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GMRES(M) ALGORITHM WITH CHANGING THE RESTART
CYCLE ADAPTIVELY

MITSURU HABU AND TAKASHI NODERA *

Abstract. A restarted GMRES(m) algorithm is often an effective means for solving nonsym-
metric linear systems of equations. However, this algorithm sometimes experiences stagnation or
slow convergence, if too small restart cycle m is chosen. Unfortunately, it can be very difficult to
know how to choose m a priori. In this paper, we present new adaptive strategy which the restart
cycle m can be both increases and decreased by using the tolerance of estimated number of iterations
to achieve convergence. Numerical comparisons of the new algorithm and the standard one are given
on the parallel computer Origin 2000. These results show that this new algorithm has a reasonable
convergence rather than the other algorithms.
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1. Introduction. We consider the linear systems of equations
1) Az =b, z2,beR

where A is a large, sparse, and nonsymmetric coefficient matrix. Due to the size of the
matrix A, direct solvers become prohibitively high costly, because of the amount of
work and storage required. As an alternative we consider the algorithms which we call
Krylov subspace iterative methods. For this algorithm, given an initial approximation
Zo, and let rg = b — Axo be the related initial residual vector. Introduce the Krylov
subspaces

(2) Km(4, ro) = span{ro,Aro,A2r0, .. ,Am_lro}, m=12,...,

related with the matrix A and residual vector rg.

GMRES (generalized minimal residual) procedure is one of the Krylov subspace
methods. Usually, we use the restarted GMRES(m) algorithm by Saad and Schultz [2],
which is described in next section. This algorithm is the most popular Krylov subspace
iterative algorithm for the solution of linear systems with a nonsymmetric matrix. The
analysis and implementation of the restarted GMRES(m) algorithm, and the same as
modifications, continue to receive considerable attention of researchers.

In this paper, we describe new adaptive procedure for determining restart cycle
during the iterations with the GMRES(m) algorithm. The standard implementation
of the GMRES(m) algorithm [2], described in section 2, is based on the Arnordi
process. In section 3, we proposed adaptive procedure for determining restart cycle
during the GMRES(m) process. In section 4, we present a wide range of numerical ex-
periments using test matrices from the boundary value problem of partial differential
equations.

2. GMRES(m) Algorithm. In this section, we briefly discuss some aspects
related to the GMRES algorithm. The GMRES process, proposed by Saad and
Schultz [2], starts from an initial approximation zo and initial residual vector ro =
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choose z,
To := b— A.’L'();
B = Iroll; w1 :=r0/B;
start
for i :=1 to m do
begin
0 := Avy;
for j:=1toido
begin
hjﬂ' = 1AJT'Uj;
V=10 — hj,ﬂ}j;
end
hiv1,i = ||9]l;

Vig1 := 0/ hiy1,i; B
compute y; = min, ||Be; — Hyl[;
if ||b — Az;|| < tol then
stop iteration
endif
end
To i= Tm; To:=0b— Axg;
B = llroll; w1 :=r0o/B;

goto start

Fic. 1. GMRES(m) algorithm

b — Az and characterizes the kth approximate solution as xy = xg + 2k, where zg
solves

3) min ||b— Azo + 2|2 = min [|ro — Az|l2,

where Ky, is the kth Krylov subspace determined by the coefficient matrix A and initial
residual vector rg. There are number of ways of implementing GMRES algorithm,
but in each one generates a basis of K; and then replaces (3) by an unconstrained
k-dimensional least squares problem. The most popular way is that the modified
Gram-Schmidt process is used in the construction of an orthoginal basis for Krylov
subspace. If exact arithmetic is used, then the GMRES algorithm will converge in at
most n iterations. However, since the work of GMRES algorithm is high cost both
in computation and in its memory requirements, we often use a restarted version,
which we call GMRES(m) algorithm, in which the Krylov subspace is restricted to
be fixed dimension m and the Arnordi process is restarted using the latest iterate .,
as a new initial approximation zg (= x,,) for the restart. The standard GMRES(m)
algorithm [2] is shown in Figure 1. Unfortunately, it can be very difficult to know how
to choose m a priori and if too small value is chosen, the convergence of GMRES(m)
algorithm may stagnate.

