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ON N(k)-MIXED-SUPER QUASI-EINSTEIN MANIFOLDS
SATISFYING SOME CONDITIONS

SANTU DEY AND ARINDAM BHATTACHARYYA

ABSTRACT. In this paper N (k)-mixed super quasi Einstein manifold N (k)—
MS(QE),, has been introduced and the existence of such manifold is proved.
Here, we have studied the nature of Ricci curvature, Ricci symmetric, Ricci
recurrent, Generalized Ricci recurrent N (k) — M S(QE),. Next we study
when the curvature conditions C'(U, X).S = 0 and P(U, X).S = 0 hold in
N (k) — MS(QE),, where C and P are the concircular curvature tensor and
Weyl projective curvature tensor. We also study the Ricci-pseudosymmetric
N(k) — MS(QE),,. Finally, we give an example of N(k) — MS(QE),.

1. INTRODUCTION

The notion of quasi-Einstein manifold was introduced by M. C. Chaki and
R. K. Maity [3]. A non-flat Riemannian manifold (M", g), (n > 3) is a quasi-
Finstein manifold if its Ricci tensor S satisfies the condition

(1.1) S(X,Y) = ag(X,Y) + bA(X)A(Y)

and is not identically zero, where a, b are scalars, b # 0 and A is a non-zero
1-form such that

(1.2) 9(X,U) = A(X), VX € x(M),

where x(M) is the set of all differentiable vector fields on M and U being a
unit vector field.

Here a and b are called the associated scalars, A is called the associated
1-form and U is called the generator of the manifold. Such an n-dimensional

manifold will be denoted by (QFE),.
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In [4], Authors have defined generalized quasi-Einstein manifold. A non-
flat Riemannian manifold is called generalized quasi-Einstein manifold if its
Ricci-tensor is non-zero and satisfies the condition

(1.3) S(X,Y)=ag(X,Y)+ bAX)AY) + c¢B(X)B(Y),

where a, b and ¢ are non-zero scalars and A, B are two 1-forms such that
(1.4) g(X,U) = A(X) and g(X,V) = B(X),

U and V being unit vectors which are orthogonal, i.e.,

(1.5) g(U, V) =0.

The vector fields U and V' are called the generators of the manifold. This type
of manifold will be denoted by G(QE),.

In [2], Chaki introduced the super quasi-Einstein manifold, denoted by
S(QFE),, where the Ricci tensor is not identically zero and satisfies the condi-
tion

S(X,Y)=ag(X,Y) +bAX)A(Y) + c[A(X)B(Y)
(1.6) + AY)B(X)] +dD(X,Y),

where a, b, ¢ and d are scalars such that b, ¢, d are nonzero, A, B are two
nonzero 1-forms defined as (1.4) and U,V are mutually orthogonal unit vec-
tor fields, D is a symmetric (0,2) tensor with zero trace which satisfies the
condition

(1.7) D(X,U) =0V X € x(M).

Here a,b, c,d are called the associated scalars, A, B are called the associated
main and auziliary 1-forms respectively, U, V are called the main and the
auziliary generators and D is called the associated tensor of the manifold.

The k-nullity distribution N (k) [11] of a Riemannian manifold M is defined
by

N(k):p— Ny(k) ={Z € T,M/R(X,Y)Z = k(g(Y, Z)X — g(X, Z)Y)}

for all X,Y € x(M) and k is a smooth function.

M. M. Tripathi and Jeong-Sik Kim [12] introduced the notion of N (k)-quasi
Finstein manifold which is defined as follows: If the generator U belongs to the
k-nullity distribution N (k), then a quasi Einstein manifold (M™, g) is called
N(k)-quasi Einstein manifold. In [9], Nagaraja introduced the notion of N(k)-
mixed quasi Finstein manifold.

