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MULTIPLICATION OPERATORS ON GENERALIZED
LORENTZ-ZYGMUND SPACES

S. C. ARORA AND SATISH VERMA

Abstract. The invertible, compact and Fredholm multiplication opera-
tors on generalized Lorentz-Zygmund (GLZ) spaces Lp,q;α, 1 < p ≤ ∞,
1 ≤ q ≤ ∞, α in the Euclidean space Rm, are characterized in this paper.

1. Introduction

Let f be a complex-valued measurable function defined on a σ-finite measure
space (X,A, µ). For s ≥ 0, define µf the distribution function of f as

µf (s) = µ{x ∈ X : |f(x)| > s}.

By f ∗ we mean the non-increasing rearrangement of f given as

f∗(t) = inf{s > 0 : µf (s) ≤ t}, t ≥ 0.

For t > 0, let

f ∗∗(t) =
1

t

∫ t

0

f∗(s)ds and f∗∗(0) = f ∗(0).

Now, letm ∈ N, and α = (α1, α2, . . . , αm) ∈ Rm. Let us denote vmα , real-valued
function defined by

vmα (t) =
m∏
i=1

lαi
i (t), t ∈ (0,+∞),

where l1, l2, . . . , lm are non-negative functions defined on (0,+∞) by

l1(t) = 1 + | log t|, li(t) = 1 + log li−1(t), i ∈ 2, . . . ,m
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For 1 < p ≤ ∞, 1 ≤ q ≤ ∞, and for f measurable function on X define
‖f‖p,q;α as

‖f‖p,q;α =

{
{
∫∞
0
( t1/pvmα (t)f

∗∗(t))q dt
t
}1/q, 1 < p < ∞, 1 ≤ q < ∞,

sup
t>0

t1/pvmα (t)f
∗∗(t), 1 < p ≤ ∞, q = ∞.

The generalized Lorentz-Zygmund (GLZ) space Lp,q;α, introduced in [10],
consists of those measurable functions f on X such that ‖f‖p,q;α < ∞. Also
‖ · ‖p,q;α is a norm and Lp,q;α is a Banach space with respect to this norm. The
GLZ-spaces are a particular case of more general spaces, namely the Lorentz-
Karamata spaces [20]. The GLZ spaces include many familiar spaces, in par-
ticular those of Lebesgue, Lorentz, Lorentz-Zygmund, and some exponential
Orlicz spaces by taking special choices of p, q, α and the functions vmα , α ∈ Rm,
for more on these spaces one can refer to [5,6,8-12,19-21] and references therein.
The above norm can also be put, using the usual Lq norm over the interval
(0,+∞), in the form ∥∥f∥∥

p,q;α
=

∥∥t 1
p
− 1

q vmα (t)f
∗∗(t)

∥∥
q
.

Let F (X) be a vector space of all complex-valued functions on a non-empty
set X. Let u : X → C be a measurable function on X such that u · f ∈ F (X)
whenever f ∈ F (X). This gives rise to a linear transformation Mu : F (X) →
F (X) defined as Muf = u · f , where the product of functions is pointwise.
In case F (X) is a topological vector space and Mu is continuous, we call it a
multiplication operator induced by u.

Multiplication operators have been studied on various function spaces in [1-
4,7,13,14,16,18,22,24], and references therein. Along the line of their arguments
we study the multiplication operators on the generalized Lorentz-Zygmund
spaces Lp,q;α, 1 < p ≤ ∞, 1 ≤ q ≤ ∞. First, we prove a characterization of
the boundedness of Mu in terms of u, and show that the set of multiplication
operators on Lp,q;α, 1 < p < ∞, 1 ≤ q < ∞ is a maximal abelian subalgebra of
B(Lp,q;α), the Banach algebra of all bounded linear operators on Lp,q;α. We use
it to characterize the invertibility of Mu on Lp,q;α. The compact and Fredholm
multiplication operators are also characterized in this paper.

