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e-ISOMETRIC APPROXIMATION PROBLEM

MA YUMEI

ABSTRACT. In this paper, some problems for isometric approximation is re-
solved.

1. INTRODUCTION

Let E and F be normed linear spaces. Hyers and Ulam [6] called the mapping
T: E — F an absolute error e-isometry if for any € > 0,

(1) [z =yl —e <|[|Tx—Tyl| < lz —yll +¢

for any x,y € E. On the stability of isometry, Hyers and Ulam asked following
questions:

1. For each surjective e-isometry T, if there exists an isometric mapping
U: FE — F, and a constant K such that

|Tx —Ux| < K(E, F)e

for any x € E where the constant K depends only on E and F.
2. If the answer above is positive, what is the best K7

To start with studying these problems, without loss of generality, T(0) = 0
for T is e-isometry, T — T'(0) is necessary e-isometry. P.M. Grubern [4] in 1978,
T.M. Rassias and P. Semel [12] in 1993 gave that the positive answer.

The e-isometry T: E — F' is called Lipschitz e-isometry if

(2) (1 =g)llz —yll < Tz = Tyll < (1 + )]z -yl

for all z,y € E.

Now, suppose that Lipschitz e-isometry T is a linear operator, Benyamini [2],
Alspach [1] and Dingguanggui [5] proved that there exists an isometric approxi-
mation of T. When T is nonlinear and surjective operator, K. Jarosz [7] obtained
positive answer on Cy(X) — Cp(Y), where X, Y are locally compact Hausdorff
spaces.

Withdrawing the condition of surjective and linear, how about Lipschitz e-
isometric approximation problem? G.M. Lovblom [9, 10] gave two local results for
these problems, i.e. to restrict the problem on the unit ball By (C(X)) — B1(C(Y))
where X, Y are compact Hausdorff spaces, the answer is positive. Two counterex-
amples given show that as E = F =1 or E = F = (L1(0,1) X R); the local
problem is negative.

In this paper we restrict ourselves to the local question about absolute error
e-isometry (1) without the assumption of surjective and we have some changed for
the definition of T as follows.

2000 Mathematics Subject Classification. 46A40, 46B20, 46B25.
Key words and phrases. isometric operator, e—isometry.

205



206 MA YUMEI

T: E — F is an e-isometry, meaning that
3) lz —yll —e < [Tz = Ty| < [l —yll

for any z,y € F.
Thanks to Lovblom’s idea, we prove that the e-isometric problem (3) on

B1(C(X)) = B.(C(Y))
is positive, and on By (F) — By (F) where E=F =1y or E = F = (L1(0,1) x R)
the problem is negative.
2. e-ISOMETRY ON B;(C(X)) — B1(C(Y))

Let X,Y be compact metric spaces with metrics dy and dy and let Br(C(X))
denote the ball of C'(X) with center 0 and radius R.

Theorem 2.1. Let T: B;(C(X)) — B1(C(Y)) with T'(0) =0, and
(4) If =gl —e<|Tf =Tyl < |If - gl
for any f,g € B1(C(X)). Then there exists an isometry

U: Bl,gl(e)(C(X)) — B1(C(Y))

such that
ITf-Ufll<e
on Bi_5,(c)(C(X)), where 61(¢) — 0 when ¢ — 0.

The proof is based on the following Lemmas. Let a be fixed, 4¢ < a < 1.

Definition 2.2 ([9]). Given zo € X, we say that f € C(X) is a tentfunction at z
if for some § > 0

(5) o) = {

obviously, f(zo) =1,]|f] = 1.

Lemma 2.3. Let {f,} C B1(C(X)), {zn} C X, {yn} C Y be sequences with
Yn — y and f a tentfunction at x, with supp(f,) = B(xn,0,) where 6, — 0 when
n — oo.

If for alln
(6) 2a —e < |T(afn)(yn) — T(=afn)(yn)l;

then lim =z, exists.
n—oo

1 - 4lzes) g e B(w, d),
0, otherwise.

