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SEMINORM GENERATING RELATIONS AND
THEIR MINKOWSKI FUNCTIONALS

ARPAD SzAZ AND JOZSEF TURI

ABSTRACT. We show that instead of the Minkowski functionals of absorbing,
balanced, convex subsets of a vector space X it is more convenient to consider
first the Minkowski functionals of balanced valued linear relations of Ry onto X .

INTRODUCTION

A relation F' of the set R, of all positive numbers onto a vector space X over
K =R or C will be called a seminorm generating relation for X if

(1) F(r)+ F(s) C F(r+s) forall r,seRy;
(2) AF(r) Cc F(tr) forall XeK and r,t e Ry with |A| <t.

This definition is mainly motivated by the fact that if A is an absorbing,
balanced, convex subset of X and Fj is a relation on Ry to X such that

Ex(r)y=1rA

for all r € Ry, then Fj is a seminorm generating relation for X .

Moreover, if p is a seminorm on X and F, and F’p are relations on Ry to
X such that
F,(r) = B?(0) and F,(r) = B?(0)

r r

for all 7 € Ry, then F, and F), are also seminorm generating relations for X .

If F' is a seminorm generating relation for X, then the function p, defined
by
pr(w) = inf (F7}(2))
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for all x € X, will be called the Minkowski functional of F'. Namely, if A is
an absorbing, balanced, convex subset of X, then p, = p, is just the usual
Minkowski functional of A.

After establishing some easy consequences of the definition of seminorm gene-
rating relations, we shall only prove the following basic algebraic properties of the
Minkowski functionals.

Theorem 1. If F is a seminorm generating relation for X , then p. is a semi-
norm on X such that F, C F CF, .

Corollary 1. If A is an absorbing, balanced, conver subset of X, then pa is a
seminorm on X such that BY* (0) ¢ A c B} (0).

Theorem 2. If p is a seminorm on X and F' is a seminorm generating relation
for X such that F, C F C F,, then p=p,.

Corollary 2. If p is a seminorm on X and A is an absorbing, balanced, convex
subset of X such that BY (0) C A € BY(0), then p=pa.

Theorem 3. If F' is a seminorm generating relation for X , then p, is a norm
if and only if (,cr, F(r)={0}.

Corollary 3. If A is an absorbing, balanced, conver subset of X , then ps is a
norm on X if and only if ﬂT6R+ rA={0}.

Theorem 4. If F' is a seminorm generating relation for X, then F = F, if
and only if F(r)=U,., F(s) forall reR,.

Corollary 4. If A is an absorbing, balanced, conver subset of X, then
A= BY(0) if and only if A=, 5A.

Theorem 5. If F' is a seminorm generating relation for X , then F = FPF if
and only if F(r)=N,s, F(s) forall rcR,.

Corollary 5. If A s an absorbing, balanced, conver subset of X, then
A= BY(0) if and only if A= Nysr 5 A

The topological properties of seminorm generating relations and their Minkows-
ki functionals will be investigated elsewhere.

1. PREREQUISITES

A subset F' of a product set X xY is called a relation on X to Y. Ifin
particular X =Y, then we simply say that F' is a relation on X . Note that if
F' is a relation on X to Y, then F' is also a relation on X UY.

If F' is a relation on X to Y, and moreover x € X and A C X, then the
sets F'(r)={yeX: (r,y)eF} and F[A]=J,cq F(x) are called the
images of x and A under F', respectively.

If F is a relation on X to Y, then the sets Dp = {z € X : F(z)#0}
and Rp = F[Dp] are called the domain and range of F', respectively. If in
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particular X = Dr (and Y = Rp), then we say that F' is a relation of X into
(onto) Y.

A relation F' on X to Y is said to be a function if for each x € Dr there
exists a unique y € Y such that y € F (). In this case, by identifying singletons
with their elements, we usually write F (z) =1y in place of F(z)={y}.

If F is a relation on X to Y, then values F (z), where z € X, uniquely
determine F' since we have F = |J x {7} x F(r). Therefore, the inverse
relation F~! of F can be defined such that F~'(z)={y€Y : z¢€ F(y)}
forall z € X.

Throughout in the sequel, X will denote a vector space over K =R or C.
And forany A € K and A, B C X we write XA ={Az: x€ A} and
A+B={z+y: z€A, ye B}.

Note that thus two axioms of a vector space may fail to hold for the family
P (X) of all subsets of X . Namely, only the one-point subsets of X can have
additive inverses. Moreover, in general, we only have (A+pu)A CAA+ pA.