2. Characterizations

In this section boundedness and invertibility of the multiplication operator
Mu are characterized in terms of boundedness and invertibility of the complex-
valued measurable function u respectively.

Theorem 2.1. The linear transformation Mu : f → u · f on the GLZ space
Lp,q;α, 1 < p ≤ ∞, 1 ≤ q ≤ ∞ is bounded if and only if u is essentially
bounded. Moreover

‖Mu‖ = ‖u‖∞.
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Proof. Suppose u is essentially bounded. For f ∈ Lp,q;α, t > 0 we have

(u · f)∗(t) = inf{s > 0 : µu·f (s) ≤ t}
≤ inf{ ‖u‖∞ s > 0 : µf (s) ≤ t} = ‖u‖∞ f ∗(t).

Consequently,
(u · f)∗∗(t) ≤ ‖u‖∞f ∗∗(t).

Therefore, for 1 < p < ∞, 1 ≤ q < ∞,

(2.1)
∥∥Muf

∥∥q

p,q;α
=

∥∥t 1
p
− 1

q vmα (t)(u · f)∗∗(t)
∥∥q

q
≤ ‖u‖q∞

∥∥f∥∥q

p,q;α
.

For q = ∞, 1 < p ≤ ∞, we have

‖Muf‖p,∞;α = sup
t>0

t1/pvmα (t)(u · f)∗∗(t)

≤ ‖u‖∞ sup
t>0

t1/pvmα (t)f
∗∗(t) = ‖u‖∞‖f‖p,∞;α.

Conversely, suppose Mu is a bounded operator on Lp,q;α, 1 < p < ∞, 1 ≤ q <
∞. If u is not χEn lies in the GLZ space Lp,q;α. This follows from the following:

We have for t > 0,
χ∗
En
(t) = χ[ 0, µ(En))(t),

and so

χ∗∗
En
(t) =

1

t

∫ t

0

χ∗
En
(s)ds =

{
1, 0 ≤ t < µ(En),
1
t
µ(En), t ≥ µ(En).

Since vmα (t) is a slowly varying function [8, 12, 20], therefore using property of
the slowly varying function [12, Proposition 2.2(iv), p. 88], we have

∥∥χEn

∥∥q

p,q;α
=

∥∥t 1
p
− 1

q vmα (t)χ
∗∗
En
(t)

∥∥q

q
=

∫ ∞

0

t
q
p
−1(vmα (t))

q(χ∗∗
En
(t))qdt

=

∫ µ(En)

0

t
q
p
−1(vmα (t))

qdt + (µ(En))
q

∫ ∞

µ(En)

t−q(1− 1
p
)−1(vmα (t))

qdt

=
∥∥t 1

p
− 1

q vmα (t)
∥∥q

q,(0,µ(En))
+ (µ(En))

q
∥∥t−(1− 1

p
)− 1

q vmα (t)
∥∥q

q,(µ(En),∞)

≈ (µ(En))
q/p(vmα (µ(En)))

q + (µ(En))
q(µ(En))

−q(1−1/p)(vmα (µ(En)))
q

= 2(µ(En))
q/p(vmα (µ(En)))

q < ∞.

Now,
{x ∈ X : |u(x)χEn(x)| > s} ⊇ {x ∈ X : |χEn(x)| > s/n},

gives for t > 0

(uχEn)
∗(t) ≥ inf{s > 0 : µ{x ∈ X : |χEn(x)| > s/n} ≤ t}

= inf{ns > 0 : µ{x ∈ X : |χEn(x)| > s} ≤ t} = nχ∗
En
(t).

Thus, ∥∥MuχEn

∥∥q

p,q;α
≥ nq

∥∥χEn

∥∥q

p,q;α

This contradicts the boundedness of Mu. Hence, u is essentially bounded.
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For q = ∞, 1 < p ≤ ∞, the proof is similar.
From (2.1) we have ‖Mu‖ ≤ ‖u‖∞. Now, for any ε > 0, let E denote the set

{x ∈ X : |u(x)| ≥ ‖u‖∞ − ε}.

