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CONDITIONS FOR INTEGRABILITY OF A 3-FORM

JIRI VANZURA

ABSTRACT. We find necessary and sufficient conditions for the integrability
of one type of multisymplectic 3-forms on a 6-dimensional manifold.

Let V be a 6-dimensional real vector space. The general linear group GL(V)
operates naturally on the space of 3-forms A3V* by

pa(v,v,v") = alp v, o), a e ABVF, o e GL(V).

This action has six orbits, see e.g. [I]. They can be described by their representatives.
Let us choose a basis vy, ...,vg of V, and let a1, ..., ag be the corresponding dual
basis. Let us recall that a 3-form a € A3V* is called regular or multisymplectic if
the linear mapping
LV = AV u(v) =

is injective. All the other forms are then called singular. Obviously, all forms
belonging to an orbit are either regular or singular. We then speak about regular
orbits and singular orbits. We denote R4, R_ and Ry the regular orbits and by
P+, P—, po their representatives. Similarly we denote S7, Sy and S3 the singular
orbits and by o1, 02, o3 their representatives.

(Ry) pr =1 Nas Aas+ag Aas A ag,

(R,) p— =g Nag ANas+ay ANog Nas + o Nag AN ag —as N\ as A ag,
(Ro) po =01 Nag Nas+as Aas Aag+ az Aag A ay,

(S1) o1 =0,

(S2) oy =a; ANag A as,

(S3) o3 =a1 A(aa ANag+ag ANas).

We recall that a 2-form ( on a vector space is called decomposable if there
exist 1-forms v and «' such that 5 = v A+'. It is well known that a 2-form g is
decomposable if and only if S A 5= 0.

With every 3-form a € A3V* we can associate a subset A(a) C V defined by

Ala) ={v € Via Ao =0}
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In other words A(«) consists of all v € V' such hat the 2-form ¢, v is decomposable.

1. ALGEBRAIC PROPERTIES

We take now an element o € Ry. We find easily that

A(po) = [v1, 2, v3].
This shows that the subset A(«) is a 3-dimensional subspace of V. For simplicity
we denote Vp = A(«). There is also another possible description of A(«).
1. Lemma. A(a) = {v € V; (o) Aa =0}.

Proof. Obviously it suffices to prove this equality for a = pg. We take v =
aivy + - - - + agvg and we find
(tupo) A po = —2agaa A az A ag A as A ag + 2a401 A az A Nag A as A ag
—2a501 Nag ANag N as N ag .
This proves the lemma. O

For pg, and consequently for every a € Ry we have the following lemma.
2. Lemma. If o € Ry and v, v' € A(«), then a(v,v’,-) = 0.
Inspired by pg we introduce the following definition.

3. Definition. A basis wy,...,wg of V is called canonical basis for c if the following
conditions are satisfied

for 1<i<j<3, k=4,5,6,

alwy,ws,ws) =0, « 0

=0, oa(w,ws,wy) =0,
1
0

(Wi, Wy, Ws

(W2, Wy, W 3 a(w27wﬁvw4) :0,

) =
)=
)=
) =

(
(

a(ws, wy, ws
(

0, aws,ws,we)=0, a(ws,wswy) =1,
a(wy, ws, We 0.
A dual basis 31, ..., 8¢ to a canonical basis will be called canonical dual basis for a.
It is easy to see that 0, ..., 06 is a canonical dual basis for « if and only if there

is
a=P1ABsABs+ B2 NBs N\ Bs+ B3N\ Bs A Pa.
Because the forms a and py are equivalent (= belong to the same orbit), it is
obvious that
4. Lemma. Every 3-form a € Ry has a canonical basis.
Nevertheless for the later considerations within the framework of differential
geometry we shall present a constructive proof.

Proof. We choose first a complement V. of V in V. In this complement we take
three linearly independent vectors z4, 25, 26. We denote a = «a(zy, 25, 26). Because
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the form « is regular, there is vg € Vj such that a(vg, z5,26) = b # 0. Taking
wy = z4 — (a/b)vg, ws = 25, and wg = z¢ we get
a(wg, w5, we) = a(z4 — (a/b)vo, 25, 26)
= a(z4, 25, 26) — (a/b)a(vo, 25, 26) = a — (a/b)b=0.
Now we have on Vj three linear forms, namely the forms a(-, wyq, ws), a(-, ws, we),
and «(-,wg,wys). The regularity of « implies again that these three forms are

linearly independent. Consequently, there are uniquely determined w1y, wa, ws € Vg
such that

a(wy, wg,ws) =1,  a(wy,ws,we) =0, a(wy,ws, wg) =0,
a(we,ws, ws) =0,  o(w, ws,we) =1, alws,ws, wy) =0,
=0 0 =1.

