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Abstract. Let n be a positive integer, and let R be a (possibly infinite dimensional) finitely
presented algebra over a computable field of characteristic zero. We describe an algorithm

for deciding (in principle) whether R has at most finitely many equivalence classes of n-

dimensional irreducible representations. When R does have only finitely many such equiva-
lence classes, they can be effectively counted (assuming that k[x] posesses a factoring algo-

rithm).

1. Introduction

Let n be a positive integer, fixed throughout. In [5] we observed that the existence of n-
dimensional irreducible representations of finitely presented noncommutative algebras can
be algorithmically decided. In this note we outline a procedure for effectively “counting”
the number of such irreducible representations, up to equivalence, in characteristic zero.
Our approach combines standard computational commutative algebra with results from
[1] and [9].

1.1. Assume that k is a computable field of characteristic zero, and that k is the algebraic
closure of k.

Henceforth, let
R = k{X1, . . . , Xs}/〈f1, . . . , ft〉,

for some fixed choice of f1, . . . , ft in the free associative k-algebra k{X1, . . . , Xs}. In a
slight abuse of notation, “X`” will also denote its image in R, for 1 ≤ ` ≤ s.

By an n-dimensional representation of R we will always mean a unital k-algebra ho-
momorphism from R into the k-algebra Mn(k) of n×n matrices over k. Representations
ρ, ρ′:R → Mn(k) are equivalent if there exists a matrix Q ∈ GLn(k) such that

ρ′(X) = Qρ(X)Q−1,
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for all X ∈ R.
We will say that the representation ρ:R → Mn(k) is irreducible when kρ(R) = Mn(k)

(cf. [1, §9]). Observe that ρ is irreducible if and only if ρ⊗1:R⊗k k → Mn(k) is surjective,
if and only if ρ⊗ 1 is irreducible in the more common use of the term. (In particular, our
approach below will use calculations over the computable field k to study representations
over the algebraically closed field k.)

1.2. The existence of an n-dimensional representation of R depends only on the consis-
tency of a system of algebraic equations, over k, in (t.n2)-many variables. Consequently,
the existence of n-dimensional representations of R is decidable (in principle) using Groeb-
ner basis methods. This idea is extended in [5] to give a procedure for deciding the existence
of n-dimensional irreducible representations. On the other hand, posessing a nonzero finite
dimensional representation is a Markov property, and so the existence – in general – of a
finite dimensional representation of R cannot be effectively decided, by [3].

We now state our main result; the proof will be presented in §2.

Theorem. Having at most most finitely many equivalence classes of irreducible n-dimen-
sional representations is an algorithmically decidable property of R.

1.3. Assume that k[x] is equipped with a factoring algorithm. If it has been determined
that R has at most finitely many equivalence classes of n-dimensional irreducible repre-
sentations, these equivalence classes can (in principle) be effectively counted; see (2.9).

2. Proof of Theorem

2.1. (i) Set
B = k[xij(`) : 1 ≤ i, j ≤ n, 1 ≤ ` ≤ s].

For 1 ≤ ` ≤ s, let x` denote the n×n generic matrix (xij(`)), in Mn(B). For g ∈
k{X1, . . . , Xs}, let g(x) denote the image of g, in Mn(B), under the canonical map

k{X1, . . . , Xs}
X` 7−→x`−−−−−−→ Mn(B).

Identify B with the center of Mn(B).
(ii) Let Rel(Mn(B)) be the ideal of Mn(B) generated by f1(x), . . . , ft(x).
(iii) Let Rel(B) denote the ideal of B generated by the entries of the matrices f1(x),

. . . , ft(x) ∈ Mn(B). Note that

Rel(B) = Rel(Mn(B)) ∩B.

(iv) Let
A = k{x1, . . . ,xs},

the k-subalgebra of Mn(B) generated by the generic matrices x1, . . . ,xs. Set

Rel(A) = Rel(Mn(B)) ∩A.
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2.2. Every n-dimensional representation of R can be written in the form

R
X` 7−→x`+Rel(A)−−−−−−−−−−−→

(
A

Rel(A)

)
inclusion−−−−−→

(
Mn(B)

Rel(Mn(B))

)
−→ Mn(k),

and every k-algebra homomorphism

Mn(B)/ Rel(Mn(B)) → Mn(k)

is completely determined by the induced map

B/Rel(B) → k.

For each representation ρ:R → Mn(k), let χρ:B → k be the homomorphism (with
Rel(B) ⊆ ker χρ) given by this correspondence.

2.3. Let T be the k-subalgebra of B generated by the coefficients of the characteristic
polynomials of elements in A. (Since the characteristic of k is zero, T is in fact generated
by the traces, as n×n matrices, of the elements in A.) Set

Rel(T ) = Rel(B) ∩ T.