If A is a subset of X, then we say that:

(1) A is absorbing if X =J,cr, r4;

(2) A isbalanced if XA C A forall A e K with |A| <1;

(3) A isconvexif rA+ (1—-r)A C A forall re Ry with r<1.

A function p of X into R is called a seminorm on X if

p(Az) < [Xp(z) and p(z+y) < pz)+p(y)
forall A € K and z,y € X. A seminorm p is called a norm if p(z) =0
implies x =0.
If p is a seminorm on X , then for each 7 € R, the relations B? and BP,
defined by
Bl (z)={yeX: p(z—y)<r} and Bl(z)={yeX: p(z—-y)<r}

for all z € X, are called the r-sized open and closed p-surroundings in X,
respectively.

Concerning the above basic concepts we shall only need here the following simple
theorems.

Theorem 1.1. If A C X, then the following assertions hold :
(1) if A is conver, then (r+s)A=rA+sA foral r,se€ Ry ;
(2) if A isbalanced, then XA C p A forall A\, p €K with |A| < |u].

Remark 1.2. Therefore, a balanced subset A of X is absorbing if and only
X=U,_,nA.
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Theorem 1.3. If p is a seminorm on X , then

(1) p(x) >0 forall z€X;

(2) p(Az)=|A|p(z) forall NeK and z€ X.
Remark 1.4. Therefore, our present definition of a seminorm coincides with the
usual one.
Theorem 1.5. If p is a seminorm on X and r € Ry, then

(1) BE(z)=x + BP(0) forall x€ X;

(2) BP(0) is an absorbing, balanced and conver subset of X such that
B2 (0) =1 B (0).

Remark 1.6. Moreover, the same statements hold for the closed surroundings
BP.

2. SEMINORM GENERATING RELATIONS

Definition 2.1. A relation F' of Ry onto X will be called a seminorm gene-
rating relation for X if

(1) F(r)+ F(s)CF(r+s) forall r,seRy;
(2) AF(r)C F(tr) forall Ae K and r,t € Ry with |A] <t.

The above definition is mainly motivated by the following simple

Example 2.2. If A is an absorbing, balanced, convex subset of X and Fj is a
relation on Ry to X such that

Fx(r)y=rA

for all » € Ry, then Fj is a seminorm generating relation for X .

Since A is absorbing, for each = € X there exists an r € Ry such that
x € r A. Hence, it is clear that A # (0, and thus Ry is the domain of Fj.
Moreover, since x € F4(r), it is clear that X is the range of Fj.

On the other hand, if r, s € Ry, then by Theorem 1.1 (1) it is clear that
Fa(r+s)=(r+s)A=rA+ sA=Fu(r) + Fs(s).

Moreover, if A € K and r,¢ € Ry such that |A| < ¢, then by Theorem 1.1 (2)
it is clear that

AFA(r) =A(rA)=r(XNA) Cr(tA)=(tr)A=Fy(tr).

Now, as an important particular case of Example 2.2, we can also state
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Example 2.3. If p is a seminorm on X and F, and F}, are relations on R4 to
X such that

Fp(r) =B (0) and Fy,(r)=B7(0)

T

for all r € Ry, then F, and F, are seminorm generating relations for X .

From Theorem 1.5(2) we know that A = BT (0) is an absorbing, balanced,
convex subset of X such that

Fp(r) =By (0) =rBY(0) =rA=Fa(r)

for all r € Ry . Therefore, F, = F4, and thus F), is a seminorm generating
relation for X by Example 2.2.

The fact that F’p is also a seminorm generating relation for X can be proved
quite similarly by using Remark 1.6 and Example 2.2.

In the sequel, beside Definition 2.1, we shall only need the following obvious

Theorem 2.4. If F' is a seminorm generating relation for X , then

(1) 0€ F(r) forall reRy;
(2) rF(s)C F(rs) forall r,seRy;
(3) F(r) C F(s) forall r,se Ry with r<s.

Proof. Since the assertions (1) and (2) are immediate from the homogenity prop-
erty 2.1(2) of F', we need only note that

F(r)y=F(r)+ {0} Cc F(r)+ F(s—r) C F(s)

for all r, s € Ry with r < s. Therefore, the assertion (3) also holds.
However, as a converse to Example 2.2, we can also easily prove the following

Theorem 2.5. If F' is a seminorm generating relation for X , then there exists
an absorbing, balanced, convexr subset A of X such that F = Fy .

Proof. If r, s € Ry, then by the homogenity property 2.4 (2) of F' we have
rF(s) C F(rs).