Proof. X is a compact metric space, so {x,} contains a convergent subsequence,
say {xy } with lim,/ o 2, = 2. Assume that z,, is not convergent. Then for some
d > 0, there exists, for every N, n > N such that di(z,,z) > d. Let g € C(X)
with 0 < g < %, g =% on B(z, %) and with supp(g) C B(z, 2).

For each N it is possible to find n,n’ > N such that supp(f./) C B(z, %) and
B(n,6,) (N B(x, %) = 0. Then we have

a 3a
7) lg — afall = 5. llg + afull = - lg = afull = a.

Because T is e-isometry, therefore for any y € Y, f,g9 € B1(C(X))

1T (9)(y) =TI < llg — £l
Thus
—lg = fII+T()y) <T(9)(y) < llg— fIl +T(f)(y)-
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We get
®) T(afu) ) = 5 < T(9)(un) < T(afu) ) + 5.
3a 3a
©) T(=afa)(yn) = 5 <T(O)wa) < T(~afu)lyn) + -
(10) T(+afa)(yn) — a < T(9)(yn) < T(£afu)(ya) + a.

By hypothesis of T with T'(0) = 0, we have for all n.

(11) IT(af)] < a.
T(afn)(yn) > T(_afn)(yn) +2a —¢,
(12) { T(afu)(yn) < T(—afu)(yn) — 20+ ¢,
From (8)—(12) we get
a—e<T(afn)(yn) < a,
(13) { S0 < T(af)m) < —ate

—a < T(len)( n) <-—a+ &
(14) { a—e< T(*ayfn)(yn) <a.

By (12) and (14) we obtain that
ig e <T(9)(yn) < ig +e.

Thus we have
a
T(g) ()] > 5 — < > < and [T(g)(yn)| < e

Since T'(g) € C(Y), 4 < a < 1 fixed and da(yn/,yn) — 0 when n,n’ — oo, this
clearly gives a contradiction for n,n’ large enough. Hence {x,} is convergent. [

Definition 2.4 ([9]). We say y € A, if there exist sequences {f»}, {zn}, {yn}
satisfying the conditions in Lemma 2.3 with x = limz,, and y = lim y,,.

Lemma 2.5. The set |J A, is closed and mapping
rzeX

@: UAZ_’Xa (,O(y):l'7 yEAz
zeX

is well-defined and continuous.

Proof. The proof of Lemma is same as G.M. Lévblom’s [9] although the two defi-
nitions of isometry is different. O

Lemma 2.6. Let y € A, and let {fin}, {zpn}t and {yrn} be any collection of
sequences satisfying the conditions in Lemma 2.3. Then

lim_sign T'(af,)(yn) = sign T (5)(y)-

n—oo
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Proof. For each y, we have signT (afn)(yn) = signT(§)(yn), and |T(5)(y)| > .
Indeed, by definition we have

(15) 1T (afn)(yn)l 2 20— = |T(=afn)(yn)| Za—¢
and by ||§ —afy| = § we get
(16) T(afa)(yn) = 5 < T(5)n) < Tlafa)(ya) + 5.
Hence

T(g)(yn) >a—e— g > &, if T(afn)(yn) = 0.
Similarly,

T(%)(W <-a+te+ g < —e, if T(afn)(yn) < 0.

Thus

Jim signT(af,)(yn) = signT(5)(y).
Lemma 2.7 ([9]). Let f1, f2 € Bi-2(C(X)),z0 € X and

11 = fall = [ fi(zo) — fa(o)]
and d > 0 be such that |f;(x) — fi(x0))| < a, i =1,2, x € B(xo,d). For each n, let

~ ndi(zo, )

1 : z € B(zg, L)
pu(z) = . d .

r11112n{1 — fi(zo) + fi(z),1 —a}, otherwise.
e v € Blay, &)

gn\T) =
nrllazx{—l — filzo) + fi(z),—1+a}, otherwise.
ndy (zg, x) d
@) ={ 17 g o e Bl
0, otherwise.