) a(w37w5,w6): , a(w37w67w4)

The equations (w1, wa, ws) = 0 and a(w;, w;, w,) =0for1 <i < j<3,k=4,5,6
are satisfied automatically by virtue of Lemma [2] O

Let us consider two canonical dual bases 1, ..., s and 31, .., 8;. We can write

B = c1151 + c1202 + c1383+c14B4 + c1505 + 1656
B5 = 2181 + 2282 + c23B3+C2484 + Ca505 + c2606
B% = 3181 + 3282 + c3383+C3484 + ¢3505 + ¢3606

By = 4434 + c4505 + ca656
65 = 5484 + 5505 + 566
B = c6434 + co505 + 66

We start with the equation

By ABLABs 4By NB5 A Bg + B3 A Bs A By = B1 A BaABs + Ba ABs A Bs+ B3 A\ Be N B
Comparing the coefficients at 81 A B4 A B, 81 A Bs A B, and 81 A Bg A B4, we obtain

C21 C44 C45 C21  C45 C4p C21 C46 C44
c31 Csa Cs5|0 =1, a1 c55 cs6| =0, |c31 cse csa| = 0.
C11 Ce4 Co5 C11 Ce5 Ce6 C11 Ce6 Co4

Let us introduce the vectors

z = (0217031,011),24 = (044;0547664)725 = (04570557065)726 = (04676567066)~

It is obvious that the vectors zg, 25, z¢ are linearly independent. The last two
determinant identities show that z is a linear combination of z5 and zg as well as a
linear combination of zg and z4. This implies that z is a multiple of zg, i.e. 2 = 724.
From the first determinant identity we get then

C46 C44 C45
T |Cs6 C54 Cs5| = 1.
Ce6 Cea Co5
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We denote
Ca4  Ca5 C46
d=|cs4 c55 Cs6
Cea C65 C66
From the identity z = 724 we get
ci1=cee 0, cam=cis-0 ', c3=cz6-0 ".

Comparing coefficients at the monomials Ga A B4 A G5, B2 A Bs A Bg, and B2 A Bg A B4
we obtain along the same lines as above

—1 1 —1
Cla=Cea-0 ", Cap=cCaa-0 ", C32=0C54-0 .

Further, comparing coefficients at the monomials B3 A B4 A 85, B3 A B5 A Bg, and
ﬂg A 66 A ﬁ4 we have

1 1 1
c13==Ce5-0 ~, Ca3=cCa5-0 ", C33=0Cs5-0 .

It remains to compare coefficients at G4 A 05 A Bs. Here we obtain the identity

Cl4 Ci15 Ci6 Co4 C25 C26 C34 €35 C36
(%) C44 C45 Ca6|+ |C54 C55  Cse| + |Cea Ces  ces| = 0.
C54 Cs55 Cs C64 C65 Co6 Ca4  C45 Cap

We have thus proved the following

5. Lemma. If 51,...,8; and p1,..., B¢ are canonical dual bases, then their tran-
sition matrix has the form

—1 —1 1

ce6 - 6 o4 - 6 o5+ 0 Cl4 Ci15 Ci6
—1 —1 —1

46 - 0 caa - 0 ca5 - 0 Coa  C25 Ca6
—1 —1 -1

Cs6 - 0 C54 -0 cs5 - 0 C34 €35 C36

0 0 0 C44 C45 C46
0 O 0 Cs4 Cs5 Cs56
0 0 0 Ce4  Co5 Co6

satisfying (%). If B1, ..., B is a canonical dual basis and B, ..., 3 is a basis of V*
such that the transition matriz between both bases has the above form and satisfies
(x) , then B1,..., 05 is also a canonical dual basis.

2. GEOMETRIC PROPERTIES

Now we start to consider a 6-dimensional differentiable manifold M. From now
on all structures will be differentiable, i.e. of class C*°. A 3-form w on M will be
called a form of class Ry if for every x € M there is an isomorphism h,: T,M — V
such that h’py = w,. (Quite analogical definitions can be introduced for other
types of forms.) We consider now on M a 3-form of type Ry. We get easily on
M a 3-dimensional distribution D defined by D, = A(w, ). But here we need the
following lemma.

