Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 22 (2006), 63-71 www.emis.de/journals

ISSN 1786-0091

HERZ-TYPE BESOV SPACES ON LOCALLY COMPACT VILENKIN GROUPS

CANQIN TANG, QINGGUO LI AND BOLIN MA

ABSTRACT. Let G be a locally compact Vilenkin group. In this paper the characterizations of the Herz-type Besov space on G are obtained. And some properties of this space are discussed.

1. Introduction

M. Frazier and B. Jawerth give the characterizations of Besov space on \mathbb{R}^n in [3]. For additional results, see [4], the atomic decomposition of Besov spaces on locally compact Vilenkin groups G is obtained by C.W. Onneweer and Su Weiyi. Xu ([7]) introduced the Herz-type Besov spaces on \mathbb{R}^n and give an unified approach for Herz-type Besov spaces and Triebel–Lizorkin spaces. We can also find the associate results in [5], [2], [6]. These papers were the motivation for the present paper in which we consider the characterizations of this Herz-type Space on locally compact Vilenkin groups G.

Throughout this paper, G will denote a bounded locally compact Vilenkin group, that is, G is a locally compact Abelian group containing a strictly decreasing sequence of compact open subgroups $\{G_n\}_{n=-\infty}^{\infty}$ such that (a) $\bigcup_{n=-\infty}^{\infty} G_n = G$ and $\bigcap_{n=-\infty}^{\infty} G_n = 0$; (b) sup $\{$ order $(G_n/G_{n+1}) : n \in \mathbb{Z}\} = B < \infty$. We choose Haar measure dx on G so that $|G_0| = 1$, where |A| denotes the measure of a measurable subset A of G. Let $|G_n| = (m_n)^{-1}$ for each $n \in \mathbb{Z}$. Since $2m_n \le m_{n+1} \le Bm_n$ for each $n \in \mathbb{Z}$, it follows that

$$\sum_{n=k}^{\infty} (m_n)^{-\alpha} \le c(m_k)^{-\alpha}$$

and

$$\sum_{n=-\infty}^{k} (m_n)^{\alpha} \le c(m_k)^{\alpha}$$

for any $\alpha > 0, k \in \mathbb{Z}$, where c is a constant independent of k. For each $n \in \mathbb{Z}$ we choose elements $z_{l,n} \in G(l \in \mathbb{Z}_+)$ so that the subsets $G_{l,n} := z_{l,n} + G_n$ of G satisfy $G_{k,n} \cap G_{l,n} = \emptyset$ if $k \neq l$ and $\bigcup_{l=0}^{\infty} G_{l,n} = G$; moreover, we choose $z_{0,n}$ so that $G_{0,n} = G_n$. We now define the function $d: G \times G \to R$ by d(x,y) = 0 if x - y = 0 and $d(x,y) = (m_n)^{-1}$ if $x - y \in G_n \setminus G_{n+1}$, then d defines a metric on $G \times G$ and the topology on G introduced by this metric is the same as the original topology on G. For $x \in G$, we set |x| = d(x,0). Then $|x| = (m_n)^{-1}$ if and only if $x \in G_n \setminus G_{n+1}$.

²⁰⁰⁰ Mathematics Subject Classification. 43A70 43A75.

Key words and phrases. Herz-type Besov space, Vilenkin Group.

The third author was supported by NNSF 10371004.

We now briefly recall the definitions of the spaces S(G) of test functions and S'(G) of distributions; for more details, see [6]. A function $\phi: G \to C$ belongs to S(G) if there exist integers k, l, depending on ϕ , so that supp $\phi \subset G_k$ and ϕ is constant on the cosets of the subgroup G_l of G. And the space of all continuous functionals on S(G) will denoted by S'(G).

In this paper, the authors characterize the Herz-type homogeneous Besov spaces $\dot{K}_q^{\alpha,p}\dot{B}_{\beta}^s(G)$. In fact, when $\alpha=0$, q=p, $\dot{K}_q^{\alpha,p}\dot{B}_{\beta}^s(G)=\dot{B}_{\beta}^{s,p}(G)$. then it turns to be the case which was discussed in [4]. According to the definition of locally compact Vilenkin groups and its topological structure, we can give the atomic decomposition of this Herz-type space on \mathbb{R}^n .

2. Herz-type Homogeneous and Nonhomogeneous Besov Spaces

We first recall the definitions of the homogeneous (non-homogeneous) Herz spaces and Besov spaces on G.

Definition 1. Let $\alpha \in \mathbb{R}$, $0 < p, q \le \infty$.

