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HERZ-TYPE BESOV SPACES ON LOCALLY COMPACT
VILENKIN GROUPS

CANQIN TANG, QINGGUO LI AND BOLIN MA

ABSTRACT. Let G be a locally compact Vilenkin group. In this paper the
characterizations of the Herz-type Besov space on G are obtained. And some
properties of this space are discussed.

1. INTRODUCTION

M. Frazier and B. Jawerth give the characterizations of Besov space on R™ in [3].
For additional results, see [4], the atomic decomposition of Besov spaces on locally
compact Vilenkin groups G is obtained by C.W. Onneweer and Su Weiyi. Xu
([7]) introduced the Herz-type Besov spaces on R™ and give an unified approach for
Herz-type Besov spaces and Triebel-Lizorkin spaces. We can also find the associate
results in [5], [2], [6]. These papers were the motivation for the present paper in
which we consider the characterizations of this Herz-type Space on locally compact
Vilenkin groups G.

Throughout this paper, G will denote a bounded locally compact Vilenkin group,
that is, G is a locally compact Abelian group containing a strictly decreasing se-
quence of compact open subgroups {G,}° _ __ such that (a) US> _ G, = G and
N2 _ Gn = 0; (b) sup{ order (G,,/Gny1) : n € Z} = B < 0. We choose Haar
measure dx on G so that |Go| = 1, where |A| denotes the measure of a measurable
subset A of G. Let |G| = (m,)~! for each n € Z. Since 2m,, < m, 1 < Bm,, for
each n € Z, it follows that

S (ma) = < clmi) ™
n==k
and
k
> (mn)® < c(my)®

for any o > 0,k € Z, where ¢ is a constant independent of k. For each n € Z
we choose elements 7, € G(I € Z;) so that the subsets Gy, == 2z, + G,, of G
satisfy Ggn NGy = 0 if k # | and U2 G, = G; moreover, we choose zp,, so that
Go,n = G,. We now define the function d: G x G — R by d(z,y) =0ifz —y =0
and d(z,y) = (m,)" ! if 2 — y € G,\Gny1, then d defines a metric on G x G and
the topology on G introduced by this metric is the same as the original topology on
G. For z € G, we set |z| = d(z,0). Then |z| = (m,)~! if and only if z € G,\G 1.
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We now briefly recall the definitions of the spaces S(G) of test functions and
S’(G) of distributions; for more details, see [6]. A function ¢ : G — C belongs
to S(G) if there exist integers k, [, depending on ¢, so that supp ¢ C Gj and ¢ is
constant on the cosets of the subgroup G; of G. And the space of all continuous
functionals on S(G) will denoted by S’'(G).

In this paper, the authors characterize the Herz-type homogeneous Besov spaces
K;”’BE(G). In fact, when o = 0, ¢ = p, Kg*’BE(G) = B;’p(G). then it turns to be
the case which was discussed in [4]. According to the definition of locally compact
Vilenkin groups and its topological structure, we can give the atomic decomposition
of this Herz-type space on R".

2. HERZ-TYPE HOMOGENEOUS AND NONHOMOGENEOUS BESOV SPACES

We first recall the definitions of the homogeneous ( non-homogeneous) Herz
spaces and Besov spaces on G.

Definition 1. Let « € R, 0 < p,q < 0.
(a) A measurable function f : G — R belongs to the homogeneous Herz space if
it satisfies

0o 1/p
iz ={ 3 w0 ixoncinloe b <

l=—0o0
a modification will be done if p = 00 or ¢ = oo ( That is, if p = o0, ||| s () =
sup; m; [ xanci o))

(b) A measurable function f : G — R belongs to the non-homogeneous Herz
space if it satisfies

—1 1/p
Hf”Kg’p(G) = {”fXGoliq(G) + Z ml_aprGl\GHl'I[),q(G)} < 00,

l=—00

a modification will be done if p = 0o or ¢ = 0.

