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UNIFORM (C,a) (-1 < a <0) SUMMABILITY OF FOURIER
SERIES WITH RESPECT TO THE WALSH-PALEY SYSTEM

V. TEVZADZE

ABSTRACT. In the present paper we prove a number of statements dealing with
the uniform convergence of Cesaro means of negative order of the Fourier—

Walsh series.

1. DEFINITIONS AND NOTATION

Let ro(z) be the function defined by

o= TR
-1 1fx€[%,1),

N

The Rademacher system is defined by
rp(z) =19(2"z), n>1, and z€]0,1).
Let ¢o(x),¢1(x),2(x),. .. represent the Walsh functions, i.e. ¢o(z) = 1, and if
k=2™ 4272 4 ... 4 2™ is a positive integer with n; > ng > .-+ > ng, then
U () = 7y (€) - 70y (2) - -7, ()
Denote by K%(t) the kernel of the method (C, «) and call it the Cesaro kernel:

1 n
K2(t) = = > AL, (0)

n y=0
(a+1)(a+2) - (a+ k)
k!

A2 = (a # —k).

It is well-known ([19, Ch. 3]), that
) Ay => ANy
k=0

(IT)  AY — A> | = A> L

n

() A% ~n®
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By C(0,1) we denote the space of the continuous periodic functions with period

1 and norm

Iflle = max |f(z)].

0<z<L1

Let f € C(0,1); the modulus of continuity of function f is called the function

w0, f) = max [f(z) - f(y)], 0<s<1L

le—y|<é
z,y€[0,1]
A modulus of continuity is called the nonnegative function w of the nonnegative

argument possessing the following properties:

(1) w(0) =
(2) w(d) is nondecreasmg,
(3) w(d
(4)
Given the modulus of continuity w(d), by H¥ we denote a set of all those func-
tions f € C(0,1) for each of which w(d, f) = O(w(d)) as § — 0. If, however,
w(8) = 6% (0 < a < 1), then by Lip a we denote a class H®".
Let ¢ be an increasing continuous function on [0, c0), and ¢(0) =0
By V, it is denoted the class of bounded on [0, 1] functions f for which

w(d) is continuous on [0, 1J;
w(01 + 02) < w(61) +w(d2) for 0 < 0y <6 < 61 402 < 1.

Vy(f) = s%qumf(xk) — f(zr_1)]) < o0,
k=1

where I = {0 < g < 1 < 1, -+ < x, < 1} is an arbitrary partitioning of the
segment [0, 1].

Let M(0,1) denote a class of bounded functions on [0, 1]. The modulus of varia-
tion of the function f € M(0,1) is called the function of an entire argument v(n, f)
defined as follows: v(0, f) =0, and for n > 1

n—1

v(n, f) —SUPZ |f(tans1) — f(t2x)]
e —
where II,, is an arbitrary system of n nonintersecting intervals (to,tort+1) (B =
0,1,2,...,n— 1) of the segment [0, 1].

The notion of modulus of variation has been introduced by Z. Chanturia [3].

If v(n) is nondecreasing convex upwards function and v(0) = 0, then v(n) is
called the modulus of variation. Given the modulus of variation v(n), by V]v] we
denote the class of those functions which satisfy the relation v(n, f) = O(v(n)) as
n — oo.

Next, let f € C(0,1), and o(f) be the Fourier-Walsh-Paley series of that func-

tion, i.e.

- 1
f)Nch¢k(x), where ckz/f t)ydt, k=0,1,2,....
k= 0
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By o%(f,x) we denote Cesaro means, or (C,«) means of the Fourier—Walsh—

Paley series of the function f, i.e.
O' = Z A Cuwu
'VL v=0
2. INTRODUCTION
N. Fine [5] has proved that for any summable function f the means c%(z, f)
converge almost everywhere for all « > 0, and for any continuous function o(f) is
uniformly (C,1) summable to f.
In [18], S. Yano has studied the points (C,«) convergence of the summable
function f, namely: if lim f(x) = A, then o(f) is (C,«) summable to A at the
T—x
point zy (a > 0). Moreover, Yano has shown that if f(z) satisfies the Lipschitz
condition of order a (0 < o < 1), then for every 8 > «

lon(f,2) = f(z)] = O(n™?).