(a) A measurable function $f:G\to R$ belongs to the homogeneous Herz space if it satisfies

$$||f||_{\dot{K}_{q}^{\alpha,p}(G)} = \left\{ \sum_{l=-\infty}^{\infty} m_{l}^{-\alpha p} ||f\chi_{G_{l}\backslash G_{l+1}}||_{L^{q}(G)}^{p} \right\}^{1/p} < \infty,$$

a modification will be done if $p = \infty$ or $q = \infty$ (That is, if $p = \infty$, $||f||_{\dot{K}_q^{\alpha,\infty}(G)} = \sup_l m_l^{-\alpha} ||f\chi_{G_l\setminus G_{l+1}}||_{L^q(G)}$).

 $\sup_l m_l^{-\alpha} \|f\chi_{G_l\setminus G_{l+1}}\|_{L^q(G)}$). (b) A measurable function $f:G\to R$ belongs to the non-homogeneous Herz space if it satisfies

$$||f||_{K_q^{\alpha,p}(G)} = \left\{ ||f\chi_{G_0}||_{L^q(G)}^p + \sum_{l=-\infty}^{-1} m_l^{-\alpha p} ||f\chi_{G_l \setminus G_{l+1}}||_{L^q(G)}^p \right\}^{1/p} < \infty,$$

a modification will be done if $p = \infty$ or $q = \infty$.

Before giving the definition of the Herz-type Besov spaces on G, we give the notes of a second space of test functions and distributions ([4]). Let

$$Z(G) = \{ \psi \in S(G) : \hat{\psi}(0) = \int_{G} \psi(t)dt = 0 \},$$

and define convergence in Z(G) like in S(G). Let Z'(G) be the space of linear functionals on Z(G) with convergence in Z'(G) defined like in S'(G). If ϱ denotes the set of constant distributions in S'(G) then Z'(G) can be identified with $S'(G)/\varrho$ in the sense that (i) for each $f \in S'(G)$ its restriction to Z(G) belongs to Z'(G); (ii) if $f, g \in S'(G)$ and if g = f + c for some constant $c \in S'(G)$ then the restrictions of f and g to Z(G) determine the same element of Z'(G); (iii) if $\tilde{f} \in Z'(G)$ then there exists an $f \in S'(G)$ so that its restriction to Z(G) equals \tilde{f} , moreover, module constants f is determined uniquely by \tilde{f} . We usually disregard the difference between $\tilde{f} \in Z'(G)$ and a corresponding $f \in S'(G)$.

Set $\chi_n(x) = \chi_{G_n \setminus G_{n+1}}(x)$, $\Delta_n(x) = m_n \chi_n(x)$, $\varphi_n(x) = \Delta_n(x) - \Delta_{n+1}(x)$, and * denote convolution operator. Now we give the definition of the Herz-type homogeneous Besov spaces on G.

Definition 2. Let $\alpha \in \mathbb{R}$, $0 , <math>0 < q \le \infty$. The Besov space $\dot{B}_q^{\alpha,p}(G)$ is defined as

$$\dot{B}_{q}^{\alpha,p}(G) = \{ f \in Z'(G) | \|f\|_{\dot{B}_{q}^{\alpha,p}(G)} := \Big(\sum_{n=-\infty}^{\infty} (m_n)^{\alpha q} \|f * \varphi_n\|_p^q \Big)^{1/q} < \infty \},$$

with the usual modification if $q = \infty$.

Definition 3. Let $\alpha, s \in \mathbb{R}, 0 < p, q, \beta \leq \infty$. Then

$$\dot{K}_{q}^{\alpha,p}\dot{B}_{\beta}^{s}(G) = \{f \in Z'(G) | \|f\|_{\dot{K}_{q}^{\alpha,p}\dot{B}_{\beta}^{s}(G)} := (\sum_{n=-\infty}^{\infty} ((m_{n})^{s} \|f * \varphi_{n}\|_{\dot{K}_{q}^{\alpha,p}})^{\beta})^{1/\beta} < \infty\},$$

with the usual modification if $\beta = \infty$ (That is, if $\beta = \infty$, $||f||_{\dot{K}^{\alpha,p}_q\dot{B}^s_\infty(G)} = \sup_n (m_n)^s ||f * \varphi_n||_{\dot{K}^{\alpha,p}_q}$).

