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NOTE ON AN INEQUALITY OF F. QI AND L. DEBNATH
WEI-DONG JIANG

ABSTRACT. In this paper, a similar result of F. Qi and L. Debnath’s in-
equality is given, and a generalization of Alzer’s inequality is established.

1. INTRODUCTION

It is well-known that the following inequality

no 1/r n
n << (1/n)> 0t T) < n!

W S\ Wernzmr) e
holds for » > 0 and n € N. We call the left-hand side of this inequality Alzer’s
inequality [2], and the right-hand side Martins’s inequality [4].

Alzer’s inequality has invoked the interest of several mathematicians, we
refer the reader to [3, 4, 5, 6, 7] and the references therein.

In [6] F. Qi and L. Debnath gave a further generalization of (1.1), they
proved the following result:

Theorem 1.1. Let n and m be natural numbers. Suppose {ay,aq,---} is a
positive and increasing sequence satisfying

(1.2)

(k+ 2)a2+2 — (k+ 1)a};+1 > (ak+2>r
(k+ Dag, — kaj, © \ k11

for any given positive real number r and k € N. Then we have the inequality

= < (i)

(1.3)

an—i—m N

2000 Mathematics Subject Classification. 26D15.
Key words and phrases. Alzer’s inequality; power mean; Cauchy’s mean value theorem;

mathematical induction.
191



192 WEI-DONG JIANG

Chen and F. Qi in [3] show that Alzer’s inequality (1.1) is valid for r < 0.

Motivated by approach of [3], a natural question is does (1.3) still hold for
r < 0. In this paper, we show that (1.3) is no longer valid for » < 0. But, we
found another similar result.

2. MAIN RESULTS

Theorem 2.1. Let n and m be natural numbers. Suppose {ay,aq,--} is a
positive and decreasing sequence satisfying

(2.1) (k+2)aj,, — (k+1)aj ., S (ak+1)s
‘ (k+ 1)aj — ka3 4 —\ ag

for any given positive real number s and k € N. Then we have the inequality
1/s
Gt _ (1/n) 320 o
o S N\Wmrm) YT E)

The lower bound of (2.2) is best possible.

(2.2)

Proof. The inequality (2.2) is equivalent to

as IZ'L laf

n+m
n-rm = ai
This is also equivalent to
Ly 1
(2.4) ay = int af
: as — ZH-H 1"
n +1 i=1 af
That is,
n+1 n
(2.5) Gy~ L _anm L
(n+1)=a = n=q
Since,
(2 6) n+1 1 B n 1 . 1
‘ =1 &f =1 af af’H‘l

Inequality (2.5) reduces to

1 n
2.7 — > .
27) Z(f ~ (n+1)ay —naj

=1

Since, {aq, as,- -} is a positive and decreasing sequence, it is easy to see that
inequality (2.7) holds for n = 1.

Assume that (2.7) holds for n > 1. Using the principle of induction, it is
easy to show that (2.7) holds for n+ 1. Using equality (2.6), the induction can
be written as (2.1) for k = n. Thus, inequality (2.7) holds.
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It can easily be shown that

(2.8)

n 1/s
) (1/n) > i, ai / [ ———
lim T =
b \ (1 m) S X

Hence, the lower bound of (2.2) is best possible. The proof is complete. [

Qn

The following example shows that the sequence satisfying (2.1) is exists.
Example 2.2. Let aj, = %, (k=1,2,---), then
(k+2)aj,, — (k+1)aj,  k° (k4 2)*t — (k + 1)5t!
(k+1)a; —kal ,  (k+2) (k + 1)5+1 — fst1

Define function f, g: [k, k+1] — R, where f(z) = (z+1)*"! g(z) = 2571 s > 0.
Applying the Cauchy’s mean-value theorem, it turns out that there exists one
point £ € (k, k + 1) such that

ke (k2 —(k+ 1)k f(k+1) - f(k)
(k + 2)s (k+1)s+t — s+l (k4+2)s g(k+1)—g(k)
k()

(k+2)* g'()
kR 14EY
_%k+%5( é)

.k AN
= (k+2) k+ 1

Hence,

(k + 2)a2+1 - (k + 1)ai+2 > (ak+1)s
(k+1)aj — ka3, O\ ag

Let a;, = 1 in Theorem 2.1, then we have
Corollary 2.1.

29 n__ ((1/<<1/n> i >/

n+m n+m))d

where s > 0 and m,n € N.
Let m =1 in (2.9), then we get (1.1).
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