This result has been somewhat amplified by V. Kokilashvili [12], who found that

Ugfl(fax) ”C ZE 7 52 1,

E,(f) is the best approximation of f(x) in the metric C'(0,1) with the help of
polynomials by the Walsh system.

The problems of summability of Cesaro means of positive order for Walsh—Fourier
series were studied in [8]-[7].

The questions dealing with the uniform convergence of Cesaro means of negative
order were first studied by the author, and the obtained results without proof were
published in [17].

Important results in this direction have been obtained by Goginava in [9], [10].

3. MAIN RESULTS

The main results of the paper are presented in the form of the following propo-

sitions.

Theorem 1. Let w(4, f) be the modulus of continuity, and let v(n, f) be the modulus
of variation of the function f € C(0,1).
If

,}Ezolgsggn{ ( )Z,M+ > }=0a 0<a<l,

k=m+1

then o(f) is uniformly (C, —a) summable to f.
Theorem 1 can be rewritten in the following equivalent form.

Theorem 2. Let w(0, f) be the modulus of continuity, and let v(n, f) be the modulus

of variation of the function f. Then
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mo(n)

027 (f.) ~ £(2)] < c<a>{w (1) X s
k=1

N Z": U(k,f)—v(k;—l,f)}_’_o(l)’

kl-a
k=mo(n)+1

where mo(n) = my is defined by the inequality

(10) U(m0+17f) <w<:;7f> S /U(m(hf).

mo + 1 - mo

ok, f) < 20 ihen we take mg = n.

n

Let w(d) be an arbitrary modulus of continuity and v(n) be an arbitrary modulus

of variation. Furthermore, let

mo(n) n
1 1 v(k) —v(k -1
(20) n) = w (n> 3 - 3 (k) kl_(a )
k=1 k=mgo(n)+1

where mg(n) is defined by the relation (1°) and omitting in it the function f.

Suppose lim 7(n) = lim 7(n;) = 70 > 0. Then the following theorem is valid.
Theorem 3. In the class HY NV (v) there exists a function fo, such that

= 10(0) = 73 (o, 0)

) > 0.

(3%)

4. AUXILIARY RESULTS

We shall need the following
Lemma 1 ([16]). Let

1 n
Ka(t) = = > A, (0)

" y=0

Then the estimate

te(0,1), 0<a<l,
holds.

Lemma 2 ([16]). For any o € (0,1) and p > 2™ the equality

2mM—1
Sgn < Z A;fuwu(t)> - Sgn(wQ’”—l(t))’ le [07 1)7
v=0
is valid.

Lemma 3 ([3]). If f € CNV,, where ¢(u) is strictly increasing for u € [0,00) and
¢(0) =0, then

o(n. f) < e(fyng™! (i) Rt
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Lemma 4. If f € C NVy, where ¢ satisfies the conditions of Lemma 3, then the

following two conditions

1, /1
(1) k=1—k7aqb (k;)<oo 0O<a<l)
and
/ 1
(2) ——dr<oco (0<a<l)
[

are equivalent.

Proof. We have

k=2 1
Since
m 1 1
1 _ o -
a ot <t> dt:/u1 0] 1(u)—2du
1 1
1 . e (1)
_ T
— [ o = ey ¢/(7) dr
m o)
1 $7t(1)
4 A = (r)d
=—— - T)dT
( ) a ¢(x(7-) ¢71(%) o ¢1+a(7-)

1 1 1 1 " 1
I TR I - ot
¢~ ()
therefore if the condition (1) is fulfilled, then the condition (2) is likewise fulfilled;
and if the condition (2) is fulfilled, then
¢~ ()