Definition 4. Let $\alpha, s \in \mathbb{R}$, $0 < p, q, \beta \le \infty$. Then

$$\dot{K}_{q}^{\alpha,p}B_{\beta}^{s}(G) = \{ f \in Z'(G) | \|f\|_{\dot{K}_{q}^{\alpha,p}B_{\beta}^{s}(G)}
:= \|f * \Delta_{0}\|_{\dot{K}_{q}^{\alpha,p}} + \{ \sum_{n=1}^{\infty} ((m_{n})^{s} \|f * \varphi_{n}\|_{\dot{K}_{q}^{\alpha,p}})^{\beta} \}^{1/\beta} < \infty \},$$

with the usual modification if $\beta = \infty$.

In this section, we first consider the link between the homogeneous and nonhomogeneous space. In [4, Theorem 3] it was shown that for the Besov space on G we have $B_{p,\beta}^s = L^p \cap \dot{B}_{p,\beta}^s$ when s>0 and $1 \leq p,\beta \leq \infty$. For Herz-type spaces, we have similar results.

Theorem 1. Let s > 0 and $1 \le \beta, p, q < \infty$, Then

$$\dot{K}_{q}^{\alpha,p}B_{\beta}^{s}(G) = \dot{K}_{q}^{\alpha,p}\dot{B}_{\beta}^{s}(G) \cap \dot{K}_{q}^{\alpha,p}(G).$$

Proof. If $f \in \dot{K}_q^{\alpha,p}\dot{B}_{\beta}^s(G) \cap \dot{K}_q^{\alpha,p}(G)$, then $\sum_{l=-\infty}^{\infty} m_l^{-\alpha p} \|f\chi_l\|_q^p \leq \infty$. Since

$$||f * \Delta_0||_{\dot{K}_q^{\alpha,p}}^p = \sum_{l=-\infty}^{\infty} m_l^{-\alpha p} ||f * \Delta_0 \chi_l||_q^p,$$

and

$$||f * \Delta_0 \chi_l||_q^p = \left(\int_{G_l \setminus G_{l+1}} |f * \Delta_0(x)|^q dx \right)^{\frac{p}{q}}$$

$$\leq \left(\int_{G_0} \left(\int_{G_l \setminus G_{l+1}} |f(x-t)|^q dx \right)^{\frac{1}{q}} |\Delta_0(t)| dt \right)^p$$

$$\leq ||f \chi_l||_q^p \left(\int_{G_0} |\Delta_0(t)| dt \right)^p$$

$$\leq ||f \chi_l||_q^p,$$

therefore, $\|f*\Delta_0\|_{\dot{K}^{\alpha,p}_q}^p \leq \sum_{l=-\infty}^\infty m_l^{-\alpha p} \|f\chi_l\|_q^p = \|f\|_{\dot{K}^{\alpha,p}_q}^p$, moreover,

$$||f||_{\dot{K}_{q}^{\alpha,p}B_{\beta}^{s}(G)} = ||f * \Delta_{0}||_{\dot{K}_{q}^{\alpha,p}} + \{\sum_{n=1}^{\infty} ((m_{n})^{s} ||f * \varphi_{n}||_{\dot{K}_{q}^{\alpha,p}})^{\beta})\}^{1/\beta}$$

$$\leq ||f||_{\dot{K}_{q}^{\alpha,p}} + \{\sum_{n=-\infty}^{\infty} ((m_{n})^{s} ||f * \varphi_{n}||_{\dot{K}_{q}^{\alpha,p}})^{\beta})\}^{1/\beta}$$

$$= ||f||_{\dot{K}_{q}^{\alpha,p}} + ||f||_{\dot{K}_{q}^{\alpha,p}\dot{B}_{\beta}^{s}}$$

$$< \infty.$$

Conversely, take any $f \in \dot{K}^{\alpha,p}_q B^s_\beta$, since $f \in S'(G)$ we have

$$f = f * \Delta_0 + \sum_{n=1}^{\infty} f * \varphi_n$$

with convergence in S'(G). If $1 \leq \beta < \infty$, using the inequalities of Minkowski and Hölder, we have

$$\| \sum_{n=1}^{\infty} f * \varphi_n \|_{\dot{K}_q^{\alpha,p}} \leq \sum_{n=1}^{\infty} (m_n)^{-s} (m_n)^s \| f * \varphi_n \|_{\dot{K}_q^{\alpha,p}}$$

$$= (\sum_{n=1}^{\infty} (m_n)^{-s\beta'})^{\frac{1}{\beta'}} (\sum_{n=1}^{\infty} (m_n^s \| f * \varphi_n \|_{\dot{K}_q^{\alpha,p}})^{\beta})^{\frac{1}{\beta}}$$

$$\leq c \| f \|_{\dot{K}_q^{\alpha,p} B_s^s},$$

here β' is the conjugate index of β . Thus, we can conclude that $f \in \dot{K}_{a}^{\alpha,p}$.

