ
)
ds < +∞

and

‖Ax‖2 = sup
t∈R+

|(Ax)′(t)| ≤
∫ +∞

0
φ−1

(∫ +∞

s

f
(
τ, λαρ(τ), 0

)
dτ
)
ds < +∞.

(ii) Almost equicontinuity. For a given T > 0, x ∈ E, and t, t′ ∈ [0, T ] (t > t′),
we have
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∣∣∣∣Ax(t)
1 + t

− Ax(t′)
1 + t′

∣∣∣∣ ≤ ∫ +∞

0

∣∣∣G(t, s)
1 + t

− G(t′, s)
1 + t′

∣∣∣φ−1
(∫ +∞

s

f∗
(
τ, x(τ), x′(τ)

)
dτ
)
ds

≤
∫ T

0

∣∣∣G(t, s)
1 + t

− G(t′, s)
1 + t′

∣∣∣φ−1
(∫ +∞

s

f
(
τ, λαρ(τ), 0

)
dτ
)
ds

+
∣∣∣ t+ µ

1 + t
− t′ + µ

1 + t′

∣∣∣ ∫ +∞

T

φ−1
(∫ +∞

s

f
(
τ, λαρ(τ), 0

)
dτ
)
ds .

Similarly

|((Ax)′(t))− ((Ax)′(t′))| =
∣∣∣ ∫ +∞

t

φ−1
(∫ +∞

s

f∗
(
τ, x(τ), x′(τ)

)
dτ
)
ds

−
∫ +∞

t′
φ−1

(∫ +∞

s

f∗
(
τ, x(τ), x′(τ)

)
dτ
)
ds
∣∣∣

≤
∫ t

t′
φ−1

(∫ +∞

s

f
(
τ, λαρ(τ), 0

)
dτ
)
ds.

Hence by (H2), for any ε > 0 and T > 0, there exists δ > 0 such that
∣∣Ax(t)

1+t −
Ax(t′)
1+t′

∣∣ < ε and |(Ax)′(t)− (Ax)′(t′)| < ε for all t, t′ ∈ [0, T ] with |t− t′| < δ. As a
consequence {A(E)

1+t } and {A(E)}′ are almost equicontiuous.

(iii) A(E)
1+t and (A(E))′ are equiconvergent at +∞. Since lim

t→+∞
Ax(t)
1+t = 0 and

lim
t→+∞

(Ax)′(t) = 0, then (H2) yields

lim
t→+∞

sup
x∈E

∣∣∣Ax(t)
1 + t

− lim
t→+∞

Ax(t)
1 + t

∣∣∣
= lim

t→+∞
sup
x∈E

∫ +∞
0 G(t, s)φ−1(

∫ +∞
s

f∗(τ, x(τ), x′(τ))dτ) ds
1 + t

≤ lim
t→+∞

∫ +∞
0 G(t, s)φ−1(

∫ +∞
s

f(τ, λαρ(τ), 0)dτ) ds
1 + t

= lim
t→+∞

Fλα(t)
1 + t

= 0

and

lim
t→+∞

sup
x∈E

∣∣(Ax)′(t)− lim
t→+∞

(Ax)′(t)
∣∣

= lim
t→+∞

sup
x∈E

∫ +∞

t

φ−1
(∫ +∞

s

f∗
(
τ, x(τ), x′(τ)

)
dτ
)
ds

≤ lim
t→+∞

∫ +∞

t

φ−1
(∫ +∞

s

f
(
τ, λαρ(τ), 0

)
dτ
)
ds = 0 .

By Lemma 2.5, the range A(E) is relatively compact so the Schauder fixed point
theorem (see, e.g., [1]), guarantees that the operator A has at least one fixed point
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x ∈ E which in fact lies in X by Lemma 3.1; of course x is solution of problem
(3.6).

Step 3. Problem (1.1) has at least one positive solution.
We only check that α(t) ≤ x(t) ≤ β(t) and α′(t) ≤ x′(t) ≤ β′(t), ∀ t ∈ R+. Since x
is a solution of (3.6), we have

(3.9) x(0) = µx′(0) , lim
t→+∞

x′(t) = lim
t→+∞

x′′(t) = 0 .

