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SEVERAL VARIANTS OF VIA TITU ANDREESCU TYPE
AND POPOVICIU TYPE INEQUALITIES

XINKUAN CHAI AND YU MIAO

ABSTRACT. In this paper, we will give several generalized variants of Via
Titu Andreescu type and Popoviciu type inequalities.

1. INTRODUCTION

Let f be a convex function, i.e., for any ¢ € [0, 1] and any z,y in the domain
of f,
(1) fltz+ (1 =t)y) <tf(x) + (1 —1)f(y),
then the following two known inequalities hold,
e Via Titu Andreescu type inequality (see [2] p. 6)

(2) fz)+ flan) + flzs) + f (w)

4 T+ Xg To + T3 T3+ T
=gl () o () o (03]

where x1, 9, x3 lie in the domain of the convex function f.
e Popoviciu type inequality (see [4])

u n T+, 2 T+ x;
;f(xi)—i_n—?f( n )Zn—2zf(Tj)’

i<j

where f is a convex function on interval [ and z¢,...,z, € I.

Generalized Popoviciu type inequality
(= D[f(br) + -+ + f(ba)] < flar) + -+ + f(an) +n(n —2) f(a),

where a = (a1 + -+ 4+ a,)/n and b, = (na —a;)/(n — 1), ¢ = 1,...,n, and
a1y...,0, € 1.
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Recently, Bougoffa [1] obtained the following variant of Via Titu Andreescu
type and Popoviciu type inequalities.

Theorem B. If f is a convex function and x,...,x, or ay,...,a, lie in its
domain, then the following inequalities hold,

> fla) - (EER
n;l {f (xﬁ;m) +_“+f<xn12+:cn> +f(a:n+x1)}
and

(4) (n =D (b1) + -+ f(bu)] < nl[f(a2) +---+ flan) — fa)],
where a = (a; + -+ 4+ a,)/n and b; = (na —a;)/(n—1),i=1,...,n

The aim of the present paper is to show the more generalized inequalities in
Theorem B, which are stated and proved in Section 2.

2. MAIN RESULTS

Before showing our main results, we need recall the well-known Jensen’s
inequality

Lemma 2.1 (see [3]). Let f be a convex function on an interval I and let

wy, ..., w, be nonnegative real numbers whose sum is 1. Then for all xq, ..., x,
el,
(5) wif(xy) + -+ waf(zn) > flwgzy + -+ + wpxy,).
Theorem 2.1. For anyn and 1 < k < n —1, let f be a convex function
and x1, ..., x, lie in its domain and let {c¢; j 11<i<ni1<j<k+1 be nonnegative real
numbers wzth Zf+11 cij = 1 foralll < ¢ < n. In addition, assume that
Tpil = X1y, Tpip = Tk, then we have
n n—1 n k+1
© s ( z) Srolsy (z ) |
=1 =1 =1
where
S e+ S0t e 1<i<k
(7) a; = 2‘:11 13 l=i+1 n—k+1—1,k—1+3> =t =
21:1 Ci—i+1,0 E+1<i<n.

Proof. For any 1 <i <mnand 1 <k <n — 1, by the Jensen’s inequality (note
¢ia+ -+ g1 = 1), we have
k+1

fleirmi+ ciotivr + - + Cipr1Tivk) < Z Cipf(Zigi-1)-
=1
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Thus,

k+1 n  k+1
Zf <Zczlxz+l 1) <chzlf Liti— 1

=1 [=1

i k+1 n k+1
E i+ g Cr—ktl—1,k—1+3 E E Cimip1f(x

=1 l=i+1 i=k+1 =1

(1>

- E‘Mw

aif<xi)'

=1

Furthermore, noting the fact Y . ; a; = n and using the Jensen’s inequality
again,

Z&if(l’i) = nﬁ 1 Zaif(%‘) - %Zazf@z)]
< nil Zaif(xi)_f<%zaixi>]

Li=1 =1

which implies our result. ([

Remark 2.1. If let k =1, 41 = 1 and for any 1 <i <mn, ¢;; = ¢;2 = 1/2,
then a; = 1 and from Theorem 2.1, we obtain

E;f(m—f <%Zx> > ”‘1Zf( ZM )

which is the inequality (3).