Moreover, as the proof of the first part, through the simple calculation, we have $||f * \varphi_n \chi_l||_q^p \le c ||f \chi_l||_q^p$, consequently,

$$||f||_{\dot{K}_{q}^{\alpha,p}\dot{B}_{\beta}^{s}}^{\beta} = c(\sum_{n=-\infty}^{0} m_{n}^{s\beta} ||f||_{\dot{K}_{q}^{\alpha,p}}^{\beta} + \sum_{n=1}^{\infty} m_{n}^{s\beta} ||f * \varphi_{n}||_{\dot{K}_{q}^{\alpha,p}}^{\beta})$$

$$\leq c||f||_{\dot{K}_{q}^{\alpha,p}B_{\beta}^{s}}^{\beta} < \infty$$

This completes the proof of Theorem 1.

In the following, $A_1 \subset A_2$ always means that the topological space A_1 is continuously embedded in the topological space A_2 .

Using the proposition 2.2.1 in [8] and the embedding properties of Herz space(see [1]), Theorem 2 is easy to be proved. Here we omit the proof.

Theorem 2. Let $-\infty < s < \infty$, $0 < p, q < \infty$ and $\alpha > -\frac{1}{q}$.

(i) If $0 < \beta_1 \le \beta_2 \le \infty$, then

$$K_q^{\alpha,p}B_{\beta_1}^s(G) \subset K_q^{\alpha,p}B_{\beta_2}^s(G) \text{ and } \dot{K}_q^{\alpha,p}B_{\beta_1}^s(G) \subset \dot{K}_q^{\alpha,p}B_{\beta_2}^s(G).$$

(ii) If $0 < \beta_1, \beta_2 \le \infty$, $\varepsilon > 0$, then

$$K_q^{\alpha,p}B_{\beta_1}^{s+\varepsilon}(G)\subset K_q^{\alpha,p}B_{\beta_2}^s(G)\ \ and\ \ \dot{K}_q^{\alpha,p}B_{\beta_1}^{s+\varepsilon}(G)\subset \dot{K}_q^{\alpha,p}B_{\beta_2}^s(G).$$

- (iii) If $\alpha_1 < \alpha_2$, then $K_q^{\alpha_2,p}B_{\beta}^s(G) \subset K_q^{\alpha_1,p}B_{\beta}^s(G)$.
- (iv) If $b \leq c$, then $K_q^{\alpha,b}B_{\beta}^s(G) \subset K_q^{\alpha,c}B_{\beta}^s(G)$ and $K_q^{\alpha,b}B_{\beta}^s(G) \subset K_q^{\alpha,c}B_{\beta}^s(G)$. (v) If $q_1 \leq q_2$, then $K_{q_2}^{\alpha,p}B_{\beta}^s(G) \subset K_{q_1}^{r,p}B_{\beta}^s(G)$ and $K_{q_2}^{\alpha,p}B_{\beta}^s(G) \subset K_{q_1}^{r,p}B_{\beta}^s(G)$ where $r = \alpha (\frac{1}{q_1} \frac{1}{q_2})$.

Theorem 3. Let $\alpha = \frac{1}{p} - \frac{1}{q}$, $0 , <math>0 < \beta \le \infty$, $s \in \mathbb{R}$, then $\dot{K}^{\alpha,p}_{\alpha}B^s_{\beta}(G)\subset B^s_{n,\beta}(G)$

Proof. Let $D_j = G_j \setminus G_{j+1}$. Using the Hölder inequality, we have

$$||f||_{L^{p}(G)}^{p} = \sum_{j=-\infty}^{\infty} \int_{D_{j}} |f(x)|^{p} dx$$

$$\leq C \sum_{j=-\infty}^{\infty} |D_{j}|^{1-\frac{p}{q}} \left(\int_{D_{j}} |f(x)|^{q} dx \right)^{\frac{p}{q}}$$

$$= C \sum_{j=-\infty}^{\infty} m_{j}^{\frac{p}{q}-1} \left(\int_{D_{j}} |f(x)|^{q} dx \right)^{\frac{p}{q}}$$

$$= C \sum_{j=-\infty}^{\infty} m_{j}^{-\alpha p} \left(\int_{D_{j}} |f(x)|^{q} dx \right)^{\frac{p}{q}}$$

$$= C ||f||_{K_{q}^{\alpha, p}(G)}^{p}.$$

Therefore, $\dot{K}_q^{\alpha,p}B_{\beta}^s(G) \subset B_{p,\beta}^s(G)$.

