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ON A TEST FOR CODES

J. FALUCSKAI

Abstract. Sets of codewords can be represented by finite automata (FAs)
and every FA can be represented by connection matrices or regular expressions.
Our goal is to find similar systems like that and to solve one of the systems’s
problems in another system. Having a set of codewords we have to decide
whether there are two or more sequences of codewords which form the same
chain of characters of codewords. We have developed an algorithm that solves
this problem by using finite automata and their deterministic finite automata.

1. Definitions for Code

Let A be a set, which we call an alphabet. A word w on the alphabet A is a finite
sequence of elements of A

w = (a1, a2, . . . , an), ai ∈ A

The set of all words on the alphabet A is denoted by A∗. A∗ is equipped with
an associative operation defined by the concatenation of two sequences

(a1, a2, . . . , an)(b1, b2, . . . , bm) = (a1, a2, . . . , an, b1, b2, . . . , bm).

The associativity allows us to write

w = a1a2 . . . an

instead of w = (a1, a2, . . . , an), by identifying each element a ∈ A with the sequence
(a). An element a ∈ A is called a letter. The empty sequence is called the empty
word and is denoted by ε. It is the neutral element for concatenation. The set of
nonempty words on A is denoted by A+.

A code C over A is a subset of A+. The words of C are called code words, the
elements of C∗ are messages. A code C is said to be uniquely decipherable (UD) if
each message has an unique factorization into codewords, i.e. the equality

x1x2 · · ·xn = y1y2 · · · ym,

x1, x2, . . . , xn, y1, y2, . . . , ym ∈ C, implies n = m and x1 = y1, . . . , xn = yn.

2. An algorithm for uniquely decipherable codes

Our algorithm is based on the automaton theory. This subject was reviewed in
[2], [4], [1], [6], but our approach is different from their aspect. We construct an
automaton for the code over A by union of automata of codewords. If codeword
w = x1x2 . . . xn then automaton A(w) of w is A(w) = (qi, Qt, Q, A, δ) where qi is
the initial state of A(w) and Qt is the set of terminal states. Q is the set of states

2000 Mathematics Subject Classification. 94B35, 94A45, 68Q45.
Key words and phrases. Uniquely decipherable codes, automata, length-variable codes.

121



122 J. FALUCSKAI

and Qt = {qi}; qi ∈ Q. card(Q) = length(w) since the rules of automaton A(w)
are the following:

δ(qi, x1) = qx1

δ(qx1 , x2) = qx1x2

...
δ(qx1x2...xn−2 , xn−1) = qx1x2...xn−2xn−1

δ(qx1x2...xn−1 , xn) = qi

thus A(w) can recognize w∗. Figure 1 shows the automaton of the codeword 0100.

Figure 1. Automaton A(0100)

If w1 is a prefix part of w2 then their automata will have common states, more
exactly Qw1 ⊂ Qw2 . This property occurs in figure 2.

Figure 2. Automaton A(010011)

Furthermore qw1
i = qw2

i (so Qw1
t = Qw2

t ) and Aw1 = Aw2 . Since w1 is prefix part
of w2, we can use notation

w1 = x1x2 . . . xn; w2 = x1x2 . . . xnxn+1 . . . xm

For rules we get

A(w1)

δ(qi, x1) = qx1

δ(qx1 , x2) = qx1x2

...
δ(qx1x2...xn−2 , xn−1) = qx1x2...xn−2xn−1

δ(qx1x2...xn−1 , xn) = qi

A(w2)

δ(qi, x1) = qx1

δ(qx1 , x2) = qx1x2

...
δ(qx1x2...xn−2 , xn−1) = qx1x2...xn−2xn−1

δ(qx1x2...xn−1 , xn) = qx1x2...xn−1xn

...
δ(qx1x2...xm−2 , xm−1) = qx1x2...xm−2xm−1

δ(qx1x2...xm−1 , xm) = qi

Consequently
(δw1 \ {δ(qx1x2...xm−1 , xm) = qi}) ⊂ δw2 ,

thus
δw1 ∪ δw2 = δw2 ∪ {δ(qx1x2...xm−1 , xm) = qi}.

