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GEODESICS AND DEFORMED PSEUDO–RIEMANNIAN
MANIFOLDS WITH SYMMETRY

JAMES J. HEBDA

Abstract. There is a general method, applicable in many situations, whereby

a pseudo–Riemannian metric, invariant under the action of some Lie group,
can be deformed to obtain a new metric whose geodesics can be expressed in

terms of the geodesics of the old metric and the action of the Lie group. This
method applied to Euclidean space and the unit sphere produces new examples
of complete Riemannian metrics whose geodesics are expressible in terms of
elementary functions.

1. Introduction

Riemannian manifolds whose geodesics are given by explicit formulas are rare
and worthy of notice. For instance, by deforming the unit 2–sphere in a special way,
Faridi and Schucking [2] found a one–parameter family of rotationally symmetric
surfaces whose geodesics are expressible by means of elementary functions. These
deformed spheres can be obtained by applying the general deformation method
that is described herein. Under reasonable hypotheses, starting with a pseudo–
Riemannian metric on a manifold which is invariant under the action of a Lie group
G, one can construct a family of G–invariant metrics whose geodesics are expressible
in terms of the geodesics of the original metric, the exponential map of G, and the
action of G. In this way new examples of complete n–dimensional Riemannian
manifolds whose geodesics are expressible in terms of elementary functions are
discovered by deforming the standard metrics on Sn or Rn.

This construction utilizes ideas from geometrical mechanics. Especially, the ge-
odesic equations are viewed as a Hamiltonian system on the cotangent bundle.
Enough terminology and results from mechanics are reviewed to enable a descrip-
tion of the construction and a proof of the formula for geodesics. Still, the reader
who is unacquainted with this material should consult [1] for complete details and
a systematic exposition.

2. Notation, Background, and Preliminaries

Let Q be a smooth finite–dimensional manifold with tangent bundle TQ and
cotangent bundle T ∗Q. The cotangent bundle has a natural symplectic structure
that induces the Poisson bracket {f, g} of two smooth real–valued functions f and
g on T ∗Q. The Poisson bracket operation turns the smooth real–valued functions
on T ∗Q, the so–called Hamiltonian functions, into a Lie algebra. The Hamiltonian
vector field XH on T ∗Q, associated to the Hamiltonian function H : T ∗Q → R, is
defined so that

XH(f) = {f,H}
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for every smooth function f : T ∗Q→ R.
Let G be a Lie group with Lie algebra G. The dual space of G will be denoted

G∗.
Suppose G acts smoothly on Q. The action lifts to a symplectic action of G on

T ∗Q which makes the canonical projection map π : T ∗Q→ Q G–equivariant. That
is, π ◦La = La ◦ π for all a ∈ G, where La and La denote left translation by a ∈ G
on Q and T ∗Q respectively. Thus if ξ ∈ G, then ξQ is π–related to ξT∗Q, where ξQ
and ξT∗Q denote the vector fields that ξ generates through the actions of G on Q
and T ∗Q respectively.

The action of G by cotangent lift has a momentum map

J : T ∗Q→ G∗

defined by
J(α)(ξ) = α(ξQ)

for α ∈ T ∗Q and ξ ∈ G. For each ξ ∈ G, the smooth function

Ĵ(ξ) : T ∗Q→ R

is defined by Ĵ(ξ)(α) = J(α)(ξ) for α ∈ T ∗Q.
Fact 1. The momentum map enjoys the following properties.

(1) J restricts to a linear map on each fiber of T ∗Q.
(2) J is Ad∗–equivariant.
(3) XĴ(ξ) = ξT∗Q for all ξ ∈ G.
(4) If H is a G–invariant Hamiltonian function, then J is an integral of the

Hamiltonian vector field XH .
For details see Corollaries 4.2.9, 4.2.11, and 4.2.14 of [1]. Item (4) is called

Noether’s Theorem.
Fact 2. Pseudo–Riemannian metrics on Q are in one–to–one correspondence with
hyperregular Hamiltonian functions on T ∗Q which restrict to a quadratic function
on each fiber. Moreover, G–invariant metrics correspond to G–invariant Hamilton-
ian functions.

Indeed, if L : TQ → T ∗Q denotes the Legendre transformation, or “flat map”,
associated to the pseudo–Riemannian metric g, and defined by

L(v)(−) = g(v,−)

for v ∈ TQ, then L is a vector bundle isomorphism, and the function H : T ∗Q→ R
defined by

H(α) =
1
2
g(L−1(α),L−1(α)),

is the Hamiltonian function that corresponds to g. (See Theorem 3.6.9 and Exam-
ple 3.6.10 in [1].) Note that a Hamiltonian function which restricts to a quadratic
function on every fiber of T ∗Q is hyperregular if and only if the fiberwise quadratic
functions are all nondegenerate quadratic functions, meaning that the correspond-
ing symmetric bilinear forms are nondegenerate.