Theorem 4. Let $0 , <math>0 < q < \infty$, $0 < r \le q$, $0 < \beta \le \infty$, $s \in \mathbb{R}$, and $0 < r < p < \infty$, $\alpha > \frac{1}{r} - \frac{1}{q}$, or $0 and <math>\alpha \ge \frac{1}{r} - \frac{1}{q}$. Then $K_q^{\alpha,p}B_{\beta}^s(G) \subset B_{r,\beta}^s(G)$.

Proof. Suppose $D_0 = G_0$, $D_j = G_j \setminus G_{j+1}$. By the Hölder inequality, we can obtain

$$||f||_{L^{r}(G)}^{r} = \sum_{j=-\infty}^{0} \int_{D_{j}} |f(x)|^{p} dx$$

$$\leq C \sum_{j=-\infty}^{0} |D_{j}|^{1-\frac{r}{q}} \left(\int_{D_{j}} |f(x)|^{q} dx \right)^{\frac{r}{q}}$$

$$= C \sum_{j=-\infty}^{0} m_{j}^{\frac{r}{q}-1} \left(\int_{D_{j}} |f(x)|^{q} dx \right)^{\frac{r}{q}}$$

If $0 < r < p < \infty$, $\alpha > \frac{1}{r} - \frac{1}{q}$, then

$$\begin{split} \|f\|_{L^{r}(G)}^{r} &\leq C \Biggl\{ \sum_{j=-\infty}^{0} m_{j}^{-\alpha p} \Biggl(\int_{D_{j}} |f(x)|^{q} dx \Biggr)^{\frac{p}{q}} \Biggr\}^{r/p} \\ &\times \Biggl\{ \sum_{j=-\infty}^{0} m_{j}^{(\frac{1}{q} - \frac{1}{r} + \alpha)rp/(p-r)} \Biggr\}^{1-r/p} \\ &\leq C \Biggl\{ \sum_{j=-\infty}^{0} m_{j}^{-\alpha p} \Biggl(\int_{D_{j}} |f(x)|^{q} dx \Biggr)^{\frac{p}{q}} \Biggr\}^{r/p} \\ &\leq C \|f\|_{K_{q}^{\alpha,p}(G)}^{r}. \end{split}$$

We can deduce that $m_j \le m_0 = 1$ since $j \le 0$, then if $0 , <math>\alpha \ge \frac{1}{r} - \frac{1}{q}$, we have

$$||f||_{L^{r}(G)}^{r} \leq C \left\{ \sum_{j=-\infty}^{0} m_{j}^{(\frac{1}{q} - \frac{1}{r})p} \left(\int_{D_{j}} |f(x)|^{q} dx \right)^{\frac{p}{q}} \right\}^{r/p}$$

$$\leq C \left\{ \sum_{j=-\infty}^{0} m_{j}^{-\alpha p} \left(\int_{D_{j}} |f(x)|^{q} dx \right)^{\frac{p}{q}} \right\}^{r/p}$$

$$\leq C ||f||_{K_{q}^{\alpha,p}(G)}^{r}.$$

Furthermore, $K_q^{\alpha,p}B_{\beta}^s(G) \subset B_{r,\beta}^s(G)$.

3. Atomic Decomposition of the Herz-type Homogeneous Spaces

The atomic decomposition of the homogeneous Besov space on G were obtained by Onneweer and Su [4, Theorem 6]. Motivated by their work, we will give the atomic decomposition of the Herz-type Homogeneous Besov space.

Definition 5. A function $a: G \to C$ is an (s, ∞) atom, $s \in \mathbb{R}$, if

- (i) a is supported on a set $z + G_n$ for some $z \in G$ and $n \in \mathbb{Z}$,
- (ii) $|a(x)| \leq (m_n)^s$,
- (iii) $\int_G a(x)dx = 0$.

We have the following result.

Theorem 5. Let $0 < p, \beta \le \infty$, $\alpha > -\frac{1}{q}$, $s \in \mathbb{R}$. Then the following two facts are equivalent.