In [1], A. Bhattacharyya, M. Tarafdar and D. Debnath introduced the notion
of MS(QE),. So, we define N(k) — MS(QE), as follows:

Definition. Let (M",g) be a non flat Riemannian manifold. If the Ricci
tensor S of (M™,g) is non zero and satisfies

S(X,Y) = ag(X,Y) + bAX)A(Y) + ¢B(X)B(Y) + d[A(X)B(Y)
(1.8) + A(Y)B(X)] 4+ eD(X,Y),
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where a, b, c,d, e are scalars of which b # 0, ¢c# 0, d #0, e # 0 and A, B are

two non zero 1-forms such that

(1.9) g(X,U)=A(X) and g(X,V)=B(X)V X € x(M),

D is a symmetric (0, 2) tensor with zero trace which satisfies the condition
(1.10) DX, U)=0V X € x(M),

U and V being the orthogonal unit vector fields called generators of the man-
ifold belong to N(k), then we say that (M",g) is a N(k)-mized super quasi
Finstein manifold and is denoted by N (k) — MS(QE),.

2. PRELIMINARIES
In N(k) — MS(QFE)n, we have
(2.1) R(X, YU = k{A(Y)X — A(X)Y)}.

From (1.8), we have

(2.2) S(WU,U)=a+b
(2.3) S(V,V)=a+c+eD(V,V)
(2.4) S(UV)=d=S(V,U).

Now setting X =Y = ¢; in (1.8), where {¢;}, i = 1,2, ....,n be an orthonormal
basis of vector fields in the manifold and taking summation over ¢, 1 <17 < n,
we obtain

(2.5) r=na+b+ec,

where r is the scalar curvature of the manifold.

If X is a unit vector field, then S(X, X) is the Ricci-curvature in the direction
of X. Hence from (2.2) and (2.3) we can state that a+b and a+c+eD(V, V)
are the Ricci curvature in the directions of U and V' respectively.

Let @ be the Ricci operator, i.e.,

(2.6) 9(QX,Y) = S(X,Y) V X,V € x(M).
Here, we consider

(2.7) g(IX,Y) = D(X,Y).
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3. EXISTENCE THEOREM OF A N (k)-MIXED SUPER QUASI EINSTEIN
MANIFOLD N (k) — MS(QE),

Theorem 3.1. If in a conformally flat Riemannian manifold (M",g), the
Ricci tensor S satisfies the relation

S(X,W)S(Y,Z) = S(Y,W)S(X,Z) = m[S(Y,W)g(Z,X)+ S(Z,X)
g, W)l + Bulg(X, W)g(Y, Z) — g(Y, W)g(Z, X))
+ VI[Q(Y’ Z)D(X7 W) - g(Xv Z)D<Y7 W)
where 1, f1,71 are non-zero scalars and D is a symmetric (0,2) tensor with

zero trace which satisfies the condition D(X,U) = 0, VX then the manifold is
N (k)-mized super quasi-FEinstein manifold.

Proof. Existence theorem of a mixed super quasi Einstein manifold was proved
in [1]. Now, we will prove the Existence Theorem of a N (k)-mixed super quasi
Einstein manifold.

If (M™, g) is conformally flat, then

R(X,Y)Z = ——{g(Y. 2)QX — (X, 2)QY + S(V, )X ~ S(X, Z)Y)
(=1 (n-2)

(3.2) {9V, 2)X — g(X, Z2)Y }.

Taking Z = U in (3.2), we obtain

1
n—1

R(X,Y)U = {AY)QX — A(X)QY + S(Y,U)X — S(X,U)Y}

(3.3) DAY - AV

Now taking 1 = 81 =7, and Z = U in (3.1), we obtain

S(X,W)[(a+ b)A(Y) + dB(Y)] — S(Y,W)[(a + b)A(X) + dB(X)]
— S(Y.W)A(X) + [(a + B)ACX) + dB(X)|g(Y. W)
+ g(X, W)A(Y) — g(Y,W)A(X) + D(X, W)A(Y)
(3.4) — D(Y, W)A(X).