Theorem 2.2. For any n, let f be a convexr function and xi,...,x, lie in
its domain and let {c¢;}1<i<n be monnegative real numbers with y . ¢; = 1.
In addition, assume that for any 1 < k <n—1, x,11 = T1,...,Tpir = Tk,
Cntl = C1y. ., Cnrk = Ck, then we have

n 1 n
(8) Z a; f(x;) — f (ﬁ Z a¢$i>

i=1 i=1

> (cimi + cipamipn + -+ (1= — = Cipp-1)Tigk),

where

(9) = ic; + (k - i)cn+i +1-— Zf:1 Cnyiol, 1 <1<k
v kci—l—l—Zf:lci,l Ek+1<i¢<n.
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Proof. As the similar proof as Theorem 2.1, for any 1 <1 < n,

fleixi+ civ1mipr + -+ (1 —ci — - — Cipp—1)Titn)
k
Z Civi—1f(Tii—1) + (L= ¢ — -+ = Civp—1) [ (Tisn)-
Therefore, we have
Z flewi+cipipn + -+ (1 — ¢ — - = Cipp—1)Tigr)

i=1

< Z (Z Civiorf(Tigi) + (1 —¢— oo — Cz‘+k—1)f(95i+k)>
=1

= Z (ici + (k — i)Cn+i +1-— Z CnJril) f<x1>
+ Z (kcl—irl—Zcz z) Azaif(fﬂi)-

i=k+1 =1

Furthermore, noting the fact Y , a; = n and using the Jensen’s inequality,

Z@if(l’i) s i 1 Zaif(%‘) - %Zazf@z)]
< nil Zaif(xi)_f<%zaixi>]

Li=1 =1

which implies our result. 0

Remark 2.2. Iflet k=1, x4y = 21 and > ;. ¢; =1, then a1 = ¢; + (1 — ¢,),
a; =¢;+ (1 —¢i1), 2 <i<n and from Theorem 2.2, we obtain

(10) S+ (1 = o))~ f (% > e+ (1 - )))

(ciwi + (1 = ¢i)wita),

where ¢y = ¢,.

The variant of the generalized Popovicui inequality is given in the following
theorem.

Theorem 2.3. If f is a convexr function and xq1,x5...,x, lie in its domain
and let {¢;}1<i<n be nonnegative real numbers with > ¢; = 1. In addition,
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foranyl1<i<n,leta=>" ca andb; = (a —ca;)/(1 —¢;), then

S W <nlzm ) (ZK)]

where for any 1 < 7 < n,

n

1
i=1,ij £=i=Li#1

Proof. By using the Jensen’s inequality, for any 1 <1 < n, we have

f(bi):f<1—lci(a_ciaz)_ (Z PO usﬁzcﬂ )

J=1j#i

Z Zn—f(aj)-

j=1,j#i “ei=Lj#i €

Thus by summing for ¢ from 1 to n, we have

S0y 3 sl

i=1 j=1,j#i “eI=1j7#1 €

—Z( . Z] — ) ¢;f(a)

= i=1,i#7

= Z Kjij((Lj).
j=1

<

177

Furthermore, noting the fact that Z’; Kc; = n and using Jensen’s inequality,

Xn:chjf(aj): ZKch a;) ——ZKch aJ]
gnﬁl ;chfaj ( ZKC]CL])].

which means our result.

0

Remark 2.3. For all 1 < i < n, let ¢; = 1/n, then a = (a3 + -+ + a,)/n,

b; = (na —a;)/(n — 1) and K;c; = 1, therefore we get

=110 <”[Zf‘” (12)]

which is the inequality (4).
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