By Theorem 3.6.2 and Theorem 3.7.1 in [1], the geodesic spray of g on TQ is
L–related to the Hamiltonian vector field XH on T ∗Q associated to H. Thus L
carries the geodesic flow on TQ onto the Hamiltonian flow φt generated by XH .
Thus the geodesics of g are the base projections of the integral curves of XH . This
immediately implies the formula for the geodesics of g in terms of φt given next.
Proposition 1. Suppose H is the Hamiltonian function that corresponds to the
pseudo–Riemannian metric g, and let L : TQ → T ∗Q be the Legendre transforma-
tion associated to g. Let exp: TQ → Q be the exponential map of g and φt the
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Hamiltonian flow generated by XH . Then

exp(tv) = π(φt(L(v)))

for all v ∈ TQ and t ∈ R where defined.
Given a quadratic function C : G∗ → R, the corresponding symmetric bilinear

form B on G∗ satisfies C(µ) = 1
2B(µ, µ) for all µ ∈ G∗. Using the canonical

isomorphism G ≈ G∗∗, for each µ ∈ G∗, there is a unique Ĉ(µ) ∈ G defined by the
condition

ν(Ĉ(µ)) = B(µ, ν)
for all ν ∈ G∗.

3. The Main Result

Theorem 1. Let Q be a smooth manifold, and let G be a Lie group acting smoothly
on Q. Suppose H0 : T ∗Q → R is a hyperregular, fiberwise quadratic, G–invariant
Hamiltonian function corresponding to a G–invariant pseudo–Riemannian metric
g0 on Q. Let C : G∗ → R be an Ad(G)∗–invariant quadratic function. Define

HC = H0 + C ◦ J.
Then HC is fiberwise quadratic and G–invariant.

Assume HC is hyperregular, so that it corresponds to a G–invariant pseudo–
Riemannian metric gC on Q. Then

expC(tv) = Lexp(tĈ(J(LCv))) exp0(t(L−1
0 LCv))

for all v ∈ TQ, and t ∈ R where defined. Here exp: G → G, exp0 : TQ → Q, and
expC : TQ→ Q are the exponential maps of G, g0, and gC respectively, and L0 and
LC are the Legendre maps of g0 and gC respectively.

Proof: C◦J is fiberwise quadratic because J is fiberwise linear and C is quadratic.
It is G–invariant because J is Ad∗–equivariant and C is Ad(G)∗–invariant. Thus
HC is fiberwise quadratic and G–invariant being the sum of two such functions.
Therefore, assuming HC is hyperregular, HC corresponds to a G–invariant pseudo–
Riemannian metric on Q by Fact 2.

Because H0 is a G–invariant Hamiltonian, Noether’s theorem (Fact 1(4)) implies
J is an integral of XH0 , which in turn implies C ◦ J is an integral of XH0 . Thus
{C ◦J,H0} = 0, or equivalently XH0 and XC◦J are commuting Hamiltonian vector
fields. But

XHC
= XH0 +XC◦J .

Therefore
φC

t = φ0
t ◦ ψC

t = ψC
t ◦ φ0

t

where φ0
t , φ

C
t , and ψC

t denote the Hamiltonian flows generated by XH0 , XHC
, and

XC◦J respectively.
Lemma 1. Let α ∈ T ∗Q, and set µ = J(α).

ψC
t (α) = Lexp(tĈ(µ))(α)

for all t ∈ R. In particular, XC◦J is a complete vector field.
Proof of Lemma: Pick a basis ξ1, . . . , ξk of G. Let B be the symmetric bilinear

form on G∗ corresponding to C. Then B can be written in tensor form

B =
∑

bijξi ⊗ ξj

where bij = bji ∈ R. Thus, by definition of Ĵ ,

C ◦ J =
1
2

∑
bij Ĵ(ξi)Ĵ(ξj)
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and, by definition of Ĉ(µ),

Ĉ(µ) =
∑

bijµ(ξi)ξj

for µ ∈ G∗. Let f : T ∗Q→ R be smooth. Now calculate using in turn the definition
of the Hamiltonian vector field, the derivation property of Poisson brackets, the
symmetry of bij , and Fact 1(3).

XC◦J(f) = {f, C ◦ J}

=
1
2

∑
bij{f, Ĵ(ξi)Ĵ(ξj)}

=
1
2

∑
bij(Ĵ(ξi){f, Ĵ(ξj)}+ Ĵ(ξj){f, Ĵ(ξi)})

=
∑

bij Ĵ(ξi){f, Ĵ(ξj)}

=
∑

bij Ĵ(ξi)(ξj)T∗Q(f)

Let α ∈ T ∗Q, and set µ = J(α). Then Ĵ(ξi)(α) = J(α)(ξi) = µ(ξi). Thus
evaluating XC◦J at α gives

XC◦J =
∑

bijµ(ξi)(ξj)T∗Q = Ĉ(µ)T∗Q.

