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MULTIPLICATION OPERATORS ON GENERALIZED
LORENTZ-ZYGMUND SPACES

S. C. ARORA AND SATISH VERMA

ABSTRACT. The invertible, compact and Fredholm multiplication opera-
tors on generalized Lorentz-Zygmund (GLZ) spaces Ly g.a,1 < p < 00,
1 < g < o0, a in the Euclidean space R™, are characterized in this paper.

1. INTRODUCTION

Let f be a complex-valued measurable function defined on a o-finite measure
space (X, A, p). For s > 0, define uy the distribution function of f as

pp(s) = p{w € X [f(x)] > s}.
By f* we mean the non-increasing rearrangement of f given as
f7(t) =inf{s > 0: ps(s) <t}, t>0.
For t > 0, let

P = [ Flds ad 0= o)

Now, let m € N, and o = (ay, g, . . ., cv,) € R™. Let us denote ™", real-valued
function defined by

VI (t) = ﬁlfi(t), t € (0, +00),

where ly,ls, ..., 1, are non-negative functions defined on (0, +00) by

Li(t)=1+]logt|, l;(t) =141logli_1(t), 1€2,....m
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For 1 < p < o0, 1 < ¢q < o0, and for f measurable function on X define
[ llp.gsa as

L8P f=(8)* §39, 1<p<oo,1<g< oo,
”f”pqa = Suptl/pya (t)f**(t>, 1< p <00, =00
t>0

The generalized Lorentz-Zygmund (GLZ) space L, 4.4, introduced in [10],
consists of those measurable functions f on X such that || f||,4.a < co. Also
|- llp.g:a is @ norm and L, ., is a Banach space with respect to this norm. The
GLZ-spaces are a particular case of more general spaces, namely the Lorentz-
Karamata spaces [20]. The GLZ spaces include many familiar spaces, in par-
ticular those of Lebesgue, Lorentz, Lorentz-Zygmund, and some exponential
Orlicz spaces by taking special ch01ces of p, ¢, @ and the functions v', a € R™,
for more on these spaces one can refer to [5,6,8-12,19-21] and references therein.
The above norm can also be put, using the usual L, norm over the interval
(0, 4+00), in the form

1_
1F1], g0 = [[E77 70 @1,

Let F(X) be a vector space of all complex-valued functions on a non-empty
set X. Let u: X — C be a measurable function on X such that u- f € F(X)
whenever f € F(X). This gives rise to a linear transformation M, : F(X) —
F(X) defined as M,f = wu - f, where the product of functions is pointwise.
In case F'(X) is a topological vector space and M, is continuous, we call it a
multiplication operator induced by wu.

Multiplication operators have been studied on various function spaces in [1-
4,7,13,14,16,18,22,24], and references therein. Along the line of their arguments
we study the multiplication operators on the generalized Lorentz-Zygmund
spaces Lpga, 1 < p < 00,1 < g < oo. First, we prove a characterization of
the boundedness of M, in terms of u, and show that the set of multiplication
operators on Ly 4., 1 < p < 00,1 < ¢ < oo is a maximal abelian subalgebra of
B(L, 4.0), the Banach algebra of all bounded linear operators on Ly, ;... We use
it to characterize the invertibility of M, on L, ;... The compact and Fredholm
multiplication operators are also characterized in this paper.

p,g;x

2. CHARACTERIZATIONS

In this section boundedness and invertibility of the multiplication operator
M, are characterized in terms of boundedness and invertibility of the complex-
valued measurable function u respectively.