1in place of 7, and rs in place of s, we can see that

Hence, by writing r~
r ' F(rs) C F(s).
This implies that F (rs) C r F (s). Therefore, the equality
F(rs)=rF{(s)

is also true. Hence, under the notation A = F'(1), it follows that

F(r)y=rF(1)=rA
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forall » e R, .

Threfore, it remains only to prove that A is an absorbing, balanced and convex
subset of X . For this, note that if x € X, then since F' is onto X there exists
an r € Ry such that x € F (r)=r A. Therefore, A is absorbing. Moreover, if
A € K such that || <1, then from the homogenity property 2.1(2) of F' we
can at once see that

AMM=AF(1) C F(1)=A.

Therefore, A is balanced. Moreover, if 0 < ¢ < 1, then by the homogenity and
additivity properties of F' it is clear that

tA+(1—-t)A=tF(1)+(1—-¢t)F(1)=F({t)+ F(1—-t)CF(1)=A.

Therefore, A is convex.

Now, in addition to Theorem 2.4, we can also easily state the following
Theorem 2.6. If F' is a seminorm generating relation for X , then

(1) F(rs)=rF(s) forall r,seRy;

(2) F(r+s)=F(r)+F(s) forall r,secRy;

(3) F(r) is an absorbing, balanced, convexr subset of X for all r € Ry .
Remark 2.7. Note that if F' is a balanced valued homogeneous relation of R

into X, then
AF(r)CtF(r)=F(tr)

forall A€ K and r,t € Ry with |A]| <¢. That is, the homogenity property
2.1(2) also holds.

3. THE MINKOWSKI FUNCTIONALS OF SEMINORM GENERATING RELATIONS

Definition 3.1. If F' is a seminorm generating relation for X , then the function
p, defined by

pe () = inf (F7())
for all x € X, will be called the Minkowski functional or gauge of F'.

Example 3.2. If A is an absorbing, balanced, convex subset of X, then we can
at once see that

P, (T) = inf{r€R+ : :L'EtA}
for all z € X. Therefore, p, = Pp, 18 just the usual Minkowski functional of
A. (See, [1, p. 24].)

Therefore, it is not surprising that, as a useful reformulation of a well-known
theorem on the Minkowski functionals of sets, we have the following
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Theorem 3.3. If F' is a seminorm generating relation for X, then p, is a
seminorm on X such that

F, CFCEF,_.

Proof. If A € K and =z € X, then by the definition of p, for each ¢ > 0
there exists an 7 € F~!'(z) such that r < p, (r) +e. Hence, by noticing that
xz € F (r) and using the homogenity property 2.1(2) of F', we can infer that

Az €XF(r) C F(tr),

and thus tr € F~'(Az) for all t € Ry with |X| < t. Hence, since
tr <tp.(z)+te, it is clear that

pe(iz) = inf (F71(A2)) < tp,(a) + te

for all t € Ry with |A| < ¢. Hence, by letting ¢t — |A\| and ¢ — 0, we can
infer that

pr(Az) < [A|pp ().

On the other hand, if =,y € X, then again by the definition of p, for each
e >0 there exist »r € F~!(z) and s € F~!(y) such that r» < p,.(2)+¢ and
s < pp(y)+e. Hence, by noticing that x € F(r) and y € F (s), and using
the additivity property 2.1 (1) of F', we can infer that

z+y € F(r)+F(s) C F(r+s),

and thus 7+ s € F~'(x+y). Hence, since r+s < p,(z) +p,(y) + 2¢, it is
clear that

po(z+y) =inf(F ' (z+y)) < p.(z)+p.(y) + 2¢,

and thus
pr(z+y) < pp(z)+p.(y).

Therefore, p, is a seminorm on X .

Finally, if r € Ry and =z € F, (r)= By (0), i.e., p.(z) <7, then again
by the definition of p, there exists s € F~!(x) such that s < r. Hence, by
the monotonicity property 2.4(3) of F', it is clear that = € F(s) C F(r).
Therefore, F, (r)C F(r).

On the other hand, if r € Ry and z € F(r), then r € F~!'(z). Therefore,
by the definition of p, , we have p, (x) <r, and hence z € B.* (0) = FPF (r).
Therefore, F'(r) C Fy, (r) is also true.