Before giving the definition of the Herz-type Besov spaces on G, we give the
notes of a second space of test functions and distributions( [4]). Let

2(G) = {¢ € S(G) : (0) = /G B(t)dt = 0},

and define convergence in Z(G) like in S(G). Let Z'(G) be the space of linear func-
tionals on Z(G) with convergence in Z’(G) defined like in S'(G). If ¢ denotes the
set of constant distributions in S’(G) then Z’'(G) can be identified with S'(G)/p in
the sense that (i) for each f € S’(G) its restriction to Z(G) belongs to Z'(G); (ii)
if f,g € S'(G) and if g = f + ¢ for some constant ¢ € S'(G) then the restrictions
of f and ¢ to Z(G) determine the same element of Z(G); (iii) if f € Z'(G) then
there exists an f € S’(G) so that its restriction to Z(G) equals f, moreover, mod-
ule constants f is determined uniquely by f . We usually disregard the difference
between f € Z'(G) and a corresponding f € S'(G).

Set xn(z) = XGn\Gri1 (), An(z) = MpXn (), Pn(2) = An(z) — Apti(z), and *
denote convolution operator. Now we give the definition of the Herz-type homoge-
neous Besov spaces on G.

Definition 2. Let « € R, 0 < p < 00, 0 < ¢ < 0o. The Besov space B;“*p(G) is
defined as

. > 1/
By?(G) = {f € 2@l ggrer = (D (ma)f oullt) " < o),

n=—oo
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with the usual modification if ¢ = oo.

Definition 3. Let a,s € R, 0 < p,q, < co. Then

oo

K7 By(G) = 1f € Z@N lggrye = ( 3 (ma)If»ealle))? < o0},

with the usual modification if 8 = oo (That is, if 8 = oo, ”fHK;’PBs © =
Supn(mn)s“f*@n||Kg,p).
Definition 4. Let a,s € R, 0 < p,q, 8 < co. Then

K ?B3(G) = {f € Z @I icgrpyc

= 17 # Dol geon + {3 ((ma)* 1 * pull o)} 7 < 00},

n=1

with the usual modification if § = oo.

In this section, we first consider the link between the homogeneous and nonho-
mogeneous space. In [4, Theorem 3] it was shown that for the Besov space on G

we have B] ; = LN B;’ﬁ when s > 0 and 1 < p, 8 < co. For Herz-type spaces, we

have similar results.
Theorem 1. Let s >0 and 1 < §,p,q < 0o, Then
K&PB5(G) = K& B5(G) N K&P(G).

Proof. If f € Kg’pBg(G) N K&”’(G), then 2,7 m; || fxi|b < co. Since

oo
1+ Bollfar = D m IS Aoxallh,

l=—o0
and
1 * Aoxall? = ( / 1 * Ao(a)tda) &
Gi\Gi+1
<( / ( / £ — )]9dz) | Ao (1) dt)?
Go JGI\Gi41
< I Fulln( / |Ao()|de)?
0
< Il
therefore, || f * A0||§.(g,p <Y om Plfxllk = ||f|\1[’.{$,p, moreover,

1 g sy = 1% Dol g + L3 ((ma) 11 * onll o))}

n=1

Afligr +1 D (@ma)l1F % pall gor)?)}?

n=—oo
= g0 + 17 g

< 0.

Conversely, take any f € K;“’Bg, since f € S'(G) we have

F=T#80+ Y fren

n=1
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with convergence in S’(G). If 1 < 8 < oo, using the inequalities of Minkowski and
Hoélder, we have

) 9]
1Y F*enllger < Z *(mn)°||f o onll goor
n=1 n=1
9] , = L
= QO ma) ) (O (millf * enll gor)?)®
n=1 n=1

< el fllicg o5

here 3’ is the conjugate index of 3. Thus, we can conclude that f € K r
Moreover, as the proof of the first part, through the simple calculation, we have

£ * onxilly < cllfxill}, consequently,
0

IIfHKasz =c( Y m ‘SBIIfIIKa,, +Zm56||f*<pnlle)

n=-—00 n=1
<C||f||KapB‘5 <OO
This completes the proof of Theorem 1. O

In the following, A; C As always means that the topological space A is contin-
uously embedded in the topological space As.

Using the proposition 2.2.1 in [8] and the embedding properties of Herz space(see
[1]), Theorem 2 is easy to be proved. Here we omit the proof.