3. Adaptive Restarted GMRES Algorithm. Basically, the strategy of adap-
tive GMRES is proposed by Joubert [7]. However, this strategy is still more expensive
and more complicated. Recently, Sosonkina et al. [10] has proposed the new adap-
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tive strategy which is based on different criteria than that proposed Joubert [7]. The
new adaptive algorithm which is given in Figure 2 utilizes a stagnation test for in-
sufficient residual norm reduction over a restart cycle of m iterations. This adaptive
GMRES(m) algorithm is called A-GMRES(m, itmaz), where itmaz is the estimated
maximum number of iterations. Sosonkina et al. [10] proposed the formula which
computes the estimated number of iterations to achieve convergence. The following
formula looks like a little bit different notation from the original one [10], but it is
equivalent to original formula which is given in [10].

log [tol/|Ir™*¥|l]

4) iter =m X RITE
log[[[r¢W]| /(1.0 + 10u)[|rO<|l]

where tol is the tolerance of convergence (usually we set up to convergence criterion),
and u is the machine epsilon. Moreover, [[r®WV|| is the residual in this step, and
||r€W]| is the residual norm when it restarted before one. The basic idea of the adap-
tive GMRES(m, itmaz) algorithm is to use the formula (4). It may be advantageous
not to fix m at the start of the process, but choose m for each restart depending
on the information from the formula (4). Slow improvement of the convergence of
GMRES(m), which shows that an increase in the restart cycle m may be valuable,
is noticed with a similar check. This near stagnation check used a different, smaller
multiple (smwv) of the remaining allowed number of iterations. If the near stagnation
occurs, the restart cycle m is increased by some value mdelta and then the same
restart cycle continues. Such incrementing is used whenever needed if the restart cy-
cle m is less than some maximum value mmaz. When the maximum value mmax is
achieved, the adaptive GMRES(m, itmaz) proceeds as GMRES(mmaz, itmaz). The
value of the parameters smv and mdelta are established experimentally and are able
to remain unchanged for most problems. In our numerical experiments, we will set
smv = 1 using practical evaluation, and also give the incrementing value, mdelta = 2.

If for larger m a significant reduction of residual norm can be obtained locally, it is
also worth switching to larger m. However, the disadvantage of adaptive GMRES(m,
itmaz) algorithm sometimes much more work to attain convergence, because the A-
GMRES(m, itmaz) algorithm has only the increasing strategy of parameter m. In
such a case, we must have a lot of computation time and storage requirements for
larger m. The basic idea of our proposed the strategy considered in this paper is
that the restart cycle m can be both increased and decreased. In Fig. 3, we give the
description of our proposed algorithm which is based on the adaptive GMRES(m,
itmaz) algorithm with using the modified Gram-Schmidt process. The new adap-
tive implementation of GMRES(m, itmaz) algorithm is called A-GMRES(m, Imaz,
itmax). While performing A-GMRES(m, itmaz) process, this is the method that the
restart cycle m is set back to initial value whenever the number of restart is reached
to Imax. First of all, we now select the value of lmaz, which is the maximum number
of restart. Whenever the number of restart is reached to Imaz, the restart cycle m is
set back to the initial value, and then continue to the A-GMRES(m, itmaz) process
using the estimated number of iterations (4).

4. Preconditioning. We are very interested in preconditioning to the original
system to accelerate the convergence of algorithm. To solve the linear system of
equations (1), we can generally apply an iterative procedure like GMRES(m), on the
preconditioned system of equations

(5) AMy =b, z= My,



GMRES(m) 257

choose zg,
ro := b — Axo;
Bi=llroll; w1 :=r0/B;
k1:=1; k2:=m; itno:=0;
start
itno := itno + 1;
for 7 := k; to ks do
begin
0 1= Avg;
for j:=1to i do
begin
hji = ﬁTUj;
=9 — hj;vy;
end
hit1,s = 19]};
Vi1 = 9/hiy1,i; _
compute y; = miny ||Be; — H;y||;
if ||b — Axz;|| < tol then
stop iteration
endif
end

1og [tot/ |11V ||

log[I+1€W | /(1.0+10w))|01d | ]’
if ko < mmax — mdelta and
iter > smv X (itmax — itno) then
k1 := ko +1;
ko := ko + minus;
goto start
endif
To = Tm; To:=b— Axo;
B :=|lroll; v1:=ro/B;
k1:=1;
goto start

iter 1= ka X

choose zo,
ro := b — Axp;
B :=lIroll; v1:=70/B;
k1:=1; ko:=m; itno=0;
[:=0;
start
itno := itno + 1;
for ¢ := k1 to k2 do
begin
1= Awvg;
for j:=1toido
begin
hj ;= ﬁTUj;
0 := 9 — hj;v;;
end
hit1,i = |19]l;
Vi1 = 0/hit1,4; ~
compute y; — min, ||Ber — Hiyll;
if ||b — Ax;|| < tol then
stop iteration
endif
end

log [ tot /|| 1V |||

1og [ Ir€W |/ (1.0-+ 10w 01 ]
if ko < mmazx — mdelta and
iter > smwv X (itmaz — itno) then
k1 :=ka +1;
ko := k2 + minus;
goto start
endif
To = Tm; 7o :=b— Axo;
B = llroll; w1 :=r0/B;
ki:=1; l:=1+1;
if [ = Imax then
ko :=m; [:=0;
goto start

iter := ko X

Fi1g. 2. A-GMRES(m, itmax) method

Fi16. 3. A-GMRES(m, lmax, itmax) method.