Then
Ifi = pnll = 1 = fi(zo) (n — o0),
[fi = anll — 1+ fi(zo) (n — o0),
[pn —arnll =1 —a,
lgn + ary|| =1 —a.
Lemma 2.8. Given xg € X, let f1, fa € Bi—2(C(X)), and

If1 = f2ll = | fi(z0) — fa(zo)|.

Then there exists a signal function s: |J Ay — {—1,1} and yo € = '(x0) such
zeX

that |T(fi)(yo) — s(yo) fi(wo)| < e, i=1,2.
Proof. Let K = |J A, s(y) = signT(§)(y) on K and let z9 € X, fi1,f> €
rzeX
B4 (C(X)) such that || f1 — f2|| = [fi(x0) — f2(z0)| and py, gn, 7 are the functions
in Lemma 2.7. Clearly, p,, ¢, € B1(C(X)) and ||pn — ¢nl|| = 2.
Because T is the e—isometry, there exist y,, € Y for every n such that
(17) 2—¢ < |T(pn)(yn) - T(Qn)(yn)| < 2.

The sequence {y,} contains a convergent subsequence, say y, — yo. We shall now
prove that
Yo € ¢ (w0) = Auy-
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Since r,, is a tentfunction at xg, % — 0 and y,, — yo we have yg € o~ 1(x9) = Ay,
if we can prove that —|T'(ar,)(yn) — T(—arn)(yn)| < —2a + €.
Assume that T'(pn)(yn) > T(¢n)(yn). By (17)we obtain

2—e< T(pn)(yn) - T(qn)(yn)v
therefore

—|T(arn)(yn) — T(—arn)(yn)| <T( arn)(yn) — T'(aryn)(yn)
T(—arn)(yn) = T(qn)(yn) + T(Pn)(Yn)
= T(arn)(Yn) + T(qn)(Yn) — T(pn)(Yn)
<l—-a+l—a+e—2=—-2a+c¢.

Thus yo € (P_I(Z‘O) = Amo'
The case T (pn)(yn) < T(qn)(yn) is proved similarly. We shall now prove that

IT(fi)(yo) — s(yo) fi(zo))| <&, i =1,2.
T (pn)(yn)| < 1 and |T'(gn)(yn)| < 1 imply

1 <T(pn)(yn) <1,
(18) { -1< T(qn()ZZyi()yS e—1.
-1 S T n n) S €= 17
(19) b

One can easily check that signT(p,)(yn) = sign T (ary,)(yn). In fact, since
lpn —ary| =1 —a,
then
T (Pn)(yn) = T(arn)(yn)| <1 - a.
From (18) and (19) we see
if T'(pn)(yn) = 1 —¢,

(20) T(ary)(yn) > a—2e > 0.
if T(pn)(yn) < —1+¢,
(21) T(ary)(yn) < —a+2¢ < 0.
By Lemma 2.6, s(yo) = nh—>H;o sign T'(pn) (yn ), so for n large enough we have
(22) s(yo) = signT'(pn) (yn)-

Hence for n large enough those inequalities can be rewritten in the form
12> s(yo)T(pn)(yn) 21—
—1+e> S(yn)T(Qn)(yn) > —1.
From Lemma 2.8 we obtain
—e(n, fi) + T(pn)(yn) — € — (1 = fi(zo)) < T(fi)(yn)
<1 - fi(xo) + T(pn)(yn) + e(n, fi);
—e(n, fi) + T(gn)(yn) — € = (L + fi(xo)) < T(fi)(yn)
< 1+ fi(zo) + T(gn)(yn) +(n, fi),
where e(n, f;) — 0 when n — oo. Hence for n large enough we have
—&(n, fi) =+ 5(yo) fi(x0)) < T(fi)(yn) < &+ 5(yo)fi(x0)) +&(n, fi).
Letting n — oo we obtain
IT(fi)(yo) — s(yo) fi(zo))| < e
The proof is complete. ]
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Before the proof of the Theorem 2.1, we recall the famous Michael Selected
Theorem [7]. Suppose that € is a paracompact and X is a Banach space, if F is
a lower-semi-continuous multi-valued function on 2, and f(¢) (Vt € Q) is a closed
convex set of X, then there exists a continuous function f satisfies f(t) € F(t)
(te).