1
0/ i 2 / 2o ()

and by virtue of (3) and (4) the condition (1) is fulfilled. O

Lemma 5. ([15]) Let f € C(0,1), then for every a € (0,1) the estimation

! / ZkglA;wa(u)[fmw - f(x)]dt] < o) Y7o (21f>

—a
An 0 r=0

where 2F < n < 281 holds.
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5. PROOF OF MAIN RESULTS

Proof of Theorem 1. Represent n > 1 in the form n =2™ +p, 0 < p < 2™. As is
known (see [4, p. 393]),*

12771.71 1
1 —a
- o= / > A - S
1 1 gm_4 B
= / X ATl ) - )
1 12m+p
L A%, (O] f () — f() dt
(5) An ‘O/V;m
1 12m,—171
- = / > A0 - S
1 12m—171 '
+ / 5 At SO ) — o)l
1 [
b [ DA (0O ) — Fla)de
An 0 v=0
=A; + As + As.

Estimate A;. By Lemma 5, we have

1 1271171_1
A= [ X Aol - ol <
n 0 v=0

m—1
1
<cla) Y 2w <2f) :
v=0
whence

(6) Ar=o0(1) as n — oco.

1 x4y means that z,y is written as dyadic fractions which are combined pairwise with respect

to [mod 2].
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Now we proceed to estimation As; first we estimate the sum

om—1l_q
Z A;SQanl_UwV(t)'
v=0
We have
2771—171
> A ()
v=0
,n_27n—1 n_2m,1
=1 > A= Y A ()
v=0 p=9m-—1
P q
<D A )]+ YA ()
v=0 v=0

where p =n — 2™~ ! ¢ = n — 2™. This by virtue of Lemma 1 implies that

om—1_q
1

(7) D A ()] < ela) -
v=0

For A; we have

1| .
Al = [ At 000 () f(2)
n 0 v=0
om—1l_1 22Z.#zm—lq
> (/ S AT 0 ()~ 1)
2'27:‘227”*171
[ A0 i - 1) dt)\.
pit1 v=0

2T

Taking into account the fact that the functions v, (¢t) (v = 0,1,...,2m~1 — 1)
S ) j=0,1,...,2m 1 — 1, we find that if

J

are constant in the intervals [zm—u ST )

te (2L, 2250 then ¢, (t + 55 ) = ¥, (t) = ¥, (24), and hence
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(8)

9)

V. TEVZADZE

n

z i (1) (1 (o (04 ) - )

Jj=

2J+1
2m gm—1l_jq

2{ 2 At ()
X (f(ac-i—t)—f (H <t+2m>)> dt‘

2m 1_1 27”27n 1_

> /> A;W_un(m_)

x<f (4o 2) s 252)) o

om— 1 1 1

om=1_1
Z2m/ZA;2m1U’(/JV<2n31)

S a

om—1_1 1om-1_4 <

= (1) o ()

It can be seen easily that

om-1_q

AéQ) < C(a)na 27w <2m ’ f) Z A;me—l_y
v=0

s ok (2; / ) n?27m2m 0 < e (22 f) |

Estimate now Aél). Applying (7), we have

2m1

2ml1
0 <o [ (25)

(o (e52) o)

X
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1
L t+ 24 L t+25+1
a)/ x+u — f x_},_i dt.
2m 2m
0
Estimate the sum
t +2 L t+25+1
(= 5) -0 ()|

ST

It is evident that for every ¢ € [0,1) there exists a y(t) € [0,1), such that
x+152+7q :y+2?n7 q= 1727"'72m_1'

Thus
25 2j 41
(vian) 1 (50
Using the Abelian transformation and taking into account (see [19, p. 378]) that
[(x 4+ h) — x| < h, z,h € [0,1) and (see [3, p. 536]) v(n, f) < c(f)nw(%,f), we