On the other hand, since C ◦ J is G–invariant, Noether’s theorem implies J is an
integral for XC◦J . This means

J(ψC
t (α)) = J(α) = µ

for all t ∈ R where defined. In conclusion, the integral curve of XC◦J through α
equals the integral curve of Ĉ(µ)T∗Q through α. This completes the proof of the
lemma.

To finish the proof of the Theorem, apply Proposition 1, Lemma 1, and the
G–equivariance of π, and calculate.

expC(tv) = π(φC
t (LC(v)))

= π(ψC
t φ

0
t (LC(v)))

= π(Lexp(tĈ(µ))φ
0
t (LC(v)))

= Lexp(tĈ(µ))π(φ0
t (LC(v)))

= Lexp(tĈ(µ)) exp0(tL−1(LC(v)))

for all v ∈ TQ, and t ∈ R where defined, and where µ = J(LC(v)) = J(φ0
t (LC(v)))

for all t because J is an integral of XH0 . In particular, if g0 is geodesically complete,
then so is gC .

There is a deep structural relation between the dynamics of H0 and HC that
must account, at least in part, for the simple formula relating the geodesics of g0
and gC . The reduced Hamiltonian functions of H0 and HC on every reduced phase
space of T ∗Q differ only by a constant and hence have identical dynamics. (See
section 4.3 of [1].)

4. Concluding Remarks and Examples

Two requirements must be met if the deformation described above will produce
new examples. First, G∗ must admit a non–zero Ad(G)∗–invariant quadratic func-
tion C. Second, H0 + C ◦ J must be hyperregular. The two requirements will be
addressed in turn.
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In general G∗ need not admit a non–zero Ad(G)∗–invariant quadratic function.
Here is an example I learned from Brad Currey. Consider the 2–dimensional solvable
matrix group

G =
{[

x y
0 1

]
: x > 0, y ∈ R

}
.

There are no non–constant analytic Ad(G)∗–invariant functions on G∗ since one of
the co–adjoint orbits is open in G∗. In particular, there is no non–trivial invariant
quadratic function.

Yet, there are natural situations in which invariant quadratic functions exist:
(1) If G admits a nondegenerate Ad(G)–invariant symmetric bilinear form, then

dually there is an Ad(G)∗–invariant symmetric bilinear form and corre-
sponding quadratic function on G∗. This occurs if G is semi–simple, by
taking the Killing form, or if G is compact, by averaging any inner product
on G over the adjoint action.

(2) If G has a non–trivial center (of positive dimension), then any ξ 6= 0 in the
center of G is fixed under the adjoint action. Thus the function C : G∗ → R
defined by C(α) = (α(ξ))2 is an Ad(G)∗–invariant quadratic function on
G∗. It is well known that every nilpotent Lie group has a non–trivial center.

Even if there exists a non–zero Ad(G)∗–invariant quadratic function C, HC need
not be hyperregular. Let Q = S2 and, let G = S1 act by rotations around the
north–south axis. Fix λ ∈ R, and let C(µ) = − 1

2λµ
2 for µ ∈ G∗ = R. Inspection

reveals that HC is hyperregular only if λ < 1. This gives rise to the “λ–sphere”
defined in [2].

However HC is hyperregular in the following two cases:
(1) If g is positive definite and C is a positive quadratic function, then HC is

positive definite on each fiber and therefore hyperregular.
(2) If Q is compact and if C is sufficiently close to zero, then restricted to each

fiber of T ∗Q, HC will be sufficiently close to the nondegenerate quadratic
function H0 to be nondegenerate itself. Therefore, HC will be hyperregular.

Example: Let Q be the unit n–sphere Sn, and let G be a compact connected
subgroup of SO(n + 1) acting in the usual way. Let C0 be an Ad(G)∗–invariant
positive quadratic function. Let H0 be the Hamiltonian function for Sn. Because
Sn is compact, there is a constant k > 0 such that for all λ < k, the function

Hλ = H0 − λC0 ◦ J
is hyperregular and hence corresponds to some Riemannian metric on Sn. The
Theorem implies that the geodesics of this metric are expressible in terms of ele-
mentary functions because (1) the geodesics of the unit n–sphere are so expressible,
and (2) the exponential map of matrix groups are so expressible.

Non–compact complete examples can be obtained by deforming the flat metric
metric on Rn. Let G be a compact connected subgroup of SO(n). Let H0 be the
Hamiltonian function for Rn, and let C0 be a positive quadratic Ad(G)∗–invariant
function on G∗. Then

Hλ = H0 + λC0 ◦ J
is hyperregular if λ ≥ 0 because Hλ will be positive definite on each fiber of T ∗Q.
Just as in the previous example, the Riemannian metric that corresponds to Hλ,
λ ≥ 0, will be complete, and its geodesics will be expressible in terms of elementary
functions.
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