The function f(t, x, y) being nonincreasing in x and y, we have

(3.10) f
(
t, β(t), β′(t)

)
≤ f∗(t, x, x′) ≤ f

(
t, α(t), α′(t)

)
, ∀ t ∈ R+ .

Then (3.1) and (3.2) yield

(3.11) f
(
t, b(t), b′(t)

)
≤ f∗(t, x, x′) ≤ f

(
t, a(t), a′(t)

)
, ∀ t ∈ R+ .

Noting that a, b ∈ S \ {0}, we get by Lemma 3.1(
φ(−β′′(t))

)′ =
(
φ(−Ta)′′(t))

)′ = −f
(
t, a(t), a′(t)

)
, ∀ t ∈ R+ ,(

φ(−α′′(t))
)′ =

(
φ(−Tb)′′(t))

)′ = −f
(
t, b(t), b′(t)

)
, ∀ t ∈ R+ .

Combining this with (3.1), (3.2), (3.9)–(3.11), and Lemma 3.1, we obtain that for
all positive t(

φ(−β′′(t))
)′ − (φ(−x′′(t))

)′ = −f
(
t, a(t), a′(t)

)
+ f∗

(
t, x(t), x′(t)

)
≤ 0 .

Then the function z defined by z(t) = (φ(−β′′(t)))−(φ(−x′′(t))) is nonincreasing in
R+. Moreover z(+∞) = 0 implies z(t) ≥ 0, ∀ t ≥ 0. Hence (β−x)′′(t) ≤ 0, ∀ t ∈ R+

which implies that (β − x)′ is nonincreasing in R+. In addition (β − x)′(+∞) = 0,
then (β − x)′(t) ≥ 0, ∀ t ∈ R+ and x′(t) ≤ β′(t), ∀ t ∈ R+. Finally, Lemma 2.3
implies that x(t) ≤ β(t), for all t ∈ R+. The estimates x′(t) ≥ α′(t) and x(t) ≥ α(t),
for all t ∈ R+ are proved similarly; we omit the details. Therefore, x is a solution
of (1.1). Finally, since α, β ∈ S \ {0}, by Lemmas 2.1 and 2.2, there exist two
positive constants λ0 = λα and M = Mβ such that x(t) ≥ α(t) ≥ λ0ρ(t) and
0 ≤ x′(t) ≤ β′(t) ≤M , ∀ t ∈ R+, as claimed. �

When f(t, x, y) has no singularity at x = 0, i.e. f : R+ × R+ × R+ −→ R+ is a
continuous function, then for all x, y ≥ 0, f(t, x, y) ≤ f(t, 0, 0). We have obtained
the following

Theorem 3.2. Assume that assumption (H1) holds with
(H2)′

0 <
∫ +∞

0
f(τ, 0, 0)dτ < +∞ and

∫ +∞

0
φ−1

(∫ +∞

s

f(τ, 0, 0)dτ
)
ds < +∞ .

Then problem (1.1) has at least one positive solution x ∈ E and, by Lemma 3.1,
we even have that x ∈ X. In addition, x(t) ≥ λ0ρ(t) and 0 ≤ x′(t) ≤M , for some
M,λ0 > 0.
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The proof follows the same line as that of Theorem 3.1. We only have to check
that T (S) ⊂ S ∩X and if a(t) = 0, t ≥ 0, then the condition (H3) holds. Also
the condition (H2)′ implies that the functions β = Ta = b and α = Tb belong to
S \ {0}.

Example 3.1. Consider the singular bvp

(3.12)


(
φ(−x′′(t))

)′ + f
(
t, x(t), x′(t)

)
= 0 ,

x(0) = µx′(0) , lim
t→+∞

x′(t) = lim
t→+∞

x′′(t) = 0 ,

where 0 ≤ µ ≤ 8
3 , φ(x) = x

1
3 , f(t, x, y) = e−tm(t)g(x)ψ(y),

m(t) =
{
t3 , t ∈ [0, 1] ,
1
t2 , t ≥ 1 ,

g(x) =
{ 1
x , x ∈ (0, 1] ,

1 , x ≥ 1 ,

ψ(y) =
{ 1

2 + 1
y+1 , y ∈ [0, 1] ,

1 , y ≥ 1 .

Next, we verify the assumptions in Theorem 3.1.