(a) $f \in \dot{K}_{q}^{\alpha,p} \dot{B}_{\beta}^{s}(G)$,

(b) there exist constants $\lambda_{l,j}$, $l \in \mathbb{Z}_+$ and $j \in \mathbb{Z}$, and $(-(s-\alpha)+1/q,\infty)$ atoms $a_{i,j}$ with supp $a_{l,j} \subset z_{l,j} + G_{j-1}$ such that

$$f = \sum_{j=-\infty}^{\infty} \sum_{l=0}^{\infty} \lambda_{l,j} a_{l,j}$$
 in $S'(G)/\varrho$

Moreover,

$$\|\lambda\|_{p,\beta} := \left(\sum_{j=-\infty}^{\infty} \left(\sum_{l=0}^{\infty} |\lambda_{l,j}|^p\right)^{\frac{\beta}{p}}\right)^{1/\beta} \le c\|f\|_{\dot{K}_q^{\alpha,p}\dot{B}_{\beta}^s}.$$

Proof. $(a) \Rightarrow (b)$ For each $f \in S'/\varrho$ we have

$$f = \sum_{n = -\infty}^{\infty} f * \varphi_n(x)$$

$$= \sum_{n = -\infty}^{\infty} f * \varphi_n * \varphi_n(x)$$

$$= \sum_{n = -\infty}^{\infty} \sum_{l = 0}^{\infty} (m_n)^{-1} f * \varphi_n(z_{l,n}) \varphi_n(x - z_{l,n})$$

$$= \sum_{n = -\infty}^{\infty} \sum_{l = 0}^{\infty} \lambda_{l,n} a_{l,n}$$

where $\lambda_{l,n} = (m_{n-1})^{(s-\alpha)-1/q} f * \varphi_n(z_{l,n})$ and

$$a_{l,n} = (m_{n-1})^{-(s-\alpha)+1/q} m_n^{-1} \varphi_n(x - z_{l,n}).$$

For each $a_{l,n}$ we have

- (i) supp $a_{l,n} \subset z_{l,n} + G_{n-1}$; (ii) $|a_{l,n}(x)| \le (m_{n-1})^{-(s-\alpha)+1/q}$;
- (iii) $\int_G a_{l,n}(x)dx = 0.$

Thus $a_{l,n}$ is an $(-(s-\alpha)+1/q,\infty)$ atom on G with support in $z_{l,n}+G_{n-1}$. Moreover, for the $\lambda_{l,n}$ we have

$$\begin{split} \|\lambda\|_{p,\beta} &= (\sum_{n=-\infty}^{\infty} (\sum_{l=0}^{\infty} |(m_{n-1})^{(s-\alpha)-1/q} f * \varphi_n(z_{l,n})|^p)^{\frac{\beta}{p}})^{\frac{1}{\beta}} \\ &\leq c (\sum_{n=-\infty}^{\infty} m_n^{s\beta} (\sum_{k=-\infty}^{\infty} m_k^{-\alpha p} \|f * \varphi_n \chi_k\|_q^p)^{\frac{\beta}{p}})^{\frac{1}{\beta}} \\ &= c \|f\|_{\dot{K}_q^{\alpha,p} \dot{B}_s^{\beta}} < \infty. \end{split}$$

This completes the proof of (a).

 $(b) \Rightarrow (a)$ Let $a_{l,j}$ be an $(-(s-\alpha)+1/q,\infty)$ atom on G with support in $z_{l,j}+G_j$. Similar to the proof in [4], we have $a_{l,j} * \varphi_n = 0$ when $j \ge n$ for each $x \in G$. So we only consider the case of j < n.

If $k+1 \leq j$, then $\|(a_{l,j} * \varphi_n)\chi_k\|_q = 0$ since $\sup a_{l,j} * \varphi_n \subset G_j$. If k > j, we have $\|(a_{l,j} * \varphi_n)\chi_k\|_q \leq cm_j^{-(s-\alpha)+\frac{1}{q}}m_k^{-\frac{1}{q}}$.

In the following, we estimate $||f||_{\dot{K}_{q}^{\alpha,p}\dot{B}_{\beta}^{s}}$. If $f=\sum_{j=-\infty}^{\infty}\sum_{l=0}^{\infty}\lambda_{l,j}a_{l,j}$ and $\|\lambda\|_{p,\beta} < \infty,$

(i) If $0 , then for each <math>n \in \mathbb{Z}$,

$$||f * \varphi_n||_{\dot{K}_q^{\alpha,p}}^p \le \sum_{j=-\infty}^{n-1} \sum_{l=0}^{\infty} |\lambda_{l,j}|^p ||a_{l,j} * \varphi_n||_{\dot{K}_q^{\alpha,p}}^p$$