6. Lemma. The distribution D is differentiable.
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Proof. Around any point x € M we can find a local basis X1,..., Xg of TM. We
take a vector field X = f1.X7 + -+ + f6Xe, where fi1,..., fs are (locally defined)
differentiable functions. To find differentiable vector fields Y7, Y5, Y3 which span
the distribution D it is necessary to solve the equation (txw) A w = 0. This leads
to a system of six linear homogeneous equations the coefficients of which are
differentiable functions. The rest of the proof is then completely standard. (Il

7. Definition. A local basis X1,...,X¢ of TM around a point x € M is called
local canonical basis for w if the following conditions are satisfied

a(Xi, X2, X3) =0, a(X;,X;,X,)=0 for 1<i<j<3, k=456,
(X1, X4, X5)=1, a(X1,X5,X6) =0, a(X1,Xe X4)=0,
(X9, X4, X5) =0, «a(Xo,X5,X)=1, a(X2, X6, X4)=0,
(X3, X4, X5) =0, a(X3,X5,X6) =0, (X3, X6, Xa)=1,

(X4, X5,X6) =0

8. Proposition. Around every point x € M there exists a canonical basis for the
3-form w.

Proof. We choose first a complement D, of D in T'M. This complement is also
a differentiable distribution. In this complement we take locally three linearly
independent vector fields Yy, Y5, Ys5. We denote f = w(Yy,Ys, Ys). Because the
form w, is regular, there is vy € D, such that wy(vo,Ys 2, Ys,5) = b # 0. Then we
take a vector field Yy around z lying in D such that Xy, = vy. Obviously, then
w(Yp,Ys,Ys) = g is non-zero in a neighborhood of z. Taking X, =Y, — (f/g)Yo,
X5 =Y5, and Xg = Y5 we get

w(Xy, X5, X6) = a(Ys — (f/9)Y0, Y5, Ye)
= w(Yy, Y5, Y5) — (f/9)w(Yo, Y5, Ys) = f — (f/9)g = 0.

Now we have in a neighborhood of x € M three 1-forms, namely the forms
w(+, X4, X5), w(-, X5,Xs), and w(-, X4, X4). The regularity of w, implies again
that these three forms are linearly independent. Consequently, there are uniquely
determined vector fields X, X2, X3 in D such that

W(XluXZhXS):lu W(X17X5,X6):0, W(X17X67X4):O7
W(XZaX47X5) = 07 (U(XQ,X5,X6) = ]-7 W(X27X67X4) = 07
W(X37X47X5) = Oa w(X37X57X6) = 07 W(X3aX67X4) =1.

The equations w(Xi, Xz, X3) = 0 and w(X;, X;,X,) = 0for 1 < i < j <3,
k =4,5,6 are again satisfied automatically by virtue of Lemma [2] This finihes the
proof. O

Now it suffices to take dual 1-forms wq,...,ws to the vector fields X1,..., Xg
and we get the following proposition.
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9. Proposition. For a 3-form w of type Ry on M locally there exist 1-forms
w1, ...,ws such that

w=wi ANwg Nws + w2 ANws \wg + w3 Nwg A wy .
10. Example. On RS let us consider the 3-form
w = dx1 A (dzg + x1dx3) Adxs + dxg A das A dxg + des A dag A (dxeg + x1dxs) .
We have
dw =dxy Ndxy ANdxs ANdxs + drs Adxg ANdxy Adrs =0.
On the other hand the distribution D = A(w) is spanned by the vector fields
o a9 0 0

A a0 o, Tig

8$1 8.132 81‘3 8304
and is not integrable. This shows that the closeness of the 3-form w does not imply
the integrability of the associated distribution A(w).

We shall need a version of the Poincaré lemma. On R® we take coordinates
(z1,...,26) and consider an integrable 3-dimensional distribution D defined by the
equations dzy = drs = dxg = 0.

11. Lemma. Let 0 be a 2-form on RS such that d0 = 0 and 0|D = 0. Then there
exists a 1-form n on R® such that § = dn and n | D = 0.

Proof. We denote QF the vector space of k-forms on R and Z(QF) the subspace
consisting of closed forms. It is well known that there exists a linear mapping
E: Z(02%) — Q! such that for every £ € Z(Q?) there is £ = dE(£). The problem is
that F(f) need not satisfy F(6)|D = 0. But we have

dE(0)|D = 0|D =0.