where M should be a right preconditioner for the coefficient matrix A. An efficient
algorithm to derive such a matrix M consists of computing sparse approximate inverse
M =~ A1, which proposed by Huckle [12]. A natural way to achieve parallelism is
to compute an approximate inverse M of A, such that AM =~ I in some sense. The
computation of Mz is then easy to parallelize and will not expensive if M is large
and sparse. For example, if the problem comes from the boundary value problem of
discretization of partial differential equation, it is commonly meaningful to search for
a sparse approximate inverse. The approach of Huckle [12]’s approximate inverse is
the minimization problems

n
©) min [ AM — E|% = 3 min [ AM; — e
k=1

where M is an approximate inverse with a given sparsity pattern, and E is an identity
matrix. This problem is incommodiously parallel. If we allow only a few non-zero
entries in the kth column M} of M, then the minimization problem (6) reduces to
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TABLE 1
Specification of Origin 2000

cell processor | MIPS R10000 195MHz
local memory | 512MB

the following n small least squares problems:
(7 min ||AK} —egll2, (k=1,...,n)

We now consider the set J of indices with nonzero elements in M}, and the set I is so
called shadow of set J in original matrix A, which is defined as the set of the elements
of non-zero rows in the submatrix A(:,J). Therefore, the minimization problem (7)
can be rewritten to the following form

(8) min ||A(I, J)My(J) — ex(I)||2 = min ||AMy — éxll., (k=1,...,n)

where A = A(I,J), My = My(J), and é; = ex(I). In order to solve (8), we consider
to use QR decomposition. More detailed explanations of approximate inverse is given
in Grote and Huckle [9] and Huckle [12]. In this paper, we use this approximate
inverse preconditioning technique for our numerical experiments.

5. Numerical Experiments. In this section, numerical experiments will be
shown that compare the methods described in the previous sections on two simple
test problems on Origin 2000; see above.

For the test runs, we make use of the initial approximate solution vector as zq = 0.
For the sake of simplicity, we use the following stopping criterion

9) llrmll2/l1bll2 < 10712,

and we set the maximum number of iterations, say itmaz, to 10v/N or 30V/N re-
spectively, where N is the dimension of the coefficient matrix A of linear system of
equations (1). We also use the machine epsilon u = 1.0x 1071¢ in the formula (4). For
A-GMRES(m, itmaz) and A-GMRES(m, Imaz, itmaz) algorithm, we use the initial
restart cycle, m = 4, and the maximum restart cycle, mmaz = 100. In addition, we
set incrementing value, mdelta = 2.

Numerical results is given by the statistics over the three trials of run times. The
number of iterations is counted to increment the dimension of the relevant Krylov
subspace. Run for which convergence is not possible in maximum number of iterations
are labeled by (—). We use the parallel computer Origin 2000 to perform the run
presented here, with using eight cell-processors and double precision real arithmetic
computation. In the Table 1, we also show the specification of parallel machine Origin
2000.

[Example 1] We now consider the problem, which arises from the finite difference
discretization of the boundary value problem in the unit square region Q = [0, 1] %[0, 1]
(see Joubert [5]).

—Ugy — uyy + Duz(may) = G(xay)a
u(z,y)loa =1+2zy on ON.

We make use of the central differencing to discretize this problem, with uniform mesh
h in either direction. We consider the problem of grid size h = 1/257, which produces
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TABLE 2
Numerical results of example 1.

Dh
Algorithm 9-6 9=5 9—4

sec iter sec iter sec iter
GMRES(10) | — — — — [ 292.0 | 4199
GMRES(20) — — 457.9 | 4158 | 229.3 | 2029
GMRES(40) | 597.6 | 2973 | 410.8 | 2163 | 283.4 | 1309
AINV+GMRES(10) | 382.1 | 3988 | 218.7 | 2426 | 102.7 | 1078
AINV+GMRES(20) | 206.0 | 1527 | 159.0 | 1151 | 105.2 | 722
AINV+GMRES(40) | 330.2 | 1351 | 237.1 | 925 | 184.5 | 771
591.2 | 4573 | 373.2 | 3540 | 207.3 | 1778