Now taking a +b = 1 and d = 1 and using S(X,W) = ¢g(QX,W) and
D(X, W) =g(IX,W)in (3.4), we get

g(QX)A(Y) + (QX)B(Y) — (QY)A(X) — (QY)B(X) — (QY)A(X)
— AX)Y — B(X)Y — A(Y)X + A(X)Y
(3.5) — A(V)IX + AX)IY, W) = 0.
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VW, which implies
(QX)AY) + (QX)B(Y) — (QY)A(X) — (QY)B(X) — (QY)A(X)
—AX)Y - BX)YY —AY)X + AX)Y

(3.6) — AY)IX + A(X)IlY =0.
Or,
(QX)A(Y) — (QV)A(X) + [A(Y) + B(Y)X — [A(X) + B(X)]Y
(3.7) =AY)X — A(X)Y,
where

[A(Y) + B(Y)]X — [A(X) + B(X)]Y = [-A(Y)IX + B(Y)QX]

(3.8) —[AX){QY +Y —IY} + B(X)(QY +Y)].
Substituting (3.7) in (3.3), we get

(3.9) R(X,Y)U = k[A(Y)X — A(X)Y],

where, k = %

Therefore, U € N, (k) for k = "—22=ct.

Hence (M™, g) is a N(k)-mixed super quasi Einstein manifold. O

As it is well known that a 3-dimensional Riemannian manifold is conformally
flat.

2—3a2—b—c)

Corollary. A 3-dimensional manifold is N( mixed super quasi Ein-

stein manifold provided (3.1) holds.

4. Ricct CURVATURE, EIGEN VECTORS AND ASSOCIATED SCALARS OF A
N(k) = MS(QE)y,

From (1.8), we have S(U,U) = a+b,S(V,V) = a+c+eD(V, V), S(U,V) =d,
S(X, X) is the Ricci curvature in the direction of X. Now,

(4.1) 1=g(X,X)=g(aU + pV,aU + pV) = o* + °.
Since g(U,V) =0 and g(U,U) = g(V,V) = 1.
Now,

(4.2)S(X, X) = a+ b{AX)}* + ¢{B(X)}?> + 2dA(X)B(X) + eD(X, X).
Thus, we can state the following theorem:

Theorem 4.1. In a N(k) — MS(QFE), manifold, the Ricci curvature in the
direction of U is a+b and in the direction of V is a+c+eD(V, V) and the Ricci
curvature in all other directions of the section of U and V is a + b{A(X)}* +
{B(X)}? + 2dA(X)B(X) + eD(X, X).
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Let (M",g) be N(k) — MS(QE),, then we get
SU,U)=a+b, S(V,V)=a+c+eD(V,V), S(U,V)=d
gQU,U)=a+0b, g(QV.V)=a+c+eD(V,V).
Since U,V € N,(k), we have
(4.3)  g(RX,Y)U,W) = k{g(Y,U)g(X, W) — g(X,U)g(Y,W)}.
From (1.9),
(4.4) g(R(X,Y)U,W) = E{A(Y)g(X, W) — A(X)g(Y, W)}.

Putting X = W = ¢; in (4.4) where {e;}, i = 1,2,...,n be an orthonormal
basis of the tangent space at any point of the manifold and taking summation
over 7, 1 <1 <n, we obtain

(4.5) SY,U) =k(n—1)AY),

and

(4.6) S(Y,V) = k(n — 1)B(Y).

Again from (1.8), we get

(4.7) S(Y,U) = (a+b)A(Y) + dB(Y).

(4.8) SY,V)=(a+c¢)B(Y)+dA(Y)+eD(Y,V).

Substracting (4.6) from (4.5), we obtain

(4.9) SY,U)—-S(Y,V)=k(n—1[AY) - B(Y)].

Substracting (4.8) from (4.7), we obtain
SY,U)=SY,V)=(a+bAY)+dB(Y)— (a+¢c)B(Y)

(4.10) — dA(Y) —eD(Y,V).
Equating (4.9) and (4.10), we get

kn—1[AY)—-BY)|=(a+b—-d)AY )+ B(Y)(d—a—c)
(4.11) — eD(Y, V).
Putting Y = U in (4.11), we obtain

a+b—d
4.12 = —
( ) k n—1
And also putting Y =V in (4.11), we obtain
a+c+m—d
4.1 k= ——
(1.13) rmod

where, eD(V,V)=m(say). Equating (4.12) and (4.13), we get b = ¢ + m. So,
k= o=t Now,