Let
A(w1, w2) = (qi, Qt = {qi}, Q = Qw1 ∪Qw2 , A, δ = δw1 ∪ δw2) .
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Since
δ(qx1x2...xn−1 , xn) = qi ∈ δw1

δ(qx1x2...xn−1 , xn) = qx1x2...xn−1xn ∈ δw2 ,

thus A(w1, w2) is non deterministic because the left sides of the rules are equal.
A(w1, w2) accepts {w1, w2}∗. Considering the not uniquely decipherable strings, we
receive that some codewords of different factoring are prefix, namely if u1 . . . un =
w1 . . . wm, then for all

i < j ui = wi holds, but uj 6= wj where 1 ≤ j ≤ min{n,m}.
If we join the automata of codewords, then we get the automaton A(w1, . . . , wn)
of code C = {w1, . . . , wn}. We can use notation A(C), too. So

A(C) = (qi, Qt = {qi}, Q = Qw1 ∪ · · · ∪Qwn , A, δ = δw1 ∪ · · · ∪ δwn).

Obviously A(C) accepts C∗. An automaton is non deterministic if there is more
then one rule for the same pair of state and symbol.

Theorem 1. If the automaton A(C) is deterministic, then the code is uniquely
decipherable.

Proof. If the automaton of the code is deterministic, then the code is prefix (free).
The prefix codes are uniquely decipherable. ¤

Remark 1. There are non prefix codes which are uniquely decipherable, for example
C1 = {0100, 010011}. Hence if the automaton A(C) is non deterministic, then the
code could be uniquely decipherable. We demonstrate the graphical presentation
of A(C1) in Figure 3.

Figure 3. Automaton A(0100, 010011)

The automaton is nondeterministic by reason of

δ(q010, 0) = qi

δ(q010, 0) = q0100,

but the code is uniquely decipherable. Of course there exist non uniquely decipher-
able codes with non deterministic automaton, too.

We show a stricter condition of non uniquely decipherability than Theorem 1.
The construction is based on the well known relationship between deterministic and
non deterministic automata. For every non deterministic automaton A there exists
an equivalent deterministic automaton AD.

If a string S is decipherable on code C then A(C) accepts S, namely A(C) reads
it and stays in qi state. If S is not uniquely decipherable then we can follow different
paths during reading. We join these different paths by the equivalent deterministic
automaton. Formally

wj1︷ ︸︸ ︷
x1 . . . x|wi1 |︸ ︷︷ ︸

wi1

. . . x|wj1 | . . .
wjn︷ ︸︸ ︷

. . . . . . . . . . . . x|S|︸ ︷︷ ︸
wim
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δ(qi, x1) = qx1

δ(qx1 , x2) = qx1x2

...
δ(qx1x2...x|wi1

|−1 , x|wi1 |) = {qx1x2...x|wi1
| , qi}

δ({qx1x2...x|wi1
| , qi}, x|wi1 |+1) = {qx1x2...x|wi1

|+1 , qx|wi1
|+1}

...
δ({qx1x2...x|wj1

|−1 , qx|wi1
|+1...x|wj1

|−1}, x|wj1 |) = {qi, qx|wi1
|+1...x|wj1

|}
...

δ({qx|wjn
|+1...x|S|−1 , qx|wim

|+1...x|S|−1}, x|S|) = {qi, qi} = qi

Thus two (or more) factorizations of a string will end by using two (or more) rules
with right side qi.

Theorem 2. A code is uniquely decipherable if and only if at the most one state
is equal to qi in right side of any rule of AD(C) , namely for all

δ({qi1 , . . . , qin}, x) = {qj1 , . . . , qjm} ∈ AD(C) : 6 ∃ l, k : qjl
= qjk

= qi

Proof. The proof is indirect. If there exists

δ({qi1 , . . . , qin}, x) = {qj1 , . . . , qjm} ∈ AD(C) : ∃ l, k : qjl
= qjk

= qi

then there is a string with at least two different factorizations which is accepted by
the automaton. Consequently the code is not uniquely decipherable. ¤
Example 1. Let C = {010, 1101, 10, 11}. Thus we get A(010, 1101, 10, 11) in
Figure 4. (qi = S). Let us construct AD(010, 1101, 10, 11). The result is given in
Figure 5. We can see that

δ({B,C}, 0) = {S, S} = {S}
so the code is not uniquely decipherable.

Figure 4. Automaton A(010, 1101, 10, 11)
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Figure 5. Automaton AD(010, 1101, 10, 11)
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