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MORE ON INEQUALITIES OF SIMPSON TYPE
ZHENG LIU

ABSTRACT. Some generalizations of a recent inequality of Simpson type
are given. We also provide some sharp inequalities which improve previous
results.

1. INTRODUCTION
In a recent paper [1], by appropriately choosing the Peano kernel
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an inequality of Simpson type for an n-times continuously differentiable map-
ping is given as follows.

Theorem 1. Let f: [a,b] — R be an n-times continuously differentiable map-
ping, n > 1 and such that || f™||s := sup,ciy | /™ (x)| < 00. Then
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where [”T_l] denotes the integer part of ”T_l

In [4], using the well-known pre-Griiss inequality (see [2]), Pecari¢ and
Varosanec have obtained the following result:
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Theorem 2. Let f: [a,b] — R be a mapping such that the derivative f™
(n > 1) is integrable with v, < f™(z) < T, for allx € [a,b], where v,,T,, € R
are constants. Then we have
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valid for m =0,1,2,....

The purpose of this paper is to further consider generalizations of the in-
equality (2) and also provides an improvement of the inequality (3).

For convenience, we shall first collect some technical results related to (1)
which will be used in the proofs of our theorems.

By elementary calculus, it is not difficult to get the following results:
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In what follows, we will use the notations
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where [251] denotes the integer part of %>t

2. GENERALIZATIONS FOR DERIVATIVES THAT ARE
ABSOLUTELY CONTINUOUS

Theorem 3. Let f: [a,b] — R be a mapping such that the derivative f=
(n > 1) is absolutely continuous on [a,b]. If f™ € Ly[a,b], then we have
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where || f™)|| s := ess SUD, e(a,p) | f™) ()| is the usual Lebesgue norm on La[a, b].

The proof of inequality (10) is just like the proof of inequality (2) in [1] and
so is omitted.

Theorem 4. Let f: [a,b] — R be a mapping such that the derivative f"
(n > 1) is absolutely continuous on [a,b]. If f™ € Lila,b], then we have
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where || f™]|, == f |f™)(2)| dx is the usual Lebesque norm on Li[a,b].

Proof. By using the identity
b
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we get
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xre a,b a
Consequently, the inequality (11) follows from (13) and (8). O

Theorem 5. Let f: [a,b] — R be a mapping such that the derivative f"1
(n > 1) is absolutely continuous on [a,b]. If f™ € Lyla,b], then we have
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where || f™]]y = f | F™) (2)|2dx]z is the usual Lebesque norm on Lsla, b].
Proof. By using the identity (12), we get
b
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Consequently, the inequality (14) follows from (15) and (7). O

3. SOME SHARP INEQUALITIES AND RELATED RESULTS

Theorem 6. Let f: [a,b] — R be a mapping such that the derivative f
(n > 1) is integrable with v, < f™(x) < T, for allz € [a,b], where v,,T, € R
are constants. Then we have
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where m s any positive integer.
Proof. For n odd and n = 2, by (5) and (12) we get
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where C' € R is a constant.
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If we choose C = 5 , then we have
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and hence the inequality (16) follows from (6).
If we choose C' = 7, then we have
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and hence the inequality (17) follows from (8).
Similarly we can prove that the inequality (18) holds.
By (5) and (12) we can also get
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where C € R is a constant.
If we choose C' = 7y,,, then we have
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and hence the inequality (19) follows from (9).
Similarly we can prove that the inequality (20) holds. O

Remark 1. It is not difficult to find that the inequality (16) improves the
inequality (3). Indeed, the inequality (16) is sharp in the sense that we can
choose f to attain the equality in (16). e.g., for n = 1, we construct the
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function f(z) = [ j(y) dy, where
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and for n > 3 and odd, we construct the function
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where

Remark 2. If in the inequality (16) we choose n = 1,2,3, then we get
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which improve the results in Theorem 5 of [3] as well as Theorem 12 of [4].
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