(4.14) S(Y,U) = (a+b— d)g(Y,U),
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and
(4.15) SY,V)=(a+b—d)g(Y,V).
Therefore we can say that

Theorem 4.2. In a N(k) — MS(QFE), manifold, the orthogonal vector fields
U and V are the eigen vectors corresponding to the eigen value (a + b — d).
5. Riccr SEMI-SYMMETRIC N (k) — MS(QE),

A N(k) — MS(QFE), is said to be Ricci semi symmetric manifold [7] if it
satisfy R(X,Y).S =0, VX,Y where R(X,Y’) denotes the curvature operator.
Then we have,

(5.1) S(R(X,Y)Z,W)+ S(Z,R(X,Y)W)=0.
Putting X = U in (5.1),

Y,
(5.2) — AW)S(Z,Y)] = 0.
Putting W = U in (5.2), we get
Klg(Y, 2)S(U,U) — A(Z)S(Y,U) + g(Y,U)S(Z,U)
(5.3) — AU)S(Z,Y)] = 0.
That is,
k[(a+b)g(Y,Z)— A(Z){ag(Y,U) +bA(Y)A(U) 4+ cB(Y)(U)
+d(AY)B(U)+ A(U)B(Y)) +eD(Y,U)} + A(Y){ag(Z,U)
+ bA(Z)A(U) 4+ cB(Z)(U) + d(A(Z)B(U) + A(U)B(Z))
(54) +eD(Z,U)}—S(Y,Z)] =0.
From the above equation, we obtain
(5.5) k[(a+b)g(Y,Z)+ d{A(Y)B(Z) — A(Z)B(Y)} — S(Y, Z)] = 0.

If £ # 0, then (M™, g) becomes M (QFE),. Therefore, we must have k = 0.
Conversely suppose k = 0. Then we obtain R(U, X)Y = 0 which implies
R(U, X).S = 0. Thus we have,

Theorem 5.1. A N(k) — MS(QE),, manifold satisfies R(U, X).S =0 if and
only ifa+b—d=0.
6. Ricct RECURRENT N (k) — MS(QE),
A N(k) — MS(QFE), manifold is called Ricci recurrent if it satisfies
(6.1) (VxS)(Y, Z) = T(X)S(Y, Z),
where T'(X) is a non-zero 1-form. But,
6.2)  (VxS)(Y,Z) = XS(Y,Z) — S(VxY, Z) — —S(Y,Vx2).
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That is,

(6.3) T(X)S(Y, Z) = XS(Y, Z) — S(VxY., Z) — S(Y,Vx2).
Putting Y = Z = U in (6.3), we get

(6.4) (a+b0)T(X)=X(a+b)—S(VxUU)—-SU,VxU),
(6.5) (a+0)T(X)=X(a+b) —2[0bA(VxU)+dB(VxU)],
(6.6) (a+b)T(X)=X(a+0b) —2[dB(VxU)]|.

So,

(a+b)T(X)=X(a+b) < B(VxU)=0.
But, B(VxU) = 0 implies either VxU_LV or U is a parallel vector field.
Similarly, if we put Y = Z =V in (6.3), we obtain
(a+b+eDV.V)T(X)=X(a+b+eD(V,V)) = S(VxV,V)
(6.7) - S(V,VxV),
or,
(a+b+eDV,V)T(X)=X(a+b+eD(V,V)) —2[cB(VxV)
(6.8) + A(VxV)+eD(VxV, V).
So, (a+b+m)T(X)=X(a+b+m)—2eD(VxV,V)iff A(VxV)=0.
But, A(VxV) = 0 implies either VxV LU or V is a parallel vector field, where,
eD(V,V) = 1.
Thus, we can say that

Theorem 6.1. A N(k) — MS(QE), manifold is Ricci recurrent, then either
the vector field U (or V') is parallel or VxU LV (or VxV_LU).

7. GENERALIZED RICCI RECURRENT N (k) — MS(QE),

A N(k) — MS(QF), manifold is called generalized Ricci recurrent [5] if its
Ricci tensor S of type (0,2) satisfies the condition

(7.1) (Vx9)(Y, Z) = (X)S(Y, Z) + B(X)g(Y, Z),

where a(X) and (X)) are two nowhere vanishing 1-forms such that o(X) =
g9(X,p) and B(X) = g(X,u); p and pu being associated vector fields of the
1-forms « and f3, respectively.