Proceeding as above, on replacing En by E and n by ‖u‖∞ − ε, we get

‖MuχE‖p,q;α ≥ (‖u‖∞ − ε)‖χE‖p,q;α.

Therefore ‖Mu‖ ≥ ‖u‖∞ − ε, and hence ‖Mu‖ ≥ ‖u‖∞. �

Theorem 2.2. The set of all multiplication operators on the GLZ space Lp,q;α,
1 < p < ∞, 1 ≤ q < ∞, is a maximal abelian subalgebra of B(Lp,q;α), the
Banach algebra of all bounded linear operators on Lp,q;α.

Proof. Let M = {Mu : u ∈ L∞(µ)}. Clearly, M is an abelian subalgebra of
B(Lp,q;α). Let T be any bounded operator on Lp,q;α such that TMu = MuT
for every u ∈ L∞(µ). We shall prove that T = Mv for some v ∈ L∞(µ). The
proof given below runs on the same lines as in Conway [7, Proposition 12.4, p.
57]. Consider two cases.

Case 1. µ(X) < ∞. Let e denote the unity function (e(x) = 1, x ∈ X), then
e ∈ Lp,q;α, as ∥∥e∥∥q

p,q;α
≈ (µ(X))1/p(vmα (µ(X))) < ∞.

Let v = Te. Then for each E ∈ A,

TχE = TMχE
e = MχE

Te = χEv = vχE = MvχE.

Let if possible v be not essentially bounded, then the set

Fn = {x ∈ X : |v(x)| > n}

has a positive measure for each natural number n. Thus,

‖TχFn‖p,q;α = ‖MvχFn‖p,q;α ≥ n‖χFn‖p,q;α.

This is a contradiction to the fact that T is bounded. Thus, v ∈ L∞(µ). Since
simple functions are dense [15, (2.4), p. 258] in Lp,q;α, we have T = Mv. This
proves that T ∈ M and so M is maximal.

Case 2. µ(X) = ∞. Write X =
⋃∞

n=1 An, where An ∈ A and µ(An) < ∞,
since µ being σ-finite. For n ≥ 1, let

Lp,q;α(µ|An) = {χAnf : f ∈ Lp,q;α} and L∞(µ|An) = {χAnu : u ∈ L∞(µ)}.

Now, for f ∈ Lp,q;α(µ|An), we have

Tf = TχAnf = TMχAn
f = MχAn

Tf = χAnTf ∈ Lp,q;α(µ|An).

Let TAn be the restriction of T to Lp,q;α(µ|An). It is routine to show that
TAnMuAn

= MuAn
TAn , for all uAn ∈ L∞(µ|An). Apply Case 1 to TAn , there is

a function vAn ∈ L∞(µ|An), such that

(2.2) TAn = MvAn
.
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For m 6= n and f ∈ Lp,q;α(µ|(Am ∩ An)), we have

vAmf = MvAm
f = TAmf = Tf = TAnf = vAnf.

Thus, vAm = vAn on Am ∩ An. Therefore, setting v(x) = vAn(x) when x ∈
An gives a well-defined function on X. It is seen that v is measurable since
v|An = vAn is measurable for each n ≥ 1. Also,

‖vAn‖∞ = ‖MvAn
‖ = ‖TAn‖ ≤ ‖T‖

implies
µ{x ∈ An : |vAn(x)| > ‖T‖} = 0, ∀n ≥ 1

and so

µ{x ∈ X : |v(x)| > ‖T‖} ≤
∞∑
n=1

µ{x ∈ An : |vAn(x)| > ‖T‖} = 0

gives that µ{x ∈ X : |v(x)| > ‖T‖} = 0, hence ‖v‖∞ ≤ ‖T‖ and v ∈
L∞(µ). Moreover, using (2.2), we have Tf = Mvf whenever n ≥ 1 and
f ∈ Lp,q;α(µ|An). Because X =

⋃∞
n=1 An, the linear span of the spaces

{Lp,q;α(µ|An)} is dense in Lp,q;α. Therefore T = Mv. �
Corollary 2.3. The multiplication operator Mu on Lp,q;α, 1 < p < ∞, 1 ≤
q < ∞ is invertible if and only if u is invertible in L∞(µ).