On any leaf L(cy, c5,c6) of the distribution D (i.e. 24 = ¢4, x5 = ¢5, Tg = Cg) We
can again apply the Poincaré lemma and we find that there exists on L(cq, c5,¢6) a
function f(¢, cs,ce) such that E(0)|L(cy, cs,c6) = dfc, c5,cq)- Of course, this does not
solve our problem. But we can use an obvious parametric version of the Poincaré
lemma. We can consider R?® with coordinates (z1,22,23). On R? we take a family
of 1-forms (¢, 5, depending on three parameters cy4, cs, cg. Namely, the 1-form
Cearcs.ce With parameters ¢y, cs, ¢ is the form E(0) | L(cq,cs, cs) transferred to
R? under the natural identification (z1,x9,x3) — (1,22, 3,4, C5,C6). Now the
Poincaré lemma with three parameters gives us a three parametric system of
functions fe, cs.cq 00 R? such that (., c5.cq = dfey.cq.c6- In other words this means
that the function f(z1, %2, T3, %4, %5, T6) = foy,zs06(T1, T2, T3) satisfies

E9)|D =df|D.
Taking now n = FE(#) — df we can see that dnp =6 and n | D = 0. O
Let us recall now the following definition.

12. Definition. A 3-form w of type Ry on a manifold M is called integrable if
locally there exist coordinates x1, ...,z such that

w =dx1 Ndxy N dxs + dre A drs A dre + drs A deg A dry .
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It is obvious that if the 3-form w is integrable then w is closed and the associated
distribution A(w) is integrable. Now we are going to prove that these two conditions
are also sufficient for the integrability.

13. Theorem. A 3-form w of type Ry on a manifold M is integrable if and only if
the following two conditions are satisfied

(1) dw =0,
(2) the distribution D = A(w) s integrable.
Proof. We must show that the conditions are sufficient. Acording to Proposition
[9] around every point « € M we can find 1-forms w{, ...,w{ such that
w :w'l’/\wﬁ{/\wngwg/\wg/\wg+w§/\wé’/\wg.
Because A(w) is integrable, we can find three functions fj, f, f such that their

differentials dfy, dff, df§ are linearly independent and dfy | D = dff | D = df{, |
D = 0. Then using Lemma [§] we can find 1-forms w{, wj, w} such that

w=wy Adfy Ndfs +wh Adfs N dfg +wh Adfg A dfy .

We denote X7, ..., X{ the canonical basis associated to the canonical dual basis
wl, wh, wh, dfy, dft, dfs. Obviously, we have
(d) 0 = dw = dwi Adfy Adfs + dw) A dfi A dfg + dwsy A dfg A dfy .

Applying ¢ xjtx; on both sides we get
0 = (exyex;dwy) - dfy Adfg + (exgexrdws) - dfs Adfg + (exgexydws) - dfg A dfy .
This shows that dw} (X1, X3) = dw)(X], X5) = dw((X{,X}) = 0. Similarly we

find that du)/l(Xg,Xg) = dw/Q(Xg,Xg) = dwé(Xg,Xg) = 0 and dwi(Xg,Xl) =
dwh (X3, X1) = dwh (X3, X1) = 0. We have thus proved that

dw] | D =dw) | D =dw} | D=0.
Consequently dw] must have the following form
dwy = graw) Adfy + griswi A dfs 4 griewi A df
+ gr2awy A dfy + graswy A dff + grasws A df
+ g13aws A dfy 4 gissws A dfs + gizews A df
+ g1a5dfs N dfs + gisedfs A df + greadfs A dfy -
Similar formulas we can write for dw) and dwj. Now taking into account the
equation (d) we find the following identities.
g116 + 9214 + 9315 = 0,
9126 + G224 + g325 = 0,
9136 + 9234 + g335 = 0.

Let us consider now the 2-form dwj. This form is closed because ddwj = 0 and
dwi|D = 0. According to Lemma [11| there exists a 1-form 6; such that 6;|D = 0
and df; = dwj. Again similar considerations are possible with the 2-forms dw) and
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dwf. In this way we obtain three 1-forms 61, 63, and 65, which can be expressed in
the form

01 = hiadfy + hasdfs + hiedf
O = haadf + hosdfi + hasdf
03 = hsadfy + hasdfs + haedf .