2'm71_1

1
A:ZF

j=1

obtain
= 1 25\ C2j+1
=3 f(y++zm> (5
2m=1l_q .
. 274+1
+]§1 (++2m>—f<y++ o )’
1 L1
<w | =—, -
- (2m f>;]1a
- 1 g 2% 2% + 1
+Z;( <y+1>1a>,; f(“%)‘f@* 2m )‘
T 2 2/ +1
tyee 2 |f (i) 1 (%55
1 ° . 2j 2541
- f<y+m>f<y++ ~ >’
(s + 1)t & 2 2

1 s 1 gm—1 »7 2m—1,
S w (27n’f) Z jl—a + Z U(g—f) + ,z)z(m—l)l;fo?'

j=1 je=st1

Since v(n, f) < cnw(2, f) and @ | 0 due to the convexity of v(n, f) [3],

therefore

7 ;
j:l‘7 j=s+1 J
@™ L) G 1 v@mL ) A
=y gm—1 lel « gm—1
J_
v(2m” 1,f v(2™ )
Z Z 2 2m 1)1 @
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and hence
s om—1l_1

Agl) <cla) |w (;W»f> Z jllfa Uj(g’i:) )

j=1 j=s+1

It can be easily seen that the last relation is valid for all s, 1 < s < n. Thus

finally, for Aél) we obtain the estimate

(10) A < c(a) <w (if) 1; kll,a > “,Efif)) ~

k=s+1

Analogous estimate is obtained for Ag,

(1) As| < el) (w CHUDECEDS ”,ifif))

k=s+1

Taking into account (6), (8), (9), (10) and (11), from (5) we get
o (2, f) = f(2)]

(12) c() min <w (if) g:l

where o(1) is the value tending to zero as n — oc.
This implies that Theorem 1 is valid. O

IN

RS ”,Ei“ii?) +o(D),

k=m+1

From Theorem 1 we can obtain a number of corollaries.

Corollary 1. If w(d, f) = O(0*) (0 < a < 1), then o(f) is uniformly (C,—«)

summable to f.

Corollary 2. If f € CNV[v], and

oo

k
ZU2(71<00, 0<a<l,
k=1

o

then o(f) is uniformly (C, —«) summable to f.

Corollary 3. If f € CNVy, where ¢(u) is strictly increasing convex for u € [0, 00),
#(0) =0, and

=1 1

E ¢1()<oo, 0<a<l,
11—«

k:lk k

then o(f) is uniformly (C, —a) summable to f.

Indeed, in the conditions of Corollary 3, by Lemma 3, the relation
1
wn) <ty (1) nz
n
is valid, and hence

Ul <o " —ary o (1)

n

from which, by virtue of Corollary 2, follows Corollary 3.
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Corollary 4. If f € CNVy, where ¢ satisfies the conditions of Corollary 3, and

1
1
13 / dr < oo, 0<a<l,
1) | 70

then o(f) is uniformly (C, —a) summable to f.
Corollary 4 follows directly from Corollary 3 by using Lemma 4.

Corollary 5. If f € C(0,1), m = min f(t), M = max f(t), and the Banach

0<i<1 0<t<1
indicatriz® N(y, f) satisfies the condition

M

/No‘(y,f)dy<oo, 0<a<l,
then o(f) is uniformly (C, —a) summable to f.

This corollary follows from Theorem 1 by virtue of the results of [1].

Corollary 6. Let f € CNV,, where ¢p(u) is a strictly increasing on [0, 00) function,
#(0) =0, and (13) is fulfilled, then
w(#f)v )
Cu P
o, ;) — flz)] < cla
7o)~ @) <ela) [ S

where Vy(f) is a full ¢ variation of the function f on [0, 1].

dr + o(1),

Corollary 6 follows from Theorem 1 by virtue of the results obtained in [3].