Note, when ρ, ρ′:R → Mn(k) are equivalent representations, that the restrictions of χρ

and χρ′ to T will coincide.

2.4. Let simplen(R) denote the set of equivalence classes of irreducible n-dimensional
representations of R. By (2.3) there is a well-defined function

Φ : simplen(R) −→ V (Rel(T )),

where V (Rel(T )) denotes the k-affine algebraic set of points on which the polynomials in
Rel(T ) vanish. It follows from [1, pp. 558–559] that Φ is injective.

2.5. (i) Recall the mth standard identity

sm =
∑

σ∈Sm

(sgn σ)Yσ(1) · · ·Yσ(m) ∈ Z{Y1, . . . , Ym}.

If Λ is a commutative ring, then the Amitsur-Levitzky Theorem ensures that Mn(Λ) sat-
isfies sm if and only if m ≥ 2n; see, for example, [6, 13.3.2, 13.3.3].

(ii) Let S denote the finite subset of T (⊆ B) comprised of

trace
(
M0 · s2(n−1)(M1, . . . , M2(n−1))

)
,

for all monic monomials M0, . . . , M2(n−1), in the generic matrices x1, . . . ,xs, of length
less than

p = n
√

2n2/(n− 1) + 1/4 + n/2− 2.

(The choice of p will follow from [7]; see [5, 2.2].) Let ρ:R → Mn(k) be a representation.
It now follows from [5, §2] that ρ is irreducible if and only if

S 6⊆ ker χρ.

(Other sets of polynomials can be substituted for S; see [5, 2.6vi,vii].)
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2.6. (i) Set
W = V (Rel(T )) \ V (S).

Combining (2.4) with (2.5ii), we obtain a bijection

Φ : simplen(R) −→ W.

(ii) Set

J = annB

(
Rel(B) + B.S

Rel(B)

)
, and I = J ∩ T = annT

(
Rel(T ) + T.S

Rel(T )

)
.

A finite generating set for J can be specified, using standard methods, and we can identify
T/I with its image in B/J . Since V (I) is the Zariski closure of W , to prove the theorem
it suffices to find an effective procedure for determining whether or not T/I is finite di-
mensional. (When not indicated otherwise, “dimension” refers to “dimension as a k-vector
space.”)

2.7. (i) For the generic matrices x1, . . . ,xs, set Trace ={
trace(y1y2 · · ·yu) : y1, . . . ,yu ∈ {x1, . . . ,xs} and 1 ≤ u ≤ n2

}
.

In [9] (cf. [4, p. 54]) it is shown that T = k[Trace]. (A larger finite generating set for T
was established in [8].)

(ii) By (2.6ii), to prove the theorem it remains to find an algorithm for deciding whether
the monomials in Trace (⊆ B) are algebraic over k, modulo J . We accomplish this task
using a variant of the subring membership test (cf., e.g., [2, p. 270]): Let C be a com-
mutative polynomial ring, over k, in m variables. Let L be an ideal – equipped with an
explicitly given list of generators – in C. Choose f ∈ C. Observe that f is algebraic over
k, modulo L, if and only if L ∩ k[f ] 6= {0}. Next, embed C, in the obvious way, as a
subalgebra of the polynomial ring C ′ = k(t) ⊗k C. Observe that L ∩ k[f ] 6= {0} if and
only if 1 is contained in the ideal (t− f).C ′ + L.C ′ of C ′. Hence, the decidability of ideal
membership in C ′ implies the decidability of algebraicity modulo L in C.

The proof of the theorem follows.

2.8. Roughly speaking, the complexity of the procedure described in (2.1 – 2.7) varies
according to the degrees of the polynomials involved in deciding the algebraicity of Trace
modulo J . Note, for example, that the degrees of the members of S can be as large as
p2n−1, for p as in (2.5ii).

2.9. Assume that it has already been determined that the number (equal to |W |) of equiv-
alence classes of irreducible n-dimensional representations of R is finite. Further assume
that k[x] is equipped with a factoring algorithm. We conclude our study by sketching a
procedure for calculating – in principal – this number.

Set D = T/I, and identify D with the (finite dimensional) k-subalgebra of B/J gener-
ated by the image of Trace. Since B/J can be given a specific finite presentation, finding
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a k-basis E for D amounts to solving systems of polynomial equations in B, and this task
can be accomplished employing elimination methods. Next, using the regular representa-
tion of D, and the finite presentation of B/J , we can algorithmically specify E as a set of
commuting m×m matrices over k, for some m. Furthermore, the nilradical N(D) will be
precisely the set of elements of D whose traces, as m×m matrices, are zero. Consequently,
we can effectively compute the dimension of D/N(D). This dimension is equal to |W |.
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