Now, as an immediate consequence of Example 2.2 and Theorem 3.3, we can
also state the following more familiar
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Corollary 3.4. If A is an absorbing, balanced, conver subset of X , then p, is
a seminorm on X such that

B (0) ¢ A c B{*(0).
In addition, to Theorem 3.3, it is also worth proving the following

Theorem 3.5. If p is a seminorm on X and F is a seminorm generating
relation for X such that B
F, C F C Fp,
then p=np,.
Proof. If x € X, then for each r € Ry, with p(x) < r, we have
z € B (0)=F(r) C F(r).
Therefore, r € F~1(x), and thus
po(z)=inf (F X (z)) < r.
Hence, by letting r — p(x), we can infer that p,(z) < p(x).
On the other hand, by the definition of p.(z), for each € > 0 there exists an
r € F~'(z) such that 7 < p,(x)+¢e. Hence, we can see that
z € F(r) C F(r)= B?(0).
Therefore, p(xz) <r < p,(z)+¢e, and thus p(z) < p,(x) is also true.
Remark 3.6. In particular, by Theorem 3.5, we have p = Pr, = Pp, for every
seminorm p on X .
Moreover, as an immediate consequence of Example 2.3 and Theorem 3.5, we
can also state

Corollary 3.7. If p is a seminorm on X and A is an absorbing, balanced,
convex subset of X such that

BY(0) C A C BY(0),
then p=p, .

4. SOME FURTHER PROPERTIES OF THE MINKOWSKI FUNCTIONALS

Theorem 4.1. If F is a seminorm generating relation for X , then the following
assertions are equivalent :
(1) p,. isa norm; (2) () F(r)={0}.
TER+
Proof. If x € F(r), and hence r € F~!(z) for all r € Ry, then by the
definition of p, we have p,(x)= 0. Hence, if the assertion (1) holds, it follows

that = = 0. Therefore, since 0 € F(r) for all » € R, the assertion (2) also
holds.

While, if z € X such that p,(z) =0, then by the definition of p, for each
r € Ry there exists s € F~1(x) such that s < r. Hence, by the monotonocity
property of F', it is clear that = € F (s) C F (r). Therefore, if the assertion (2)
holds, then z =0, and thus the assertion (1) also holds.
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Corollary 4.2. If A is an absorbing, balanced, conver subset of X , then the
following assertions are equivalent :

(1) p, isanorm; (2) QR rA=1{0}.

Remark 4.3. Note that, since A is balanced, we may write K\ {0} in place of
Ry in the assertion (2).

Theorem 4.4. If F' is a seminorm generating relation for X , then the following
assertions are equivalent :

(1) F=F,_ ; (2) F(r)= L<J F(s) forall reR,.

Proof. If r € Ry and z € F (r), and the assertion (1) holds, then we have
ek, (r)= BYF (0). Hence, it follows that

inf (F~'(z)) = p,(z) <.

Therefore, there exists an s € F~1(z) such that s < r. Hence, it follows that
xz € F (s). Therefore,
F(r)c U F(s).

s<r

Now, since the converse inlusion is immediate from the monotonicity property of
F, it is clear that the assertion (2) also holds.

While, if » € Ry and =z € F(x), and the assertion (2) holds, then there
exists an s < r such that z € F (s), and hence s € F~!(z). Therefore,

pe(x) =inf (F7'(z)) <s <1,

and hence z € BFF (0) = Fp, (7). Consequently, we have F(r) C F, (r).
Now, since the converse inclusion is always true by Theorem 3.3, it is clear that
the assertion (1) also holds.

Corollary 4.5. If A is an absorbing, balanced, convexr subset of X , then the
following assertions are equivalent :

(1) A= B4 (0); (2) A= sA.

s<1

Theorem 4.6. If F' is a seminorm generating relation for X , then the following
assertions are equivalent :

(1) F:FPF; (2) F(r)= D F(s) forall reR,.

Proof. If r € Ry, and z € X such that = € F (s), i.e.,, s € F~1(z) for all
s > r, then
pp(z) =inf (F~'(2)) < r,
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and hence z € BYF (0) = FPF (r). Therefore, if the assertion (1) holds, then we
also have = € F (r). Consequently,

N F(s) C F(r).

s>r

Hence, since the converse inclusion is immediate from the monotonicity property
of F', it is clear that the assertion (2) also holds.

While, if r €Ry, and 2 € F, (r), i.e., 2 € B;" (0), then
inf (F~'(2)) = p,(z) < r.

Therefore, for each s > r there exists a ¢t € F~!(x) such that ¢ < s. Hence, by
the monotonicity property of F', it is clear that = € F (t) C F (s). Therefore,

F, (r) C SQTF(s).

Hence, if the assertion (2) holds, it follows that F, (r) C F (r). Now, since the

converse inclusion is always true by Theorem 3.3, it is clear that the assertion (1)
also holds.

Corollary 4.7. If A is an absorbing, balanced, conver subset of X , then the
following assertions are equivalent :

(1) A= B{*(0); (2) A=) sA.

s>1

Remark 4.8. The above corollaries are not established in the standard books on
functional analysis.
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