Proof. IfMu is invertible thenM−1
u commutes with all multiplication operators

on Lp,q;α and hence M−1
u = Mv for some v ∈ L∞(µ). Therefore v is the inverse

of u.
Conversely, if u is invertible, then M−1

u = Mu−1 . �

3. Compact Multiplication Operators

In this section we characterize compact multiplication operators.

Theorem 3.1. A multiplication operator Mu on GLZ space Lp,q;α, 1 < p ≤ ∞,
1 ≤ q ≤ ∞ is compact if and only if Lp,q;α(u, ε) is finite dimensional for each
ε > 0, where

(u, ε) = {x ∈ X : |u(x)| ≥ ε} and Lp,q;α(u, ε) = {fχ(u,ε) : f ∈ Lp,q;α}.

Proof. If Mu is a compact operator, then Lp,q;α(u, ε) is a closed invariant sub-
space of Mu and hence Mu|Lp,q;α(u,ε) is a compact operator. Also for f ∈ Lp,q;α,
t > 0

(ufχ(u,ε))
∗(t) ≥ ε inf

{
s > 0 : µ{x ∈ X : |f(x)χ(u,ε)(x)| > s} ≤ t

}
= ε(fχ(u,ε))

∗(t).

This gives
‖Mufχ(u,ε)‖p,q;α ≥ ε‖fχ(u,ε)‖p,q;α.

Thus, Mu|Lp,q;α(u,ε) has closed range in Lp,q;α(u, ε) and hence invertible. Being
compact, Lp,q;α(u, ε) is finite dimensional.
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Conversely, suppose that Lp,q;α(u, ε) is finite dimensional for each ε > 0. In
particular for each natural number n, Lp,q;α(u, 1/n) is finite dimensional. For
each n, define

un(x) =

{
u(x), x ∈ (u, 1/n),

0, otherwise.

Then un ∈ L∞(µ) as u ∈ L∞(µ). Moreover, for any f ∈ Lp,q;α, t > 0(
(un − u) · f

)∗

(t) = inf

{
s > 0 : µ(un−u)·f (s) ≤ t

}
≤ inf

{
s > 0 : µ{x ∈ X : |f(x)| > ns} ≤ t

}
=

1

n
f∗(t).

Consequently

‖(Mun −Mu)f‖p,q;α ≤ 1

n
‖f‖p,q;α.

This implies that Mun converges to Mu uniformly. As Lp,q;α(u, 1/n) is finite
dimensional so Mun is a finite rank operator. Therefore Mun is a compact
operator and hence Mu is a compact operator. �
Corollary 3.2. If µ is a non-atomic measure, then the only compact multipli-
cation operator on the GLZ space Lp,q;α is the zero operator.

Corollary 3.3. If for each ε > 0, the set (u, ε) contains only finitely many
atoms, then Mu is a compact multiplication operator on the GLZ space Lp,q;α.

4. Fredholm Multiplication Operators

In this section we first establish a condition for a multiplication operator
to have a closed range and then we make use of it to characterize Fredholm
multiplication operators on Lp,q;α, 1 < p < ∞, 1 < q < ∞, where µ is a
non-atomic measure. Here the operator Mu is Fredholm if its range R(Mu) is
closed, dimN(Mu) < ∞ and codimR(Mu) < ∞.

Theorem 4.1. A multiplication operator Mu on the GLZ space Lp,q;α, 1 <
p ≤ ∞, 1 ≤ q ≤ ∞ has closed range if and only if there exists a δ > 0 such
that |u(x)| ≥ δ a.e. on S = {x ∈ X : u(x) 6= 0}, the support of u.