Proof of Theorem 2. Let mg < n such that

(14) k=1 k=m+1
1 &1 " ok, f)
=w (’I’L’ f) kl-a Z k2—« ’
k=1 k=mo+1
Then
1\ 1 " ok, f) AN | "k, f)
w (n’f> Z kl—a + Z k2—a Sw <n"f> Z fkl—o + Z f2—a
k=1 k=mo+1 k=1 k=myg
and
LR (VR
w Tl7 kl—o k2—o Sw n’ kl—o k2—o !
k=1 k=mo+1 k=1 k=mo+1

The above inequalities imply that
" (1,f) 1 < v(mo, f)  wv(moe +1,f)

R S (TS

IN

1 1
o(w)

2The Banach indicatrix N(y, f) is a number (finite or infinite) of solutions of the equation

f(z) =y
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whence

(15) v(m0+1vf) < w <:-va) < U(mOaf) )

mo+1 7 - mg

Because of the fact that % is strictly decreasing (see [3, p. 544]) starting
from some nyg, then for n > ng the mq(n) from the relation (15) is defined uniquely.

If, however, the minimum in the left-hand side of (14) is attained for mg = n, we

o) < o)

have one relation

n mo

Using now the Abelian transformation, we get

" ouk, f)—ok—1,f) = 1 1
Z kl-a - Z </€1_°‘ - (k—|— 1)1—04) U(k»f)

k=mo+1 k=mo+1
v(n, f)  v(me, f) « vk f)  v(mo,f)
T T gk e zc(a)k:;ﬁl ke (mg + 110
whence
- U(kvf) - U(k‘,f)—’()(k—]_,f) U(m,f)
(16) D, e Scl) ( _Z k1o T o +01)1“’>’
k=mo+1 n=mo+1

and since

U(m()’f) < U(m0+1af)
(mo + 1)1—& - mo + 1

(mp+1)* < 2w (l,f) mg,

n

taking into account (12) and (16), we obtain

o)~ e < e (3.5) 3 s

+ Z U(kvf)_v(k_lvf)}+0(l)7

kl-—a
k=mo+1

Thus Theorem 2 is proved. O

To prove Theorem 3 we will need some lemmas.

Lemma 6. If v(n) = o(n'=®), v(n) — oo, as n — oo, and v(n) is conver,
then there exists the sequence of natural numbers {p(n)} possessing the following
properties:

(a) p(n) =o(n) as n — oo;

(b) Z Mzo(l) asn — oo.

-«
k=¢@(n)+1

Proof. Suppose

o) = e (2l 1)

Because v(n) is convex, v(k) — v(k — 1) |, and since % 1 0, therefore

@(n) T oo,
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From the definition of ¢(n) it follows that
vlp(n) —vlp(n) =1) 1 vl +1) —v(p(m) _ 1

1 pl=(n) n )+«
Therefore .
£ < oot - vl - 1 < 2E
whence
p(n) _ vlp(n) _
=gt W

By virtue of (17) we have

3 W < (v(p(n) +1) — v(p(n))) %

—a -«
k=p(n)+1 k=¢p(n)+1
(p(n) + D7 ¢ "% (n)
< c(a) n n® < ¢(a) e o(1)
Thus the lemma is proved. (]

Lemma 7. Let

sz = ZAQm*V t , 0<a<l.

2’I'7L v= 0
There exists a natural number N such that for i < m — N the estimate
2t

o

| Ko ()| dt > c(a)2™

—

2i—1
S

is valid for sufficiently large m.

Proof. We have

o i

1
/|K27,?(t)\dt2 - o ( )‘dt
A27n
i 9i—1
;
Sm
(18) = [ 14l
2"L .
gi—1
2m
2
2'771 1 .
1 2171
ZAW ) )‘dt T = A — A,.

2m

Here we present lower bound of A;. By Lemma 2, we have

=

2

Al Qm,V )'dt

A;m

w3
3
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1 2t1 i 2m_1
=1a > / ( Z Agm ., (£)0y (£)tham 1 (¢ ))dt
2m fe=2i— IL
. k+1
1 2" 1 2t—1 27
:A—a Z AQ_"?U( Z /w ()w?" 1() >
2" v=0 k=211 %

from which it follows that since (see (2, p. 17])