(H1) f ∈ C(R+× (0,+∞)×R+,R+) and f(t, x, y) is nonincreasing with respect
to x and y, for every positive t.

(H2) For all λ > 0, ∫ +∞

0
f(τ, λρ(τ), 0)dτ = 2

λ

and ∫ +∞

0
φ−1

(∫ +∞

s

f(τ, λρ(τ), 0)dτ
)
ds < +∞ .

(H3) We set a0(t) = t+ 1 and a = Ta0, i.e.

a(t) =
∫ +∞

0
G(t, s)φ−1

(∫ +∞

s

e−τm(τ)dτ
)
ds .

Then for all positive t

a(t) ≤
∫ +∞

0
G(t, s)φ−1

(∫ +∞

s

e−τdτ
)

≤
∫ +∞

0
(s+ 8/3)φ−1(e−s) ds ≤ 1 ≤ a0(t)
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and

a′(t) =
∫ +∞

t

φ−1
(∫ +∞

s

e−τm(τ) dτ
)

≤
∫ +∞

t

φ−1
(∫ +∞

s

e−τdτ
)

≤
∫ +∞

t

φ−1(e−s) ds ≤ 1 = a′0(t) .

Hence

b(t) =
∫ +∞

0
G(t, s)φ−1

(∫ +∞

s

e−τm(τ)g
(
a(τ)

)
ψ
(
a′(τ)

)
dτ
)
ds

≥
∫ +∞

0
G(t, s)φ−1

(∫ +∞

s

e−τm(τ)g
(
a0(τ)

)
ψ
(
a′0(τ)

)
dτ
)
ds = a(t)

and b′(t) ≥ a′(t). As a consequence∫ +∞

t

φ−1
(∫ +∞

s

f
(
τ, b(τ), b′(τ)

)
dτ
)
ds

=
∫ +∞

t

φ−1
(∫ +∞

s

e−τm(τ)g
(
b(τ)

)
ψ
(
b′(τ)

)
dτ
)
ds

≤
∫ +∞

t

φ−1
(∫ +∞

s

e−τm(τ)g
(
a(τ)

)
ψ
(
a′(τ)

)
dτ
)
ds = b′(t) .

Then the first inequality of (H3) holds. Finally, since g ≥ 1 and ψ ≥ 1, we
get ∫ +∞

t

φ−1
(∫ +∞

s

f
(
τ, b(τ), b′(τ)

)
dτ
)
ds

≥
∫ +∞

t

φ−1
(∫ +∞

s

e−τm(τ) dτ
)
ds = a′(t) ,

then the second inequality of (H3) holds too.
By Theorem 3.1, problem (3.12) has at least one positive solution x lying between

T 2a and Ta.

4. Concluding remarks

(a) Owing to Lemma 2.3, S is partially ordered by the relation x′ ≤ y′. Then
the monotonic assumption on the nonlinearity f , namely Assumption (H1),
implies that the fixed point integral operator T is monotonic nonincreasing.
From (3.2) in Remark 3.1, it is easily seen that

a ≤ T 2a ≤ T 4a ≤ · · · ≤ T (2m)(a) ≤ · · · ≤ T (2m−1)(a) ≤ · · · ≤ T 3a ≤ Ta .
Hence the subsequences T (2m)(a) and T (2m+1)(a) are monotonic nonde-
creasing and nonincreasing sequences respectively; since they are further
uniformly bounded in the interval [a, Ta], then they are convergent to some
limits y and z, respectively, with a ≤ y ≤ z ≤ Ta. In fact, we even have
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that, for all integer m, y ≥ T (2m)(a) and z ≤ T (2m+1)(a). Therefore, we
deduce that the solution set for problem (1.1) lies in the smaller interval
[y, z].

(b) Problem (1.1) is considered in [11] when f does not depend on the first
derivative. When f depends as well on the first derivative, it has also been
studied in [10] via a topological method; the hypotheses on the nonlinearity
rather involve the growth of the function f(t, (1+t)x, y). In [14], the authors
investigated problem (1.1) with a nonlinearity satisfying some local growth
conditions.

(c) In this work, problem (1.1) was treated with the method of upper and lower
solutions but with no Nagumo-type growth condition on the nonlinearity
f , as generally assumed. We point out that the first derivative x′ is not at
all involved in (H2) which is rather related to the half-line problem setting.
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