Therefore, for each β with $0 < \beta < \infty$ we have

$$||f||_{\dot{K}_{q}^{\alpha,p}\dot{B}_{\beta}^{s}} = \{ \sum_{n=-\infty}^{\infty} m_{n}^{s\beta} (\sum_{j=-\infty}^{n-1} \sum_{l=0}^{\infty} |\lambda_{l,j}|^{p} ||a_{l,j} * \varphi_{n}||_{\dot{K}_{q}^{\alpha,p}}^{p})^{\frac{\beta}{p}} \}^{\frac{1}{\beta}}$$

$$= \{ \sum_{n=-\infty}^{\infty} m_{n}^{s\beta} (\sum_{j=-\infty}^{n-1} \sum_{l=0}^{\infty} |\lambda_{l,j}|^{p} \sum_{k=j}^{\infty} m_{k}^{-\alpha p} ||a_{l,j} * \varphi_{n} \chi_{k}||_{q}^{p})^{\frac{\beta}{p}} \}^{\frac{1}{\beta}}$$

$$\leq c \{ \sum_{n=-\infty}^{\infty} m_{n}^{s\beta} (\sum_{j=-\infty}^{n-1} \sum_{l=0}^{\infty} |\lambda_{l,j}|^{p} m_{j}^{-sp})^{\frac{\beta}{p}} \}^{\frac{1}{\beta}}$$

since $\alpha + 1/q > 0$.

If $0 < \beta \leq p$, so that $0 < \beta/p \leq 1$, then

$$||f||_{\dot{K}_{q}^{\alpha,p}\dot{B}_{\beta}^{s}} \leq c \{ \sum_{n=-\infty}^{\infty} m_{n}^{s\beta} \sum_{j=-\infty}^{n-1} m_{j}^{-s\beta} (\sum_{l=0}^{\infty} |\lambda_{l,j}|^{p})^{\frac{\beta}{p}} \}^{\frac{1}{\beta}}$$

$$\leq c ||\lambda||_{p,\beta} < \infty$$

here s < 0.

If $p < \beta < \infty$, let $r = \frac{\beta}{p}$. Using the Hölder inequality, we can obtain

$$\begin{split} \|f\|_{\dot{K}^{\alpha,p}_{q}\dot{B}^{s}_{\beta}} &\leq c\{\sum_{n=-\infty}^{\infty} m_{n}^{s\beta} (\sum_{j=-\infty}^{n-1} \sum_{l=0}^{\infty} |\lambda_{l,j}|^{p} m_{j}^{-sp})^{\frac{\beta}{p}}\}^{\frac{1}{\beta}} \\ &\leq c\{\sum_{n=-\infty}^{\infty} m_{n}^{s\beta} (\sum_{j=-\infty}^{n-1} m_{j}^{-sp})^{\frac{r}{r'}} \sum_{j=-\infty}^{n-1} m_{j}^{-sp} (\sum_{l=0}^{\infty} |\lambda_{l,j}|^{p})^{\frac{\beta}{p}}\}^{\frac{1}{\beta}} \\ &\leq c\{\sum_{n=-\infty}^{\infty} m_{n-1}^{sp} \sum_{j=-\infty}^{n-1} m_{j}^{-sp} (\sum_{l=0}^{\infty} |\lambda_{l,j}|^{p})^{\frac{\beta}{p}}\}^{\frac{1}{\beta}} \\ &\leq c\|\lambda\|_{p,\beta} < \infty. \end{split}$$

Here r' is the conjugate index of r.

If $\beta = \infty$, since s < 0 and

$$||f||_{\dot{K}_{q}^{\alpha,p}\dot{B}_{\beta}^{s}} = \sup_{n} m_{n}^{s} ||f * \varphi_{n}||_{\dot{K}_{q}^{\alpha,p}}$$

$$\leq \sup_{n} m_{n}^{s} \left(\sum_{j=-\infty}^{n-1} \sum_{l=0}^{\infty} |\lambda_{l,j}|^{p} m_{j}^{-sp} \right)^{\frac{1}{p}}$$

moreover,

$$\begin{split} \sum_{j=-\infty}^{n-1} m_j^{-sp} \sum_{l=0}^{\infty} |\lambda_{l,j}|^p &\leq \sup_{j} (\sum_{l=0}^{\infty} |\lambda_{l,j}|^p) \sum_{j=-\infty}^{n-1} m_j^{-sp} \\ &\leq c m_n^{-sp} \sup_{j} (\sum_{l=0}^{\infty} |\lambda_{l,j}|^p). \end{split}$$

Hence,

$$||f||_{\dot{K}_{q}^{\alpha,p}\dot{B}_{\beta}^{s}} \le c \sup_{n} m_{n}^{s} m_{n}^{-s} \sup_{j} (\sum_{l=0}^{\infty} |\lambda_{l,j}|^{p})^{1/p} = c ||\lambda||_{p,\beta} < \infty.$$