U (o) = (2’;) k=012,

and ([4, p. 379])

wk(’/ 22 1) w( )¢k<2m1>’ ph=19... 2",

we get

A=

2m—1 2'—1 v om _ 1>

e om Z Ay Z Vi (27,1) 11%(

k=2i—1

2t1 m_q
= a 2m Z A2’”—u Z ¢k( )

k=211

2m—1
v .2m—1 v .2m—1
= oo om Z A, [DZi (2m+2m> — Dyi (2m+2m

Since (see [4])

2mo 0t <27™,
(19) Do (t) = where D, ( ZW
0, 2 <t<l,

therefore for v < 21 4+ ... 4 2m~*1 we will have

v .2m—1 v .2m -1
Du (gt ) =0 a5t P ) =0
and hence

2™m_1
1 1 v .2Mm—1
Ay = — E ALY Doi | —
T 2m{ 2 —”< 2 <2m+ om )

v=p;+q;+1

v .2m—1
— Doiq [ —
2 1(2m—|— om ))

+p§hf4 Dy (L2 _p, (L2
2m—y 21 om om 2i—1 om

V=pi

)|
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Where p; = 2m—1 + 2m—2 + ce 2m—i+1 — 2m _ 2171—2'—}-17 ¢ = 2m—i+1 + 2m—i+2 +
4 21 + 20 gm— i 1.

Taking again into account (19) and equalities A} — Af_, = A,oc‘fl, we obtain

om_1 om _gm—i

12! —a —a
A = Az@ 2m Z A2m71/ - Z Aszl/

2m p=2m _9om—i p=9m _9om—i+1

om— i 1 om— i

1 2i—1
A—a om Z A27" iy Z A2m i+1l_y

om

20 B i—1 me'i_l
() _12{Z(A—a1Aal Aal )

AQ—W? om . 2am—i_ptiam—it]—y 2m—itl_y
v=
21 L 2™ —i_qgm—i )
—a _ § : § : a—
+A27ni} - A2m 1+k v
v=0 =
1 21'—1
e
~x g At = Bt By,
2"’7L

Estimate now Bj. By virtue of (III) we have

m a2i71 ! m—1 -«
o Bil 2 ()2 G D 277 )

v=0
Z C(a>2ma(2m—i>1—a Z C()(Oé)?ia.

For By we have
22 Byl < cfa)2mel L < 2
(22) |B2| < c(a) QT_C(Q)W-
Similar estimate is obtained for A,. That is,
23 Ay < 72i
(23) 2 < cla) m(i=a)

Taking into account (20), (21), (22) and (23), from (18) we obtain

i

o

3

2 .
2’L

[ Ko (B)] dt > co(@)2™ = e1(a) gy

—

2i—1
>

Since 2~ (M=0(1=2) _, 0 as (m — i) — oo, there exists a natural number N such

that
2! co(a)
Cl(a) om(l—a) <

2 for i < m — N,

and therefore

/\KW )| dt > (>2w i<m—N.

Thus the lemma is proved. O
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Proof of Theorem 3. Let 7(n) be defined by the relation (2°), where mq(n) for
n > ng is defined uniquely by inequality (15) by omitting the function f.

Next, let {n;} C N such that lim 7(2") = 75 > 0.

Without restriction of generazlg;o we can assume (see [3, p. 1545]) that v(n) is
convex, and v(n) < cnw(+). There can take place two cases: (1) v(n) = o(n'=®);
(2) v(n) # o(n ).

Let us consider the case v(n) = o(n'~®). Suppose that v(n) — oo because
7(n) — 0 as n — oo, otherwise. By Lemma 6, there exists the sequence of natural

numbers {¢(n)} with the properties indicated in the lemma. Note that if v(n) =

o(n'=%) as n — oo, then
1\ "
(24) w (n> ; pia 0, n— oo
Indeed,

1\ & 1 o(me(n)
o(3) X e = et g m o

mo(n)

v(mo(n))
=c(o) ——5—~ =o(1),
mg*(n)
Therefore by virtue of the fact that lim 7(2") = 79 > 0, starting from some g
©(2™) > mo(2™).