Definition. A Riemannian manifold is said to admit cyclic parallel Ricci ten-
sor if

(7.2) (VxS)(Y, 2) + (Vy5)(Z, X) + (V25)(X,Y) = 0.

Now, we prove the following:
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Theorem 7.1. On a generalized Ricci recurrent N (k) — MS(QFE),, with cyclic
parallel Ricci tensor, the Ricci tensor is of the form
a(U)S(X,Y) = =B(U)g(X,Y) = (a + ) [a(X)A(Y) + a(Y)A(X)]
— dla(X)B(Y) + a(Y)B(X)]
(7.3) — [AX)BY) + A(Y)B(X)].
Proof. Suppose that M is a generalized Ricci recurrent N(k) — MS(QE),
admitting cyclic parallel Ricci tensor. Then using (7.1) in (7.2), we get
a(X)S(Y, Z) + B(X)g(Y, Z) + a(Y)S(Z, X)
+68(Y)g9(Z, X)+ a(Z2)S(X,Y)
(7.4) +8(Z)g(X,Y) =0.

Setting Z = U in (7.4), Using (1.9) and (4.7), we get the relation (7.3).
Contracting (7.3) over X and Y , we get

a(U)r = —np(U) — 2(a+ b)a(U) — 28(U)
(7.5) — 2da(V).

This leads to the following:

Corollary. On a generalized Ricci recurrent N(k)-mized super quasi Einstein
manifold with cyclic parallel Ricci tensor, the scalar curvature is of the form

(7.5).

We now consider a generalized Ricci recurrent N(k)—MS(QFE), whose Ricci
tensor is of Codazzi type. Then we have ([8], [10])

(7.6) (VS)(Y. 2) = (V28)(X,Y).

Using (7.1) in (7.6), we obtain

(71.7)  a(X)S(Y,Z)+ B(X)g(Y,Z) = af

Setting Z = U in (7.7), using (1.9) and (4.7), we get the relation
a(U)S(X,Y) = B(U)g(X,Y) — da(X)B(Y)

(7.8) + [(X)(a +b) + BX)]AY).

This leads to the following:

Theorem 7.2. On a generalized Ricci recurrent N(k)—MS(QE),, whose Ricci
tensor is of Codazzi type, the Ricci tensor is of the form (7.8).

2)S(X,Y)+5(Z)g(X,Y).

Also from (7.8), we can state the following:

Corollary. On a generalized Ricci recurrent N(k) — MS(QE), whose Ricci
tensor 1s of Codazzi type, the scalar curvature is given by

(7.9) a(U)r = —(n — 1)B(U) — da(V) + a(U)(a + b).
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8. N(k) — MS(QE), SATISFYING THE CONDITION C(U,X).S =0

The concircular curvature tensor C of type (1, 3) of n-dimentional Riemann-
ian manifold (M™,g), (n > 3) is defined by [13]

81) CX, V)W =R(X,Y)W — e L )[ g(Y, W)X — g(X,W)Y]

for any vector fields X,Y,Z € x(M). Let us consider a N(k) — MS(QE),
(n > 3) satistying the condition (C'(U, X).S)(Y,Z) = 0.
Putting Z = U, we have

(82) S(C(U, X)Y,U) + S(Y,C(U, X)U) = 0.
Now using the definition of k-nullity distribution in (8.1), we obtain

(8.3) C(U,X)Y = [k — m][g(x, Y)U — A(Y)X]
and
(8.4) U, X)U = [k — ﬁ][A(X)U ~ X].
Now,

S(CU, X)Y,U) = [k — m][g()(, Y)(a+b) — (a+b)AX)A(Y)
(8.5) — dB(X)A(Y)]
and

S(Y,C(U, X)U) = [k — m][(a +D)AX)A(Y) + dA(X)B(Y)

(8.6) ~ S(X,Y)].
From (8.2), we get
[k —

r

I V(@ b) + d{AOB(Y) - B)AY))
(8.7) — S(X,Y)] =0.