The 1-forms wi — 61, wh — 02, and wh — O3 are closed and consequently we can find
functions f1, f4, f4 such that wj — 6, = df{, wh — 60 = dfy, and wh — 03 = dfy. Now it
is obvious that the functions fi ..., f§ represent a local coordinate system. The local
dual basis df1, dfs, dfs, dfy, dft, df§ is a relatively good basis, but unfortunately it
need not be a canonical basis. The transition matrix from the canonical basis w,
wh, wh, df}, dft, df§ to the last basis is

1 0 0 —hiy —his —hi
0 1 0 —hog —has —hos
0 0 1 —hgs —hss —hgs
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

and it may happen that hig + hog + hss # 0.
Considering the equations dw] = df;, dw) = dfs, and dwj = df; we get the
identities

Xihi6 = g116, Xohi6 = G126, X5h16 = G136,
Xihos = go1a, Xohos = gaoa, Xihos = goza,
Xihss = gs15, Xohas = gs25, X5has = gass -

Hence we obtain

Xi1(h16 + hoa + hss) = g116 + g214 + 9315 =0,
Xo(hie + hoa + h3s) = gi26 + ga24 + g325 = 0,
X3(hie + hoa + hss) = g136 + 9234 + 9335 = 0.

We can see that the function h = hig + hos + h3s is constant on the leaves of the
foliation associated with the distribution D. In our coordinate system f1,..., f§
this means that h is a function of variables f}, fi, f§ only. We can choose a function
[ of variables fj, ft, f& only such that 91/0f§ = h. Now we take a dual basis in the
form

dfy + dl, dfy, dfs, dfy, dfs, df -
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The transition matrix of this basis with respect to the basis wi, wh, wh, dfy, dft,
df§ is

1 0 0 —hua+ 6[/6]&1 —his + 8l/8f5/) —hig+h
010 —ha4 —has —hag

0 0 1 —h3q —h3s —hse

0 0 O 1 0 0

0 0 O 0 1 0

0 0 O 0 0 1

and obviously satisfies the condition (*). This implies that the dual basis df] + dI,
afy, dfk, dfy, dft, df§ is canonical. Now it suffices to set f1 = f{+1, fo = f4, f3 = fi,
fo= T4, 5 = f5, fo = f§ and we have

w = df1 AN dfy Ndfs + dfz ANdfs A dfs + dfs A dfe N\ dfs.
O

Let us assume now that there exists on M a symmetric connection V such
that Vw = 0. Then using [2, Cor. 8.6], we find that dw = Alt(Vw) = 0. Next for
arbitrary vector fields X, X7, Xs, Y we can calculate
(vY(LXw)(Xl, Xg)) = Y((wa>(X1, XQ)) —(LXoJ)(VyXl, XQ)—(LXw)(Xl, Vng)

= Y(w(X, Xl, XQ)) — w(X, VYXl, XQ) — W(X, Xl, VYXQ)
= (Vyw)(X, X1, X2) + w(Vy X, X1, Xo) + w(X, Vy X1, X5)

+ W(X, )(17 VYXQ) — LL)(X, VYXl, XQ) — w(X, Xl, VYXQ)
= w(VyX7 X17 XQ) = (LVwa)(X17X2) .

Now let us assume that a vector field X lies in the distribution D. We have then
(txw) Aw = 0 and consequently

0=Vy((txw) Aw) = (Vy(txw)) Aw = (tyy xw) Aw,

which show that V preserves the distribution D. Because the connection V is
symmetric, this implies that the distribution D is integrable. Together this means
that the 3-form w is integrable. We will see that the converse is also true.

14. Theorem. A 3-form w of type Ry on a paracompact manifold M is integrable
if and only if there exists on M a symmetric connection V such that Vw = 0.

Proof. We must prove that if w is integrable then there exists a symmetric
connection V such that Vw = 0. We can cover M by a locally finite open covering
of M consisting of charts {U*}xes with coordinates 7, ...,z such that on U*
we have

w = day Adxy Adad + dey A ded Aday + doy Adag A dxy
On each U* we take a connection V* defined by

V) 0mr (0/02)) =0, ij=1,....6.
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It is obvious that this connection is symmetric and satisfies V*w = 0. Now it
remains to glue these connections together. We take a partition of unity {a*}xer
subordinate to the covering {U*} 7. Then it suffices to define
V=) o'V,
ael
and we have on M a symmetric connection satisfying Vw = 0. (I
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