Theorem 2.1. The linear transformation M, : f — w- f on the GLZ space
Lpga, 1 < p < 00,1 < q < oo is bounded if and only if u is essentially
bounded. Moreover

M| = [lulco-



MULTIPLICATION OPERATORS ON GLZ SPACES 281

Proof. Suppose u is essentially bounded. For f € L, .o, t > 0 we have
(- ) (t) = int{s > 0 : pus(s) < 1}
< nf{ [Julls s> 02 pg(s) <t} = JJulles f7(2).
Consequently,
(u- f)7 () < lulloof ().
Therefore, for 1 < p < 00, 1 < ¢ < 00,
1_1 q
21 Muf]f] . = el @Ol < Il 111
For ¢ = o0, 1<p§oo,wehave
Mol = SUDE 0 (E) - )7 (1)
>

< ullo sup 742 ()1 (1) = [l f
>

Conversely, suppose M, is a bounded operator on L, .., 1 <p <00, 1 <¢g<
oo. If wis not xg, lies in the GLZ space L, 4.,. This follows from the following:
We have for t > 0,

g0

Xz, (1) = X[ 0, u(Ea)(t),

1 1, 0<t < uEy).
X**nt:—/X*nSdS: -
() tJo 5.() {%N(En)> t > p(Ey).

Since v'(t) is a slowly varying function [8, 12, 20], therefore using property of
the slowly varying function [12, Proposition 2.2(iv), p. 88], we have

and so

Il = 15700 O = [ 6 020 0z )

M(En) q o0 1

= [y - @E) [ e )
0 w(En)
11 _(1_1y_1 m(

:Htp Vo (t)Hq(Ou (En)) /‘(En))q”t 0700y ”q 11(En),00)

~ (1(Bn) P (0 (1(B))T + (1(Bn)) (1(En)) VP (0 (1(En)) )

= 2(p(En)) P (0 (1(En)))! < o0
Now,

{z € X :|u(x)xg,(x)| >s} D{x e X :|xg,(z)| > s/n},
gives for ¢t > 0

(uxg,) () >inf{s > 0: u{r € X : |xg,(z)| > s/n} <t}
=inf{ns > 0: p{z € X : |xg,(x)| > s} <t} =nxg (1)
Thus,
[Moxe, [} o = 7l x|,

p,g;x p,g;x
This contradicts the boundedness of M,,. Hence, u is essentially bounded.
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For ¢ = 00, 1 < p < o0, the proof is similar.
From (2.1) we have || M,|| < ||u||o. Now, for any € > 0, let E' denote the set

{z € X u(@)] = |lullo — €}
Proceeding as above, on replacing E,, by E and n by ||u/|« — €, we get

[MuxEllpga = (lullo = €)lIXElpga-
Therefore | M,|| > ||u|lcc — €, and hence [|M,|| > ||u/|co- O

Theorem 2.2. The set of all multiplication operators on the GLZ space Ly 4.q,
1 <p<oo,1<q< oo, isamazimal abelian subalgebra of B(Ly4.a), the
Banach algebra of all bounded linear operators on Ly q.q.

Proof. Let M = {M, : v € L>®(u)}. Clearly, M is an abelian subalgebra of
B(Ly40)- Let T be any bounded operator on L, ., such that TM, = M,T
for every u € L*°(u). We shall prove that T'= M, for some v € L*(u). The
proof given below runs on the same lines as in Conway [7, Proposition 12.4, p.
57]. Consider two cases.

Case 1. (X)) < 0o. Let e denote the unity function (e(z) = 1,z € X), then
e € Lpga, as

lel|? m (u(X)YP (u(X))) < 0.

p,g;x

Let v = Te. Then for each E € A,
T'xg =TM,,e= M, Te=xgv=uvXxp = M,XE.
Let if possible v be not essentially bounded, then the set
F,={x € X :|v(z)| > n}
has a positive measure for each natural number n. Thus,

||TXFan,q;oz = ||MUXFan,q;a > nHXFn“p,q;a'

This is a contradiction to the fact that 7" is bounded. Thus, v € L*(u). Since
simple functions are dense [15, (2.4), p. 258] in L, .o, we have T' = M,. This
proves that T" € M and so M is maximal.