So, either scalar curvature r = kn(n — 1) or (M™, g) becomes M(QEFE),. But
(M™, g) is not M(QE),. So, we can state the following:

Theorem 8.1. The N(k)—MS(QE), satisfying the condition C(U, X).S =

i.e., concircularly Ricci symmetric iff its scalar curvature is n(a + b — d).

9. N(k) — MS(QE), SATISFYING THE CONDITION P(U, X).S =0

The Weyl projective curvature tensor P of type (1,3) of n-dimentional Rie-
mannian manifold (M", g),(n > 3) is defined by [13]

01)  P(X,Y)Z = R(X,Y)Z — — S(YV. 2)X — S(X, Z)Y]

n —
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for any vector fields X,Y,Z € x(M). Let us consider a MS(QE), (n > 3)

satisfying the condition (P(U, X).S)(Y,Z) = 0.
Putting Z = U, we have

(9.2) S(P(U,X)Y,U) + S(Y, P(U,X)U) = 0.
Now using the definition of k-nullity distribution in (9.1), we obtain

S(PU,X)Y,U)=k[g(X,Y)(a+b) —AY){(a+bA(X) 4+ dB(X)}]

(9.3) L[S Y) a4 b) — SOV U)S(X,U)
and

S(Y, P(U, X)U) = k[A(X){(a + b)A(Y) + dB(Y)} — S(X,Y)]
(9.4) - ﬁ[S(X, U)S(Y,U) — (a+ b)S(X, Y)].
From (9.2),

klg(X,Y)(a+b) + d{A(X)B(Y) — B(X)A(Y)}
(9.5) ~ S(X,Y)] = 0.
So, k = 0, otherwise (M™, g) becomes M (QFE),,. Thus we have

Theorem 9.1. The N(k)—MS(QE), satisfying the condition P(U, X).S = 0,
i.e., Weyl projectively Ricci symmetric iff k = 0.
10. RICCI-PSEUDOSYMMETRIC N (k) — MS(QE),

An n-dimensional Riemannian manifold (M™, g) is called Ricci-pseudosymmetric
[6] if the tensors R.S and (Q(g,S) are linearly dependent, where

(10.1) (R(X,Y).8)(Z, W) = —S(R(X,Y)Z, W) — S(Z, R(X,Y)W),

(10.2) Qg,S)(Z,W; X,Y) = =S((X AY)Z,W) = S(Z,(X AY)W)
and
(XAY)Z =g(Y,2)X —g(X,2)Y
for vector fields X Y, Z, W on M", R denotes the curvature tensor of M™. The
condition of Ricci-pseudosymmetry is equivalent to the relation

holding on the set
(10.4) Us={xeM:S# %g at x},

where Lg is some function on Ug. If R.S = 0 then M" is called Ricci-
semisymmetric. Every Ricci-semisymmetric manifold is Ricci-pseudosymmetric
but the converse is not true [6].
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Assume that M"™ is Ricci-pseudosymmetric. Then by the use of (10.1) to
(10.4), we can obtain

S(R(X,Y)Z,W) + S(Z, R(X,Y)W) = Ls{g(Y, Z)S(X, W)
— 9(X, Z)S(Y, W) + g(Y,W)S(X, Z)
(10.5) —9(X,W)S(Y, Z)}.

Since M™ is also N (k)—MS(QE),, using the properties of the curvature tensor
R we get

DIA(R(X, Y)Z)AW) + A(Z)AR(X, Y)W)] + [ B(R(X,Y) Z) B(W)
+B(Z)B(R(X,Y)W)] + d[A(R(X,Y)Z)B(W) + AW)B(R(X,Y)Z)
+A(Z)B(R(X, )W)+ ARX,Y)W)B(Z)] + e[D(R(X,Y)Z, W)
+D(Z, R(X, Y)W)] = Ls{b[g(Y, Z)A(X)AW) — (X, Z)A(Y) A(W)
+9(Y, W)A(X)A(Z) — g(X, W)A(Y)A(Z)] + clg(Y. Z)B(X)B(W)

( ( clg

(X, Z)B(Y)B(W) +g(Y,W)B(X)B(2) — g(X,W)B(Y)B(Z)]

[ ) = 9(X, 2)A(Y)B(W)

B(Z) + g(Y,W)A(Z) B(X)
( Y 7W)

S
1?