Taking into account (24) and also the properties of the sequence {¢(n)}, we find

that
1
T
zi»rgo W (2”)

mo(27) p(2m)

. 1Y S 1 ) v(k) —v(k —1)

e (g) X pmmtm > MR
k=1 k=mg(2mi)+1

mo(2™%) o2mi

1 v(k) —v(k—1
g; et > ‘j‘ljjg%“‘l

k=mq(2™i)+1

omi
) v(k) —v(k—1)
Jrzlggo Z kl-o
k=p(2"3)+1
“’(i”) o(k) — vk — 1)

= lim e

ad

= 1T0-.
k=mg(2™i)+1

Suppose
9a(n)+4

£(n) = Z v(k) —v(k —1) 7

E—
k=2r(n)+3
where 7(n) = [logy mo(n)], a(n) = [logy @ (n)].
Now we construct the sequence of natural numbers {¢;} and the sequence of
functions {fx}.
Let ¢1 € {n;} such that ¢; > n;,, and £; > ng (see the definition of ny and iy),
24 — (2%) > N (N appears in Lemma 7) and %?jl) <1
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The function ¢1(x) is defined as follows:

,U(r+]_)fv(r) for x = 222‘1";12, r:mo(Qzl),,..,ZlQD(Qel)—l,

(@) 0 for © = 574, r=mo(24),...,4p(24),
P1lT) = e (2 ¢
0 for = € [0, 9B U [1EZ1) 1]
is linear and continuous for the rest = from [0, 1].
Assume

fi(@) = p1(x) Sgn K. 7 ().
Let the numbers £, 45, ..., ¢;_1 and periodic with period 1 functions f1, fa,..., fx—1

be already constructed. Then ¢ and f; can be constructed as follows: we choose

), in such a way that the following conditions be fulfilled:

20k ol —1

(55) < v(dp(2%71)) — v(4p(2% 1) — 1);
0(2%) > (2% 71);

(5#) mg(2%-1) < ex(@)€(l—1);

1 w(ﬁ)

k
(1) Zwlzn) @) [ 75dr <ea(@)§(2%)
i=1 0
(the constants ¢1(«) and co(a) will be chosen below).

)
)

3) 422 mo@ETD ((n) = o(n));
)
)
)

Let
v(r+1)—v(r) for z = 222:112, r=mgo(2%),...,4p(2%) -1,
0 for z =g, r=mo(2%),...,4p(2%),

Sak(x) = Tno(QZk) 4@(22k)

0 for xz € [O, I ]U[ 7E ,1}
is linear and continuous for the rest = from [0, 1].

Assume

fr(x) = pr(x) Sgn K;/:(x)
Let now

fol@) =" fu(@)
k=1

Reasoning just as in [3, p. 548], we can show that fo € HY NV[v]. It remains to
prove the relation (3°).
Suppose
Fy(z) = Y fi().
i=k+1

Taking into account the definition of the function fj(z) and Lemma 1, we obtain

1

1052 (Fi,0) — Fi(0)] = / Fe() K2 (1)t
0
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1 2%k 1 1 (2%) «
Lo [ 100
<oz [ e < ) (gr ) 2 (o)
0

By virtue of the property (6) of the sequence {¢x}, we get
(26) o560 (Fi, 0)] < co(@)ea(@)&(2),

Further, using Lemma 7 and the definition of fx(x), we can write

1p0(2%)
2%k
loyer (fr, 0) = fi (O )|| / fk(t)Kzek()dt’
mg(2%k)
2%k
10(2%%) 2a(2%k)+2
2k 2k
- [ avrgokz [ aomrgod
mg(2%k) or(28k)+1
2%k 2k
i+1
(27) q(2°%)+1 22ek

>y / on(t) K2 (1)t

i=r(2¢)+1 21

q(22k>+1

() Y [T 41) - u@)2e

i=r(2%%)+1
9a(2k)+4

>ese) Y WD ageet)