Case 2. p(X) = oo. Write X = (J77 | A, where A,, € A and pu(4,) < oo,
since p being o-finite. For n > 1, let

Lp,q;oz(MAn) ={xa.f:f€ an;a} and L>=(u|An) = {xa,u:u € L=(n)}.
Now, for f € L, s.a(pt|Ay), we have

Tf= TXAnf = TMXAnf = MXAan = XAan € Lp,q;a(:ulAn)'

Let T4, be the restriction of T' to Ly 4.a(pt|A,). It is routine to show that
Ty, My, = My, Ta,, for all uy, € L*(u|A,). Apply Case 1 to Ty, , there is
a function v, € L>(u|A,), such that

(2.2) Ty, =M

n VAp*
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Form # n and f € L, g.o(u|(An N Ay)), we have

Thus, va,, = va, on A, N A,. Therefore, setting v(x) = va, (x) when z €
A, gives a well-defined function on X. It is seen that v is measurable since
v|A, = va, is measurable for each n > 1. Also,

[va,lloo = | Mu,, [| = I Ta, | < [T
implies
plz € A, g, (x)| > ||T)|} =0, Vn>1
and so

pfr € X :fo(@)] > 1T} <D nfr € Ay Jua, (@) > [ T]} = 0

gives that u{z € X : |v(z)| > ||T||} = 0, hence ||v]|oc < ||T]| and v €
L>®(u). Moreover, using (2.2), we have Tf = M,f whenever n > 1 and
[ € Lpga(plA,). Because X = |J)2 | A,, the linear span of the spaces
{Lp4a(pt|Ay)} is dense in Ly, ;.. Therefore T = M,,. O

Corollary 2.3. The multiplication operator M, on Lygq, 1 <p < oo, 1 <
q < oo is invertible if and only if u is invertible in L>(u).

Proof. If M, is invertible then M, ! commutes with all multiplication operators
on L, ;o and hence M ' = M, for some v € L*°(u1). Therefore v is the inverse
of u.

Conversely, if u is invertible, then M1 = M,-1. O

3. COMPACT MULTIPLICATION OPERATORS
In this section we characterize compact multiplication operators.

Theorem 3.1. A multiplication operator M, on GLZ space Ly 4., 1 < p < 00,
1 < ¢q < oo is compact if and only if LP%*(u,€) is finite dimensional for each
e > 0, where

(w.0) = {r € X : [u(a)| = ¢} and LP5(u,€) = {fXu : f € Lnga}.

Proof. If M, is a compact operator, then LP%*(u,¢) is a closed invariant sub-
space of M, and hence M,|rr.a:a(u,) is a compact operator. Also for f € Ly g.q,
t>0

(1 X ()" (£) = eint { >0 p{e € X (@)X ()] > s} < t}

= (X)) (?)-
This gives

||Mqu(u,6) |p,q;oz > 6||fX(u,e)||1D,q;04'
Thus, My|rr.ae(,e has closed range in LP%*(u, €) and hence invertible. Being
compact, LP%*(u, €) is finite dimensional.
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Conversely, suppose that LP%“(u,€) is finite dimensional for each € > 0. In
particular for each natural number n, L»%*(u,1/n) is finite dimensional. For
each n, define

Up(z) = .
(z) 0, otherwise.

{u(x), z € (u,1/n),
Then u,, € L>(u) as u € L>®(u). Moreover, for any f € Ly 40, t >0
((un —u) - f) (t) = inf {s >0 fh(uy—u)-£(5) < t}

1
ginf{s >0:p{re X :|f(x)] > ns} gt} = —f*(t).
n
Consequently
1
||(Mun - Mu)f”p,q;a < E ||f||p,q;oc'

This implies that M, converges to M, uniformly. As LP%*(u,1/n) is finite
dimensional so M, is a finite rank operator. Therefore M, is a compact
operator and hence M, is a compact operator. [

Corollary 3.2. If i1 s a non-atomic measure, then the only compact multipli-
cation operator on the GLZ space Ly 4. 5 the zero operator.

Corollary 3.3. If for each € > 0, the set (u,€) contains only finitely many
atoms, then M, is a compact multiplication operator on the GLZ space Ly 4. .