The proof of Theorem 2.1. Let ¢ and s be as above. Since
s: K = U A, — {-1,1}
reX
and K is closed we can find, by Urysohn’s Lemma, a continuous function
5:Y —[-1,1)
with 3|k = s.
Now, let M1 (X) = B1(C(X))* be the unit ball of the Radon measure space on X

endowed with the weak*-topology. Define a set valued map on Y, ¥: Y — 2M1(X)
by

{5(y)p, p is the probability measure of M;(X), y € Y\K.
Clearly U(y) is a closed and convex subset of M;(X) for all y € Y. Furthermore,
we can check that the set is the w*- lower-semi-continuous.
Assume that y,, — y when n — oo and v € ¥U(y). Thus

U= S(y)écp(y)v Yy e K,
5(y)p, p is some probability measure of M;(X), ye€ Y\K.

Let
v :{ $(yn)0p(y.), Yn € K,
" S(yn) 1, yn €Y\ K.
Where

y o= Opy), Y EK,
4, yEY\K

is the probability measure of M;(X), hence v, € ©p(yn)-

We shall now prove that v, = v when n — oo.
(1) If y € K and there is a subsequence {y,} C K, ¢ is continuous implies

Sy 0

P (yn w(y) by vy, 2, v when n — oo.

(2) If y € K and there is a subsequence {y,} C Y\K, then v, = 5(yn)dp(y) N
when n — oo.
(3) If y ¢ K, since Y\ K is an open set, then it is necessary there exists N such

that y, € Y\K for n > N, hence v,, = 5(yn)pt . » when n — oo.
We can find, by Michael Selected Theorem, a w*— continuous function

U: Y — M (X),
satisfies W(y) € ¥(y). Furthermore we have that W(y) = s(y)d
Now, for any y € Y, f € B1_2(C(X)) define a map by
U(£)(y) = sup{inf{T(y)(f), T(f)(y) + e}, T(f)y) - e}

Clearly [T(f)(y) — U((y)(f)| < e if and only if U(f)(y) = ¥(y)(f)-
Since ¥(y) is w*— continuous, we have U(f)(y) is continuous on Y and hence

U(f) € C(Y). We now prove that U is an isometry and to do this we first show
that

(23) U()) = U)W < 1 = foll, YyeY.
(1) I U(fi)(y) = U(y)(f:), (23) is true.

o(y) forally € K.
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2) It U(f)(y) = T(fily) F &, let U(f

T(f2(y) + &, then by definition of U(f)(y)

{ U(f1)(y) = ¥(y)(fr),
U(f2)(y) < T(y)(f2)-

() = T(f1(y) — &, and U(f2)(y) =

Hence
U(f2)(y) = U(f1)(y ) ~( )(f2 = f1) < |lfr = foll;
U) - U)) < 1~ .
(3) 11U (1)) = ¥(y)(2) and U(fz( ) = T(fa(y)) +, then
Ulf)(y) =T () +
thus
U(f2)(y) = U(f)() < V(y)(f2 = f1) < 1 = fall,
Uf)(y) =U(f2)(y) = T([)(y) +e =T (f2)(y) —e < |lfr = fall.
(4) The case U(f1)(y) = (y)(f1), U(f

Now we shall prove that

(24) 1U(f) = U = [1fr = fll

)( ) = T(f2)(y) — € is proved similarly.

Given zg € X such that || f1 — f2|| = |f1(x0) — f2(x0)|, then by Lemma 2.8, we can
find a point yo € ¢~ !(2¢) = Ay, C K such that

|T(f¢)(yo) —s(yo) fi(zo)| <
and s(yo) fi(w0) = $(40)0p(yo) fi = \I/(yo)( . Thus U(f:)(yo) = D U(yo)(fi). Hence
1U(f1) = U(f2) || > | (o) f1(zo) — s(yo) fa(@o)| = Ilfr = fal|.
Furthermore, for any f € By—q (C(X)) we have
1T -Ul <e
(1) U(f)(y) = ¥(y)f is equivalent to
T()y) U <e,
2) EU()(y) = T(f)(y) £ ¢, clearly,
IT(f)-U(Nl <e

and the proof is complete. O

3. THE COUNTEREXAMPLES FOR £— ISOMETRIC APPROXIMATE PROBLEM.
Theorem 3.1. Let M > 3, and any € > 0. Then there exists an e-isometry
T: Bl(ll) — Bl(ll)

such that for any isometry U which defines on some subset of 11 that contains
B (1), it is necessary to have v € B s (1) with |Tz — Uz| > =