(10.6)-g(X, Z)D(Y, W) + g(Y,W)D(X, Z) — g(X, W)Z(D(Y, Z)}.
Putting Y = Z = U in (10.6), we get
Eb[A(X)AW) — g(X, W)] + ke[B(X)B(W)] + 2kd[A(W)B(X)]
+ ke[D(X, W)] = Ls{b[A(X)A(W) — g(X, W)]
(10.7) 4 e[B(X)B(W)] + 2d[A(W)B(X)] + eD(X, W)}.
Putting X = W = ¢; in (10.7) where {e;}, i = 1,2,....,n be an orthonormal

basis of the tangent space at any point of the manifold and taking summation

over 7, 1 <1 < n, we obtain
a+b—d

10.8 Ls=k=—"—.

(10.8) 5 e

Thus we can state the following:
Theorem 10.1. The Ricci-pseudosymmetric N (k) — MS(QE), is Ricci semi
symmetric manifold iff a +b —d = 0.

11. EXAMPLE OF A 4-DIMENSIONAL N (k) — MS(QE),

Here we construct a nontrivial concrete example of a N(k)—MS(QE),,. Let
us consider a Riemannian metric g on the 4-dimensional real number space M*
by

(11.1) ds? = gi;da’da’ = (€7")(dz')? + ('2®)2(da?)? + (da®)? + (dz*)?,
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where i,7 = 1,2,3,4 and 2!, 22, 23, 2* are the standard coordinates of M*.

Then the only non vanishing components of the Christoffel symbols, the cur-
vature tensors and the Ricci tensor are

2

(11.2) [12,1] = % 21,2] = 2'(2%)2, [23,2] = (2')%
v’ e
(11.3)  Ryges = Rsop1 = 2'2°, Ry = I Ro113 = R3110 = 5.3
e 1 1 1
(11.4) Ry = NETSE. Ry =7, Rig=—5 Ru=-573

and the components which can be obtained from these by symmetric proper-
ties. So, M* is a Riemannian manifold of non-vanishing scalar curvature. We
shall now show that this manifold is an N (k) — M S(QE)4. Let us now define

R SR N S Ve B 1
a= 8(9513:3)2’ - (x1x3)2’ ¢= 4(:101953)2’ - (x1)3(x3)4’ €= (x1x3)2

and the 1-forms are

(l‘le)Q e
Ai(iU):{ < ifi=1

0, otherwise
and
ver, ifi=1
By(z) = 22 if =3
0, otherwise
and the associated tensor as
-'52 . . .
D) =4 =T =1
0, otherwise

then we have

(l) Ry = agi + bA1A| + ¢cB1 By + 2dAB; + eDqq,
(il) Rog = agag + bAgAs + cByBy + 2d Ay By + €Dag,
(lll) R13 = agis —f- bAlAg + CBlBg —f- d(AlBg + AgBl) —I— 6D137
(IV) R23 = agss + bAQAg + CBQBS + d(Ang + A3B2) + €D23.
Since all the cases other than (i) — (iv) are trivial, we can say
Rij = agi; + bAzA] + CBZ'BJ‘ + d(A,LBJ + AJBZ) + GDU, fOT ’l,] = 1, 2, 3, 4.
So, we can say that the manifold under consideration is an N (k)—MS(QE)q,
1.8 z2
where k = 22 @PH8Ye” g i (M*, g) is a Riemannian manifold endowed

24(1.1)3(333)4
with the metric given by

ds® = g;jda'da’ = (65”2)(d31:1)2 + (2'2*)? (de?)? + (d2®)? + (da*)?,
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where i, j = 1,2, 3,4 and x!, 22, 2%, 2* are the standard coordinates of M*, then
it is an N (k) — M S(QE), with nonzero and nonconstant scalar curvature.

1]

[10]
[11]
[12]
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