Theorem 2. Let —00o < s < 00, 0 < p,g < o0 and a > f%.
(1) If 0 < By < By < o0, then
K&PBj (G) C K&PBS,(G) and K2P B, (G) C K2P B3, (G).
(ii) If 0 < (1, B2 < 00, € > 0, then
K$PBSH(G) € KP B3, (G) and K§PB5H(G) € K{P B}, (G).
(#ii) If an < aa, then K(?M’B;(G) C Kglvag(G).. .
(iv) If b < ¢, then K$'B3(G) C K& °B5(G) and Kg"ng(G) C K?CBB(G)
(v) If ¢1 < qgl, theln K PB3(G) C KgPB(G) and K PB5(G) C KPB3(G)

where r = o — (- — ).

Theorem 3. Let a =
K{PB3(G) C B, 5(G).
Proof. Let D; = G;j\G,+1. Using the Hélder inequality, we have

LI = Z / o)V da

%_%,0<p§q<oo,0<ﬂ§oo,seR,then

<c _ZOO|D|—(/ la)”
¢ 3 o (, orss)
=C _z_:oom—“”< qu>§

= O
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Therefore, K? B5(G) C Bs 4(G). 0
Theorem 4. Let 0 < p < 00, 0 < g<o00,0<r<gq 0<p8 <00, s €R,
and0<r<p<oo,a>%—%,0r0<p§r<ooanda2%—%, Then

K&PB3(G) C B 4(G).

Proof. Suppose Dy = Go, D; = G;j\G,+1. By the Hélder inequality, we can obtain

11 = Z [, 1

<c _ZW'D (/ 1 (x)Wx)Z
—C -Zoomg_1</m |f(x)|qu);

1 1
IfOo<r<p<oo, a>———, then
roq

0

pyT/P
11 sc{ > ([ 1) }

J=—00 ’
0 11 -r/p
y { S Lta)rp/(p— r)}
j=—00
0 B Eyr/p
<of 3w ([ i)
j=—o00 Dj
< Cllflfxor(c)-
We can deduce that m; < mg =1 since 7 <0, then if 0 <p <7 < o0, az% %,
we have
0 (1_1) 2y T/P
r q 7P B
1l < c{ > ([ ifiea) }
j=—00 i
0 2 r/p
< 0{ > m;“”(/ |f(m>|qdw) }
j=—o0 D;
< Cllfllxor(c)-
Furthermore, Kg"? B3(G) C B, 45(G). O

3. AToMIC DECOMPOSITION OF THE HERZ-TYPE HOMOGENEOUS SPACES

The atomic decomposition of the homogeneous Besov space on G were obtained
by Onneweer and Su [4, Theorem 6]. Motivated by their work, we will give the
atomic decomposition of the Herz-type Homogeneous Besov space.

Definition 5. A function a : G — C'is an (s,00) atom, s € R, if
(i) a is supported on a set z + G, for some z € G and n € Z,
(ii) la(x )| < (mn)*,

(iii) [, a(z)dz = 0.

We have the following result.



68 CANQIN TANG, QINGGUO LI AND BOLIN MA

Theorem 5. Let 0 < p, 3 < o0, o > —é, s € R. Then the following two facts are
equivalent. )

(a) f € Kg7B3(G),

(b) there exist constants N j, l € Z+ and j € Z, and (—(s —a) + 1/q,00) atoms
a;; with suppay; C 2, + Gj—1 such that

o o0
F=>Y Nja, in S'(G)/e
j=—00 =0
Moreover,
o0 o0 é
[Allp. == (_Z (%Mulp)”)w < cllfllgerps-
j=—o0 I=

Proof. (a) = (b) For each f € S’/p we have

oo

Z f*en(z)

n=—oo

f

oo

= Y fronxpn(a)

n=—oo
oo o0

Z Z(mn)ilf * on(21,n)Pn (T — 21,0)

n=-—oo [=0

oo o0

Z Z )\l,nal,n

n=-—oo [=0

where )\l,n = (mnil)(s—a)—l/qf * Spn(zl,n) and
ajn = (mn—1)7(57a)+1/qm771§0n(x - Zl,n)~

For each a;, we have

(1) Supp aj n C Zl,n + Gn—l;

(i) a1, (2)] < (mny)~+1/5;

(i) [, ain(z)dz = 0.

