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ON MONOTONIC BEHAVIOUR OF RELATIVE INCREMENTS OF UNIMODAL
DISTRIBUTIONS

ZOLTAN SZABO

ABSTRACT. Sufficient conditions for monotonic behaviour of relative increment and hazard rate func-

tions h of unimodal distributions of types U and J are being investigated, proved and then applied to

some distributions. In addition, a general algorithm for checking monotonic properties of h is given,
x

where we do not need the cumulative distribution function F(z) = [ f(¢t)dt. Instead, we use the
— 00

probability density function f and its first two derivatives only.

1. INTRODUCTION
We will need some concepts, definitions and results from [4]. By the relative increment function
(briefly, RIF) of a probability distribution function F' we mean the fraction
F - F
) _ Pl e) = Fla)
1—F(x)
where ¢ is a positive constant, and F'(z) < 1 for all x. The hazard rate (failure rate) is defined to be

b _f@)
c—0 ¢ 1-— F(l‘) '

Lemma 1. Let F' be a twice differentiable distribution function with
F(z) <1, F'(z) = f(z) >0
for all x. We define the auxiliary function U as follows:
(F(x) —1)- /()
[ (@) '
If U <1 (¥ >1), then the function h, the RIF of F strictly increases (strictly decreases). [4]

U(z) =

Remark 1. Tt is clear that ¥ < 1 is equivalent to
O(z) = f2(2) + (1 - F(2)) - f'(x) 2 0.
In some examples, it is more convenient to check ® instead of .

Theorem 1. Let f be a probability density function and F be the corresponding distribution function
with the following properties.

(1) I = (r,s) CR is the possible largest finite or infinite open interval in which f > 0 (i.e. I is the

open support of f; r and s may belong to the extended real line R* = RU {—o00,00});

(2) there exists an m € I at which [’ is continuous and f'(m) = 0;

(3) f'>0in (r,m), and f' <0 in (m,s);

(4) f is twice differentiable in (m, s);

(5) (f/f') = d/dx[f(x)/ ' ()] > 0 in (m,s).
Then the corresponding continuous RIF h is either strictly increasing in I, or strictly increasing in (r,y)
and strictly decreasing in (y, s) for some y € I.

Moreover, if U(s7) = lim U(x) € R* exists, then
r—Ss—
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— h strictly increases in I, if ¥(s7) < 1;
— h strictly increases in (r,y) and strictly decreases in (y, s) for somey in I, if U(s~) > 1. [4]

Theorem 2. Let f be a density function with (1), (3-4), m =r and
(6) (f/f) <0in (m,s).

Then r is finite, and
(7) if O(rt) <1 or (U(rt) =1 and ¥ < 1 in some right neighborhood of ), then ¥ < 1 in I, and
the corresponding RIF strictly increases in I;
(8) if U(rt) > 1 then
(8.1) if U(s™) > 1, then U > 1 and the RIF h strictly decreases in I;
(8.2) if U(s™) <1, then¥ > 1 in (r,y) and ¥ <1 in (y,s) for somey € I, thus the RIF strictly
decreases first and, having reached its local minimum, it strictly increases. [4]

The proof of Theorem 2 in [4] remains valid, if one replaces the relation sign < in (12), page 109 of
[4] by <. Hence, the “main idea” in page 109, line 20 can be modified as follows: in (m,s), if ¥ < 1,
then U strictly decreases, provided (f/f’) < 0.

There is an immediate connection to the theory of reliability. By the Mathematical Preliminaries of
[1] (Sec. 1., p. 549), a distribution function F' has increasing failure rate if In(1 — F(z)) is concave down
ie. if ¥(z) < 1. Similarly, F has decreasing failure rate if In(1 — F'(z)) is concave up, i.e. ¥(z) > 1.
This is the reason why we always simultaneously investigate here the hazard rates and relative increment
functions of (cumulative) distribution functions F' (like we did in [4]).

Remark 2. Since (f/f') = —(In f)”/[(Inf)’]?, the condition (5) can be formulated as follows:
(5") (In f)" < 0in (m,s).
Similarly, (6) can be written in the form
(6") (Inf)” > 0in (m,s). [4]
Remark 3. Theorem 1 is related to U-distributions, while Theorem 2 is related to J-distributions.

In this paper, we will try to extend our results in [4] to the case when (f/f’)" changes its sign in
(m, s).