7;:27‘(22;“ )+341

since
9a(2%k)+4 ] ] 9a(2k)+4 ) ]
v(i) —v(i—1) v(i+1) —v(i)
) A GV A 0 B W s RO
il ,Ll—(x
i:2r(2zk)+3+1 '721‘(227())4»3

(gfk)+1 9i+3

N OEDIEDY M

i=r(2%% )41 j=2012

a(2'%) 41
<cle) Y @7 41) - u@ )2
i=r(2%)+1
Estimate now o,/ (gx, 0), where gx(t) = Z fi(®).
Since gx(t) € H* NV, using Corollary 6, we find that
w(— Zk

Y V(
1052 (95.0)] < e(a / Vi) 4 4 o).
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It is easy to see that

Vigy) < ajzjw (37) 2

and therefore

- “(H)
o — 1 , 1
a0 < @) Sw (5 ) o2 [ ars ot
=1 0

Taking into account the property (7) of the sequence {¢(n)}, we have
(28) |75 (9, 0)] < ca(@)ea(@)€(2) + o(1).

It follows from (26), (27) and (28) that

|0 (f0,0) = fo(O)] = [0 (fk: 0) + 05 (k5 0) + 05 (F, 0)]

2 |05 (fr: 0)| = logey, (Fk, 0)] = logey (9x, 0)]
> c3(@)€(2%) — zo(@)er(a)€(2) — ca(a)ea(@)€(2%) — o(1).

Choosing now c¢;(a) = 3650(30[)), co(a) = 3654(&))7 we get
—a c3()€(2%
o (o, 0) — £o(0)] = WOBED )
whence
o (f0,0) — fo(0)] < cs(a)  o(1)
£(2%) T3 g2
and since £(2%) ~ 7(2°) by virtue of (25), from the last relation we obtain (3°).
Consider now case 2), i.e. v(n) # o(n'~%). We define the function v (x) as
follows:
v(n) for x=n, neN,
vi(z) =40 for z =0,
is linear and continuous for the rest x from [0, 00).
Let

w1(8) = dun (2) .

It is easily seen that w; () is the modulus of continuity, and since v(n) < cnw(s:),
therefore wy () < cw(d). By S. Stechkin’s lemma, there exists the convex modulus

of continuity wg(d) satisfying the condition
Cle((s) < w1(5) < CQWO((S),

and since v1(n) = v(n), we have H*> C HY N V[v].

By virtue of the fact that v(n) # o(n'=®), it follows that wy(d) # o(6%) (0 <
a < 1). Let us now show that in the class H“° there exists the function f; whose
Fourier-Walsh—Paley series fails to be summable by the method (C,—a) to fy at
the point z = 0.
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By the condition wg(d) # 0(d%), there exists the sequence {n;} C N, such that

1
(2n>2w>c>0 i=1,2,....

We choose from {n;} the sequence with the following properties:

1) fj w (55) < 2w (55);
k+1

1 2r41 O +1
w(QTk) for 1‘:2[;’;27 T:O,l,,...72k+ —17
— lrp+1
SDk(t)_ 0 for x:r(];rl, ’I“:O,l,,...,Qk-i—7

is linear and continuous for the rest = from [0, 1].

Suppose

Reasoning analogously as in case 1)7 we can show that fj is the unknown function.

Thus Theorem 3 is proved. (]
From Theorems 1 and 3 follows

Theorem 4. For the Fourier—Walsh—Paley series of all functions of the class
HY NV[vu] to be (C,—«) uniformly summable, it is necessary and sufficient that

the condition

Jm i fo (1) Yt 2§ ) =0

k=m+
be fulfilled.

Theorem 5. For the Fourier—Walsh—Paley series of all functions of the class
C N V] to be uniformly (C,—a) summable, it is necessary and sufficient that

the condition

o~ v(k)
(29) > ERn 0<a<l,
k=1
be fulfilled.
Proof. The sufficiency of the condition (29) is contained in Theorem 4, and the
necessity can be proved by using [3] (see [3, p. 552]). O
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