Thus a;,, is an (—(s — a) + 1/¢,00) atom on G with support in 2, + G,—_1.
Moreover, for the )\;,, we have

o0 oo

s = (S0 O 1mas )Yt 5 0, (21,0)7) 7) 7

n=-—oo [=0
o] 00

ey mlCY ] mIf = enxall?)

n=-—00 k=—o00

=l lljcgr s < o0

?)p

This completes the proof of (a).
(b) = (a) Let a;,; be an (—(s—a)+1/g, 00) atom on G with support in 2 ; +G,;.
Similar to the proof in [4], we have a; ; * ¢, = 0 when j > n for each 2 € G. So we

only consider the case of j < n.
If k+1 < j, then |[(a;; * ¢n)xk|lq = 0 since suppa; ; * p, C G;. If k > j, we
—(S—Oz)—‘,—% _1

have |[(a,; * on)xkllq < em; my,

In the following, we estimate |[f|lgzrp,. 1f f = D e e 2t Migar; and

[Allp,5 < o0,
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(i) If 0 < p < 1, then for each n € Z,

n—1 oo
||f*§0nH€(;xp S Z Z |Al’j|p||alyj *@n”%;,p

j=—00 =0
Therefore, for each § with 0 < § < oo we have

B 1
Iy =1 Z Z ZI/\MI laz; * @ullar) 7 }7
n=—oo j=—o00 1=0
n—1 oo 5
JEAN
(Y m S gl S Pl = purelf) )3
n=-—oo —oo =0 k=j
<Y m Z S Dol 7))
n=—oo j=—o00 =0

since o +1/q > 0.
If 0 < 8 < p, so that 0 < 8/p < 1, then

oo
— B 1
||fHKg,p,-3§ < Z msP Z m; 8 Z"\lﬂ|p )P )o

n=-—oo j=—00

< cf[Allp,p < o0

here s < 0.
Ifp<f<oo,letr= %. Using the Holder inequality, we can obtain

o) n—1 oo 5 1
Wl < et S mPC S S Iglrmy )7 )5
n=—oo j=—o00 =0
—1 n—1 o) 5
— o — 841
= {Z i Z my )Y my P )Py
n=-—oo j=—o00 j=—o00 =0
0o n—1 e} 5 1
<ef Y omi, m; T gl?) e
n=-—oo j=—00 =0

< cl[Allp,s < oo

Here 7’/ is the conjugate index of r.
If 8 = oo, since s < 0 and

1 £llicg 5, = supmi | # ol g o
n

n—1 oo
<supm (Y > glPm; )
n

j=—o0 l=0

moreover,

n—1

Z 7SPZ|)‘IJ|p<SuP ZP\U\p Z m; °r

j=—o00 1=0 j=—00
<cm,, P sup(z |Az,;1P)-
7 =0

Hence,

Hf||KapBg <csupm m.® sup( Z|)\lj|p 1/p—c||)\||pg < 0.
I =0
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(ii) If 1 < p < o0, similar to the proof of Theorem 6 in [4], for eachn € Z, z € G

and 7 with 0 < 7 < 1, we have

n—1 o)

+11(1-7)

[—(s—a)
1 pnll o <ell D O (Mugllary = oal@))P)Pm; | o
j=—o0 [=0
O P
—(s—a)+=](1—7
<c m; ’ IO (Msllar % @n(@)7)P) Pl goor
j=—00 =0
= I H10) T N .
<c Zm_ap e (O )
j=—o00 =0
n—1
1
Se ), m Zlmlp )7
=
Consequently,
o] n—1 00 5
[l gr g < e >oomyl Yy mfﬂ(zp\l,jp v)F
n=—oo j=—o00 =0
B > 1
{3 m Zimlp )7 > mi)?
j=—00 n=j+1
< clAllp,p-
(iil) If p = oo, the proof is simpler. Here we omit it. O
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