In (m, s), the so-called “main ideas” of the proofs of Theorems 1 and 2 in [4] apply: once ¥ reaches a
value more (less) than 1, it will strictly increase (decrease) and will remain more (less) than 1, provided

(f/f) >0 ((f/f) <0)
2. MAIN RESULTS
U-distributions.

Theorem 3. Assume (1-4) are fulfilled.

(9) Suppose (f/f") >0 in (m,Y) and (f/f') <0 in (Y,s) for someY € (m,s).
Then both the corresponding RIF h and the hazard rate will either strictly increase; or strictly increase
first and then strictly decrease; or first strictly increase, then strictly decrease and, finally, strictly increase
i I.

The mazimum or minimum. (if exists) will be reached in (m,Y] or (Y, s), respectively.

Proof. Tt follows that ¥ is continuous in [m, s), and ¥ < 1 in (r,m + p) for some p > 0. (See the proof
of Theorem 1. in [4].) If ¥(Y) <1, then ¥ < 1 in (m,Y).

IF¥(Y)<lor (¥(Y)=1and ¥ <1 in some right-neighborhood of Y') then, according to the “main
ideas”, ¥ will strictly decrease and it will remain below 1 in (Y,s). Thus ¥(s~) < 1 provided ¥(s™)
exists. In this case, ¥ < 1 in I\ {Y'} so, according to Lemma 1 in [4], the RIF h will strictly increase in
1.

If U(Y) > 1or (¥(Y)=1and ¥ > 1 in some right-neighborhood of Y'), then 3 Yy € (m,Y") such
that ¥(Yp) =1, ¥ < 11in (m,Yp) and ¥ > 1 in (Yp,Y) because, according to the “main ideas”, once
U(x) > 1, ¥ will strictly increase at x, since (f(z)/f'(x))" > 0. (U is continuous, so ¥ will remain above
1in (Yy,Y + ) for some 0 > 0.} We have two cases:

Case 1. VU remains above 1 in (Y,s). Then either ¥(s7) > 1, or ¥(s7) = 1 but ¥ > 1 in some
left-neighborhood of s (provided 3 ¥(s™)). In this case, due to Lemma 1, the RIF h will first strictly
increase, then strictly decrease, and its maximum will be reached in (m, Y7];
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Case 2. U(Yy) = 1 for some Y7 € (Y, s); then, according to the “main ideas”, ¥ will remain below
1in (Y1,s). Then ¥(s™) < 1 (provided 3 ¥(s7)). In this case, the RIF h will have three monotonic
phases: h will first strictly increase, then strictly decrease and, finally, strictly increase. The function A
will reach its maximum in (m, Y] and minimum in (Y] s).

According to the “main ideas” of the proofs of Theorems 1 and 2 in [4], there are no cases like:

— U(Y)=1and ¥ > 1 in some left-neighborhood of Y,

—or U(Y) =1 and ¥ =1 in some right-neighborhood of Y,

—or U(s7)=1and ¥ <1 in some left-neighborhood of s. d
(

Remark 4. If U(s~) > 1, then we do not have to check the value of U(Y') because, independently from
the value of ¥(Y'), the RIF h will have two monotonic phases: it will strictly increase first, and then
strictly decrease.

Remark 5. (f/f') = 0is impossible, since it would lead to a contradiction of the form f(m) = f'(m) = 0.
J-distributions.

Theorem 4. Let [ be a density function with (1), (3-5) and m = r. Then r is finite, and
—if U(m*) > 1 or (¥(m*) =1 and ¥ > 1 in some right-neighborhood of m), then ¥ > 1 in I,
and the corresponding RIF h strictly decreases in I; in this case, U(s™) > 1, provided 3 ¥(s™);
—if ¥(mT) <1 or (¥(m')=1 and ¥ < 1 in some right-neighborhood of m), then
o if U(s™) <1, then ¥ <1 and h will strictly increase in I;
o if U(s™)>1, then ¥ >1 in (m,y) and ¥ <1 in (y,s) for somey € I;
thus, the RIF h will strictly increase first and, having reached its maximum, it will strictly decrease.

Proof. (2) and (4) imply that ¥ is continuous in I. If ¥(m™) > 1 or (¥(m*) =1 and ¥ > 1 in some
right-neighborhood of m) then, according to the “main idea” of the proof of Theorem 1 in [4], ¥ will
strictly increase in I, so ¥(s™) > 1 provided it exists. Thus, ¥ > 1 in I and, according to Lemma 1, the
RIF h will strictly decrease in I.