Proof. If |u(x)| ≥ δ a.e. on S, then

‖MufχS‖p,q;α ≥ δ‖fχS‖,
for all f ∈ Lp,q;α. Hence Mu has closed range.

Conversely if Mu has closed range, then there exists an ε > 0 such that

‖Muf‖p,q;α ≥ ε‖f‖p,q;α,
for all f ∈ Lp,q;α(S), where

Lp,q;α(S) = {fχS : f ∈ Lp,q;α}.
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Let

E = {x ∈ S : |u(x)| < ε/2}.
If µ(E) > 0, then we can find a measurable set F ⊆ E such that χF ∈ Lp,q;α(S).
Then we have{

ε

2
s > 0 : µχF

(s) ≤ t

}
⊆

{
s > 0 : µu·χF

(s) ≤ t

}
so that

(u · χF )
∗(t) ≤ ε

2
χ∗
F (t).

Hence,

‖MuχF‖p,q;α ≤ ε

2
‖χF‖p,q;α.

This is a contradiction. Therefore, µ(E) = 0. This completes the proof. �
Theorem 4.2. Suppose that µ is a non-atomic measure. Let Mu be a mul-
tiplication operator on the GLZ space Lp,q;α, 1 < p < ∞, 1 < q < ∞, where
u ∈ L∞(µ). Then the following conditions are equivalent :

(1) Mu is an invertible operator.
(2) Mu is a Fredholm operator.
(3) R(Mu) is closed and codimR(Mu) < ∞.
(4) |u(x)| ≥ δ a.e. on X for some δ > 0.

Proof. We here show that (3) implies (4), because other implications are obvi-
ous. Suppose that R(Mu) is closed and codimR(Mu) < ∞. Then there exists
a δ > 0 (Theorem 4.1) such that |u| ≥ δ a.e. on S, the support of u. Hence, it
is enough to show that µ(Sc) = 0, where Sc = {x ∈ X : u(x) = 0}. First, we
claim that Mu is onto. If possible Mu be not onto and let f0 ∈ Lp,q;α \R(Mu).
Since, R(Mu) is closed, we can find a function g0 ∈ Lp′,q′;−α, the conjugate
space, where 1/p+ 1/p′ = 1/q + 1/q′ = 1 such that∫

f0g0dµ = 1, and

∫
(Muf)g0dµ = 0, for all f ∈ Lp,q;α.

From the first equality,
∫
Re(f0g0)dµ = 1. Hence, the set

Eε = {x ∈ X : Re(f0g0)(x) ≥ ε}
must have positive measure for some ε > 0. Since µ is non-atomic, we can
choose a sequence {En} of subsets of Eεwith 0 < µ(En) < ∞ and Em ∩ En =
∅(m 6= n). Let gn = χEng0. Then gn ∈ Lp′,q′;−α, and is nonzero because

Re

∫
f0gndµ = Re

∫
En

f0g0dµ ≥ εµ(En) > 0.

Furthermore, for each f ∈ Lp,q;α, χEnf is in Lp,q;α, and so

(M∗
ugn)(f) = gn(Muf) =

∫
(Muf)gndµ =

∫
(MufχEn)g0dµ = 0,
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where M∗
u is the conjugate operator of Mu. This implies gn ∈ N(M∗

u). Thus,
the sequence {gn} forms a linearly independent subset of N(M∗

u). This contra-
dicts the fact that dimN(M∗

u) = codimR(Mu) < ∞. Hence Mu is onto. Now,
it is easily seen that µ(Sc) = 0. In fact, if µ(Sc) > 0, then there exists a subset
A of Sc with 0 < µ(A) < ∞. Then χA ∈ Lp,q;α \ R(Mu), which contradicts
the fact that Mu is onto. Therefore µ(Sc) = 0, and so we have |u| ≥ δ a.e. on
X. �
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