4. FREDHOLM MULTIPLICATION OPERATORS

In this section we first establish a condition for a multiplication operator
to have a closed range and then we make use of it to characterize Fredholm
multiplication operators on L, 4., 1 < p < 0o, 1 < ¢ < oo, where p is a
non-atomic measure. Here the operator M, is Fredholm if its range R(M,,) is
closed, dim N(M,,) < oo and codim R(M,,) < oo.

Theorem 4.1. A multiplication operator M, on the GLZ space Ly q, 1 <
p < oo, 1< q< oo has closed range if and only if there exists a 6 > 0 such
that |u(z)| > § a.e. on S ={x € X :u(x) # 0}, the support of u.

Proof. If |u(x)| > 0 a.e. on S, then

HMquSHp,q;a > 6| fxsll,

for all f € L, ... Hence M, has closed range.
Conversely if M, has closed range, then there exists an € > 0 such that

[ Mef llpgia = €llfllpgsar
for all f € LP9(S), where

LPEY(S) = {fxs : f € Lpga}-
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Let
E={xeS:|ux)| <e/2}.
If u(E) > 0, then we can find a measurable set F' C E such that yp € LP%(S).

Then we have
€
{5 §>0: piy,.(s) < t} - {s >0 fyp(s) < t}

(w-xp)*(t) <

so that
Xr(t)-

N |

Hence,
€
”MuXFHp,q;a < ) ||XF||p,q;a'
This is a contradiction. Therefore, u(E) = 0. This completes the proof. O

Theorem 4.2. Suppose that p is a non-atomic measure. Let M, be a mul-
tiplication operator on the GLZ space Ly 4q, 1 < p < 00, 1 < g < oo, where
u € Loo(pt). Then the following conditions are equivalent :

(1) M, is an invertible operator.

(2) M, is a Fredholm operator.

(3) R(M,) is closed and codim R(M,) < oc.
(4)

lu(z)| > 6§ a.e. on X for some § > 0.

Proof. We here show that (3) implies (4), because other implications are obvi-
ous. Suppose that R(M,) is closed and codim R(M,,) < oco. Then there exists
a d > 0 (Theorem 4.1) such that |u| > § a.e. on S, the support of u. Hence, it
is enough to show that u(S¢) = 0, where 5S¢ = {x € X : u(x) = 0}. First, we
claim that M, is onto. If possible M, be not onto and let fy € L, 4.0 \ R(M,,).
Since, R(M,) is closed, we can find a function gy € Ly ,.—a, the conjugate
space, where 1/p+1/p' =1/q+ 1/¢ = 1 such that

/fogody = 1,and/(Muf)god,u =0, forall f€L,ga.
From the first equality, | Re(fogo)du = 1. Hence, the set
E.={x € X : Re(fogo)(x) > €}

must have positive measure for some € > 0. Since p is non-atomic, we can
choose a sequence {F,} of subsets of F.with 0 < u(E,) < oo and E,, N E,, =
O(m #n). Let g, = xg,90- Then g, € Ly 4.—a, and is nonzero because

Re [ fogndn = Re [ fogods = en(E,) > 0.

En

Furthermore, for each f € L, 4.0, XE,f isin Ly 4.4, and so

(Mygn)(f) = gn(Myf) = /(Muf)gndu = /(MquEn)godu =0,
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where M is the conjugate operator of M,. This implies g, € N(M;). Thus,
the sequence {g, } forms a linearly independent subset of N(M;). This contra-
dicts the fact that dim N (M) = codim R(M,) < co. Hence M, is onto. Now,
it is easily seen that p(5¢) = 0. In fact, if 4(S¢) > 0, then there exists a subset
A of S¢ with 0 < pu(A) < oo. Then x4 € Ly 40 \ R(M,), which contradicts
the fact that M, is onto. Therefore p(S¢) = 0, and so we have |u| > § a.e. on
X. U
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