If U(m*t) <1lor (¥(m"™)=1and ¥ < 1 in some right-neighborhood of m), then we have two cases.

Case 1. ¥ < 1in I. Then h will strictly increase in I. Thus, ¥U(s~) < 1 provided 3 ¥(s™).

Case 2. U(xg) > 1 for some zyg € (m,s). Then, according to the “main idea”, ¥ will strictly
increase in [xg, s). So, ¥ > 1 in (2o, s), and ¥(s~) > 1 (provided 3 ¥(s~)). Hence, 3 y € I such that
U(y)=1, U< 1lin (m,y) and ¥ > 1 in (y, s). So, the RIF h will strictly increase in (m,y) and strictly
decrease in (y, s). O

Theorem 5. Assume m =r and (1), (3-4) are fulfilled.
(10) Suppose the following relations hold: (f/f') < 0 in (m,Y) and (f/f') > 0 in (Y,s) for some
Yel=(m,s).
Then both the corresponding RIF h and the hazard rate will, in I,

— either strictly increase;

— or strictly decrease;

— or strictly increase first and then strictly decrease;

— or strictly decrease first and then strictly increase;

— or first strictly decrease, then strictly increase and, finally, strictly decrease.

The maximum or minimum will, if exists, be reached in (Y, s) or in (m,Y], respectively.

Proof. Tt follows that ¥ is continuous in I. If ¥(m™) < 1 or (¥(m™) = 1 and ¥ < 1 in some right-
neighborhood of m), then ¥ will strictly decrease, since (f(z)/f'(z))’ < 0. W is continuous, so ¥ will
remain below 1 in (m,Y + ¢) for some § > 0.

If U(zg) > 1 for some z € [Y + 0, s) then, according to the “main ideas”, ¥ will strictly increase and
it will remain above 1 in (Y + 4, s). In this case, we have U(s~) > 1 (provided 3 ¥(s™)). The RIF h will
have two monotonic phases: it will first strictly increase, and then strictly decrease. Its maximum will
be reached in (Y, s).

If there is no xy with this property, then ¥ < 1in (Y +4,s), and ¥U(s~) < 1 (provided 3 ¥(s7)). In
this case, the RIF h will strictly increase in I.

If U(m*) >1or (¥(m*)=1and ¥ > 1 in some right-neighborhood of m) then, in (m,Y’), we can
follow the series of thoughts of the proof of Theorem 2. in [4]:

— if U(Y)>1, then ¥ >11in (m,Y);
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- if U(Y) <1, then 3y € (m,Y) such that ¥(y) =1, ¥ > 1 in (m,y) and ¥ will strictly decrease
in [y,Y), thus ¥ will remain below 1 in (y,Y + §) for some ¢ > 0.

In (Y,s), we have the following situation. If ¥(Y) > 1 or (¥(Y) = 1 and ¥ > 1 in some right-
neighborhood of Y') then, in (Y, s), ¥ will strictly increase and it will remain above 1. Thus, ¥ > 1 in
I\{Y} and ¥(s~) > 1 (provided 3 ¥(s7)). In this case, the RIF h will strictly decrease in I.

YY) <lor (¥(Y)=1and ¥ < 1 in some right-neighborhood of Y'), then either ¥ < 1 in (Y, s)
(and then ¥(s~) < 1 provided 3 ¥(s™)); in this case, the RIF h will first strictly decrease, then strictly
increase; h will reach its minimum in (m,Y]; or 3 z € (Y, s) such that ¥(z) = 1; in this case, ¥ < 1
in (Y,z) and ¥ > 1 in (z,s) since, according to the “main ideas”, once ¥ reaches the value 1, it will
strictly increase and will remain more than 1. Thus, ¥(s~) > 1 (provided 3 ¥(s7)); in this case, due
to Lemma 1, the RIF h will have three monotonic phases: it will first strictly decrease, then strictly
increase and, finally, strictly decrease. The function h will reach its minimum in (m,Y] and maximum
in (Y] s).

According to the “main ideas” of the proofs of Theorems 1 and 2 in [4], there are no cases like:

-~ U(Y)=1and ¥ <1 in some left-neighborhood of Y,
—or ¥(Y) =1 and ¥ =1 in some right-neighborhood of Y,
—or ¥(s7)=1and ¥ > 1 in some left-neighborhood of s. O

We can formulate a symmetrical statement as follows.