Theorem 3.2. Let M > 3, for any € > 0, then there exists an e-isometry

such that for any isometry U which defines on some subset of( 1(0,1) x R)1) that
contains B s ((L1(0,1) x R)1), it is necessary to have x € Bz ((L1(0,1) x R)1) with
|72~ Ua| > s (where [[(f,r)ll = [IfllL, + |r]) is the norm of (L1(0,1) x R)1.
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Lemma 3.3 ([10]). Letn € N, e =1 anda €y, S, ={1,2,...,n}supp(a).
Let
any1 <0,
— €n+1), Upt1 > 0.

Tl(a) =
€i
% and a;,b; >0, (1 <i<mn). Then

{ a+ (e
For any a,b € 11, if card(S,), card(Sp)
1) if ang1,bpgr <0, then

|T1(a) = T2 (b)|| = [la — b,
2) if any1,bpe1 > 0, then

a’)
D
<

n - bn
la— bl = ITi(@) ~ Ty > fla — b] - 2=(carasy) ot —Poeet)

3) if any1 >0 > bpg1, then

Gn41
la = bl > [ T1(a) = Ty (B)[| > [la— bl =22 TJF
Sy

Furthermore
la=b] > [|Ti(a) = Ta(d)[| = [la = b[(1 - &).
Lemma 3.4 ([10]). Letn € N, e =1 a €y, and S, = {1,2,...,n}(\supp(a).
Let Tr(a) = io: Ts(ase;), where

i=1
Ai€nt1+i i<nanda; < 2,
2 2 ~
(25) Tolases) = 4 (@~ a0)ei+ (Gp)ensipi, i <manda; 2 37,
o An+1€n+1, i=n+1,
Ai€n41, i1 >n+1.

Then Ty is an isometry and if a € Bi(l1), then (Tz(a)); > 0,1 < i < n and
card(STz(a)) S %

Lemma 3.5 ([10]). Let Ty, T» satisfy the conditions of the Lemma 3.3 and Lemma
3.4 and T =Ty oTy. Then for any isometry U which defines on some subset of 14
that contains B.s (I1), it’s necessary to have x € B (1), with [|[Tx — Uz = =

Proof of Theorem 3.1. We should only show that T is an e—isometry on Bj(ly).
By Lemma 3.3 T3 is an isometry, and if a € Bj(l1), then (T:(a)); > 0, and
card(St, (a)) < 2.

if card(S,), card(Sp) < %, and a;,b; > 0, then

(26) lla— bl > | T1(a) = T1(b)[| = [[a — b]| —&.

Directly by Lemma 3.4 we get
(1) If an-l—labn-i—l S Oa
T1(a) = Th(B)]| = [la —bll,

(2) If Un41 Z bn+1 Z 0;

mn - bn
la— bl > T3 a) ~ Ti(6)] > fla — b — 2=(card(s,)) Lt~ Post)
Since card(sp) < %, clearly, an1+1 — bpa1 < any1 < 1.
(3) If Gn41 Z 0 Z bn+1;

Gn41
la=bll = [Ti(a) = Ty (b)[| = [la — b — 2257 Zlla=bll =&, (ant1 <1).
Sy



213

Thus T is an e-isometry. By Lemma 3.5, for any isometry U which defines on subset
of 1 that contains B (I1). It is necessary to have x € B (1) with ||Te — Uz =

o O
Remark 3.6. The proof for Theorem 3.2 is gotten by revising Lévblom’s [10] method.
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