(ii) If $1 , similar to the proof of Theorem 6 in [4], for each <math>n \in \mathbb{Z}$, $x \in G$ and τ with $0 < \tau < 1$, we have

$$||f * \varphi_{n}||_{\dot{K}_{q}^{\alpha,p}} \leq c|| \sum_{j=-\infty}^{n-1} (\sum_{l=0}^{\infty} (|\lambda_{l,j}||a_{l,j} * \varphi_{n}(x)|^{\tau})^{p})^{1/p} m_{j}^{[-(s-\alpha)+\frac{1}{q}](1-\tau)} ||_{\dot{K}_{q}^{\alpha,p}}$$

$$\leq c \sum_{j=-\infty}^{n-1} m_{j}^{[-(s-\alpha)+\frac{1}{q}](1-\tau)} || (\sum_{l=0}^{\infty} (|\lambda_{l,j}||a_{l,j} * \varphi_{n}(x)|^{\tau})^{p})^{1/p} ||_{\dot{K}_{q}^{\alpha,p}}$$

$$\leq c \sum_{j=-\infty}^{n-1} m_{j}^{[-(s-\alpha)+\frac{1}{q}](1-\tau)} (\sum_{k=j}^{\infty} m_{k}^{-\alpha p} m_{j}^{[-(s-\alpha)+\frac{1}{q}]\tau p} m_{k}^{-\frac{p}{q}})^{\frac{1}{p}} (\sum_{l=0}^{\infty} |\lambda_{l,j}|^{p})^{\frac{1}{p}}$$

$$\leq c \sum_{j=-\infty}^{n-1} m_{j}^{-s} (\sum_{l=0}^{\infty} |\lambda_{l,j}|^{p})^{\frac{1}{p}}.$$

Consequently

$$||f||_{\dot{K}_{q}^{\alpha,p}\dot{B}_{\beta}^{s}} \leq c\left(\sum_{n=-\infty}^{\infty} m_{n}^{s\beta} \sum_{j=-\infty}^{n-1} m_{j}^{-s\beta} \left(\sum_{l=0}^{\infty} |\lambda_{l,j}|^{p}\right)^{\frac{\beta}{p}}\right)^{\frac{1}{\beta}}$$

$$\leq c\left(\sum_{j=-\infty}^{\infty} m_{j}^{-s\beta} \left(\sum_{l=0}^{\infty} |\lambda_{l,j}|^{p}\right)^{\frac{\beta}{p}}\right) \sum_{n=j+1}^{\infty} m_{n}^{s\beta}\right)^{\frac{1}{\beta}}$$

$$\leq c||\lambda||_{p,\beta}.$$

(iii) If $p = \infty$, the proof is simpler. Here we omit it.

References

- [1] A. Baernstein and E. Sawyer. Embedding and multiplier theorems for $H^p(\mathbb{R}^n)$. Mem. Am. Math. Soc., 59(318), 1985.
- [2] O. Besov. On embedding and extension theorems for some function classes. Tr. Mat. Inst. Steklova, 60:42–81, 1961.
- [3] M. Frazier and B. Jawerth. Decomposition of Besov spaces. *Indiana Univ. Math. J.*, 34:777–799, 1985.
- [4] C. Onneweer and W. Su. Homogeneous Besov spaces on locally compact Vilenkin groups. Stud. Math., 93(1):17–39, 1989.
- [5] B. H. Qui. On Besov, Hardy and Triebel spaces for 0 . Ark. Mat., 21:169–184, 1983.
- [6] M. Taibleson. Fourier analysis on local fields. Mathematical Notes. Vol. 15. Princeton, N. J.: Princeton University Press and University of Tokyo Press., 1975.
- [7] J. Xu. Equivalent norms of Herz-type Besov and Triebel-Lizorkin spaces. J. Funct. Spaces Appl., 3(1):17-31, 2005.
- [8] G. Zhou and W. Su. Elementary aspects of $B_{p,q}^s(K_n)$ and $F_{p,q}^s(K_n)$ spaces. Approximation Theory Appl., 8(2):11–28, 1992.

Received October 11, 2005.

CANQIN TANG
DEPARTMENT OF MATHEMATICS,
DALIAN MARITIME UNIVERSITY,

Dalian

E-mail address: tangcq2000@yahoo.com.cn

QINGGUO LI DEPARTMENT OF MATHEMATICS, HUNAN UNIVERSITY,

E-mail address: liqingguoli@yahoo.com.cn

BOLIN MA
DEPARTMENT OF MATHEMATICS,
HUNAN UNIVERSITY,
CHANGSA

 $E ext{-}mail\ address: blma@hnu.net.cn}$