Theorem 6. Assume m =1 and (1), (3-4), (9) are fulfilled. Then both the corresponding RIF h and
the hazard rate will, in I,

— either strictly increase;

— or strictly decrease;

— or strictly increase first and then strictly decrease;

— or strictly decrease first and then strictly increase;

— or first strictly increase, then strictly decrease and, finally, strictly increase.

The maximum or minimum will, if exists, be reached in (m,Y] or in (Y,s), respectively.

Proof. Tt follows that ¥ is continuous in I. If ¥(m™) > 1 or (¥(m*) =1 and ¥ > 1 in some right-
neighborhood of m), then ¥ will strictly increase in (m,Y), since (f(z)/f’(x))" > 0. ¥ is continuous, so
it will remain above 1 in (m,Y + §) for some § > 0.

If U(xg) < 1 for some zg € [Y + 6, s) then, according to the “main ideas”, ¥ will strictly decrease and
it will remain below 1 in (Y + 6, s). In this case, we have U(s™) < 1 (provided 3 ¥(s7)). Thus, the RIF
h will have two monotonic phases: it will first strictly decrease, and then strictly increase. Its minimum
will be reached in (Y] s).

If there is no 2o with the above property, then ¥ > 1 in (Y 446, s), and ¥(s~) > 1 (provided 3 ¥(s7)).
In this case, the RIF h will strictly decrease in I.

If U(m*t) <1or (¥(m')=1and ¥ < 1 in some right-neighborhood of m) then, in (m,Y’), we have
the following possibilities.

—IfP(Y) <1, then ¥ <1in (m,Y);
— if U(Y) > 1, then 3y € (m,Y) such that ¥(y) =1, ¥ < 1in (m,y) and ¥ will strictly increase
in [y,Y); thus, because of its continuity, ¥ will remain above 1 in (y,Y + §) for some § > 0.

In (Y,s), we have the following situation. If ¥(Y) < 1 or (¥(Y) = 1 and ¥ < 1 in some right-
neighborhood of Y') then, in (Y, s), ¥ will strictly decrease and it will remain below 1. Thus, ¥ < 1 in
I\{Y} and ¥(s~) < 1 (provided 3 ¥(s™)). In this case, according to Lemma 1, the RIF h will strictly
increase in I.

IF¥(Y)>1or (¥(Y)=1and ¥ > 1 in some right-neighborhood of Y'), then
— either ¥ > 1in (Y, s) (and then ¥(s~) > 1 provided 3 ¥(s7));
in this case, h will first strictly increase, then strictly decrease; it will reach its maximum in (m, Y];
—or 3 z € (Y, s) such that ¥(z) = 1;
in this case, ¥ > 1 in (Y, z) and ¥ < 1 in (z, s) because, according to the “main ideas”, once ¥ reaches
the value of 1 in (Y, s), it will strictly decrease and will remain less than 1. Thus, ¥(s7) < 1 (provided
3 U(s7)); in this case, due to Lemma 1, the RIF h will have three monotonic phases: it will first strictly
increase, then strictly decrease and, finally, strictly increase. The function h will reach its maximum in
(m,Y] and minimum in (Y s).
According to the “main ideas”, there are no cases like:
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-~ ¥(Y)=1and ¥ > 1 in some left-neighborhood of Y,
—or ¥(Y)=1and ¥ =1 in some right-neighborhood of Y,
—or ¥(s7)=1and ¥ <1 in some left-neighborhood of s. O

Due to the Remark 2.1 in [4], there is no distribution for which all the requirements (1-4) and (10)
are fulfilled at the same time.

3. ALGORITHMIC INVESTIGATION

If U(s~) and ¥(m™) exist, then the entire investigation of monotonic behaviour of both the RIF h
and the hazard rate can briefly be summarized and described in an algorithmic way, in a flow-chart,
in which the abbreviations Bs, Bm, BY (that can be considered to be Boolean variables) denote the
following logical conditions:

Bs:=(B-(¥(s")—1)>0)
BY := (¥(Y) >1or (¥(Y)=1and ¥ > 1 in some right-neighborhood of Y'))
Bm := (¥(m") <1or (¥(m')=1and ¥ <1 in some right-neighborhood of m))

where
U(s™)= lim ¥(x)

z—s—0
and
U(mt) = lim ¥(x)

x—m~+0

Actually, B is equal to the sign of (f/f’) in a sufficiently small left-neighborhood of s.

