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NOTE ON AN INEQUALITY OF F. QI AND L. DEBNATH

WEI-DONG JIANG

Abstract. In this paper, a similar result of F. Qi and L. Debnath’s in-
equality is given, and a generalization of Alzer’s inequality is established.

1. Introduction

It is well-known that the following inequality
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holds for r > 0 and n ∈ N. We call the left-hand side of this inequality Alzer’s
inequality [2], and the right-hand side Martins’s inequality [4].

Alzer’s inequality has invoked the interest of several mathematicians, we
refer the reader to [3, 4, 5, 6, 7] and the references therein.

In [6] F. Qi and L. Debnath gave a further generalization of (1.1), they
proved the following result:

Theorem 1.1. Let n and m be natural numbers. Suppose {a1, a2, · · · } is a
positive and increasing sequence satisfying

(k + 2)ar
k+2 − (k + 1)ar

k+1

(k + 1)ar
k+1 − kar

k

≥
(

ak+2

ak+1

)r

(1.2)

for any given positive real number r and k ∈ N. Then we have the inequality
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Chen and F. Qi in [3] show that Alzer’s inequality (1.1) is valid for r < 0.
Motivated by approach of [3], a natural question is does (1.3) still hold for

r < 0. In this paper, we show that (1.3) is no longer valid for r < 0. But, we
found another similar result.

2. Main results

Theorem 2.1. Let n and m be natural numbers. Suppose {a1, a2, · · · } is a
positive and decreasing sequence satisfying
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for any given positive real number s and k ∈ N. Then we have the inequality
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The lower bound of (2.2) is best possible.

Proof. The inequality (2.2) is equivalent to
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This is also equivalent to
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That is,
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Inequality (2.5) reduces to
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Since, {a1, a2, · · · } is a positive and decreasing sequence, it is easy to see that
inequality (2.7) holds for n = 1.

Assume that (2.7) holds for n > 1. Using the principle of induction, it is
easy to show that (2.7) holds for n+1. Using equality (2.6), the induction can
be written as (2.1) for k = n. Thus, inequality (2.7) holds.
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It can easily be shown that
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Hence, the lower bound of (2.2) is best possible. The proof is complete. ¤

The following example shows that the sequence satisfying (2.1) is exists.

Example 2.2. Let ak = 1
k
, (k = 1, 2, · · · ), then
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Define function f, g : [k, k+1] → R, where f(x) = (x+1)s+1, g(x) = xs+1, s > 0.
Applying the Cauchy’s mean-value theorem, it turns out that there exists one
point ξ ∈ (k, k + 1) such that
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in Theorem 2.1, then we have

Corollary 2.1.
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where s > 0 and m,n ∈ N.

Let m = 1 in (2.9), then we get (1.1).
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