If (f/f’) changes sign in (m,s) only once, say at Y, then the locations of maxima/minima (if exist)
obey the following rule:
the RIF h (and the corresponding hazard rate) reach the maximum (minimum) in (m,Y] (or (Y s)),
respectively, provided (f/f’)’ < 0 in some left-neighborhood of s (see Theorems 3 and 6); the RIF (and
the hazard rate) reach the maximum (minimum) in (Y, s) (or (m, Y]), respectively, provided (f/f’)" > 0
in some left-neighborhood of s (see Theorem 5).

The algorithm for investigation of both the RIF h and the hazard rate of a specific distribution can
be described by the flow-chart 1.

4. APPLICATIONS
Our results apply to some distributions as follows.

Ezample 1. Inverse Gaussian distribution (p. 382 in [3]):

_1

fla) = @2ma® /N7 -exp(=A- (x — p)?/(2p° - 7))

where A\, x> 0 and z € (0,00) =: I. We have f/f = 22%/L and (f/f') = 2x - (2)\ — 3x)/L?, where
L := X—3z—Xz?/u?. The value of (f/f’)" is positive if z < 20/3 =: Y. The value of m is strictly positive,
since f/(x) = 0 if Az2 + 3u2x — A\u? = 0, the only positive root of which is m = - ((¢2 +1)2 —¢) € I,
where ¢ := 3u/(2X). On the other hand, m < Y, and f is of type U. So, (f/f’)’ > 0in (m,Y) and
(f/f') <0in (Y, 00).

According to our flow-chart, B := —1, and the logical expression Bs is equivalent to ¥(s~) < 1. By
using Remark 1.4 in [1], one can obtain U(s™) = xllrgo(l +(f/f))~t =1, since

_ ' 22 o exp(=A- (@ —p)?)/(2p? )
foo—xhjgon/f __“2'?'11LH30A;E.\/§+3M2-\f—A;ﬂ/\/fE_

So, ¥(s~) > 1 and, according to the flow-chart, both the corresponding RIF h and the hazard rate will,
in I, first strictly increase and then strictly decrease.

Ezample 2. Lognormal distribution (p. 192, Table 5.7 in [3]):

) =C- exp(—(lnx)2/(202))

T

where 0 > 0, C = 1/(c - v27m) and x € (0,00) =: I. The equation f’ = 0 gives the modus: m =

exp(—o?) € I. Wehave (f/f) = —(x/(1+k-Inx)) = (1-0?~Inz)/(0c+(Inz)/0)? > 0ifz <em =Y.

On the other hand, m <Y, and f is of type U. So, (f/f’) > 0in (m,Y) and (f/f’) < 0in (Y,00). The
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FIGURE 1
density function f is of type U because of uniqueness of m in I. Thus, B = —1, and Bs is equivalent to

U(s~) < 1. By using Remark 1.4 in [1], one can obtain ¥(s™~) as follows:

2. exp(—(Inz)?/(20?))
o2 +Inzx

flf==C

tends to 0 as x — o0, SO
2 —1
-\ _ L 9 0°+lnz—-1 B
U(s )xp(oo)z11330<10 (02+lnw)2> _

and, according to our algorithm, both the corresponding RIF h and the hazard rate will, in I, first
strictly increase and then strictly decrease.
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Ezample 3. F(z) = (1 —a%)2, z € (-=1,0) = I. We have m = r = —1, s = 0 and f has no local
maximum in I. On the other hand, (f/f) = (zx —23) = 1—-322 < 0in (=1,Y) and (f/f") > 0
n (Y,0), where Y = —1/4/3. So, B = 1. The density function f is of type J. Bs is equivalent to
P(s™) < 1. We have

lim f2/f' = lim —2* - (1 - 2?)7 =0,
U(0™) = 1/2, so the actual value of Bs is FALSE. Since ¥(—11) = 400, Bm is FALSE. ¥(Y) is close
to 0.67, so BY is FALSE and, according to our algorithm, both the corresponding RIF h and the hazard

rate will, in I, first strictly decrease first, and then strictly increase. Our algorithm is working but, we
have to admit, checking the relation ¥(z) < 1 in this example is much easier.

Remark 6. The expression f/f’ plays a central role in the entire investigation, throughout both [4]
and the present paper. Sometimes, the actual form of f/f’ is very simple, like in the case of Pearson
distributions. This case is analyzed in [5] thoroughly.
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