A-GMRES(k, 7680) k: 4—26 k: 4—24 k: 4—28
212.1 | 1836 | 195.3 | 1198 | 216.6 853

AINV+A-GMRES(k, 2560) —- 4|—>20 k: 4|—>24 % 4|—>60
412.6 | 5454 | 336.2 | 4679 | 161.8 | 2080

AINV+A-GMRES(k, 7680) = 4|—>8 % 4|—>8 % 4|—>8
A-GMRES(k,1,7680) | 609.1 | 7564 | 472.0 | 7321 | 392.4 | 6739
AINV+A-GMRES(k, 1, 2560) | 201.0 | 2466 | 179.1 | 2360 | 136.1 | 1647
AINV+A-GMRES(k, 1, 7680) | 336.4 | 5678 | 299.8 | 4922 | 161.0 | 2735

Dh
Algorithm 9-3 9-2 91

sec iter sec iter sec iter
GMRES(10) | 163.3 | 2148 | 70.3 912 59.8 863
GMRES(20) | 140.5 | 1260 | 119.0 | 1020 | 121.1 | 1023
GMRES(40) | 221.2 | 1149 | 291.8 | 1320 | 263.5 | 1280
AINV+GMRES(10) | 51.4 546 46.5 500 48.9 528
AINV+GMRES(20) | 79.7 576 85.8 580 99.0 716
AINV+GMRES(40) | 161.7 | 755 | 196.2 | 955 | 250.9 | 993
263.7 | 1443 | 699.6 | 1988 | 668.5 | 1920

A-GMRES(k, 7680) —p 55 % 4—100 | K 455100
510.3 | 839 | 519.9 | 1069 | 388.6 | 771

AINV+A-GMRES(k, 2560) —- 4|—>94 % 4—|>100 % 4—|>100
48.8 754 45.7 541 54.4 625

AINV+A-GMRES(k, 7680) — 4|—>6 E: 4|—>10 k: 4|—>14
A-GMRES(k, 1, 7680) | 220.8 | 3925 | 125.5 | 1597 | 165.8 | 1191
AINV+A-GMRES(k, 1, 2560) | 200.3 | 1003 | 138.1 | 730 | 137.8 | 639
AINV+A-GMRES(k, 1, 7680) | 49.5 833 36.3 596 31.1 467

a matrix of size 65536 after boundary points have been eliminated. The function of
right hand side G(z,y) is defined so that the solution is u(z,y) =1 + zy on Q.

In Table 2, we show the numerical results of the problem with left approximate
inverse and also nonpreconditioned problem for various Dh. From these results, in
case of Dh =276 and 27%, we can get good convergence results for using large restart
cycle. On the other hand, in case of Dh = 272 and 27!, we also get the good results for
the use of small restart cycle. For the approximate inverse preconditioned problems,
in most cases our proposed algorithm work quite well. The average of the convergence
for our algorithm is quite nicely in the both preconditioned and nonpreconditioned
problem.

Fig. 4-7 shows the convergence behavior of residual norm versus computation
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time and iterations. These figures, especially the computation time, show that the
new adaptive algorithm keeps the size of residual norm better behaved than the other
algorithms over the course of run. Fig. 89 also gives representative plot of the
restart cycle m versus number of iterations. In Fig. 8, we see that the restart cycle m
of A-GMRES(m, 1, 7680) algorithm is oscillated heavily, and the algorithm converges
even worse than A-GMRES(m, 7680) algorithm. On the other hand, in Fig. 9, it is
interesting to note that the restart cycle m of A-GMRES(m, 1, 7680) algorithm has
large oscillation a little bit after 300 iterations, and then the iteration counts proceed
about 100 steps, restart cycle m will be decreased enough in the bottom level. In
this case, we must keep in mind the convergence may be faster and therefore, the
computation time needed to find accurate approximation may decrease.

[Example 2] Secondly, we consider a more difficult problem with Dirichlet boundary
condition in the unit square region Q = [0, 1] x [0, 1].

—Ugg — Uyy + D((y — 1/2)uz(z,y) + (. — 1/3)(x — 2/3)uy(z,y)) = G(z,y),
u(z,y)|se = 1 + zy,
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where the function G(z,y) is defined by the solution u(z,u) = 1 + zy. The region Q
is discretized by five point central difference method with 256 x 256 grid points.

In Table 3, we give numerical results for various GMRES algorithms applied to
this problem. The GMRES(10) applied to various Dh fails to converge. In this
problem, our proposed algorithm does not converge faster than the other algorithms.
In this problem, it is not obvious that the formula (4) is the correct switching or not.
We further discuss this issue in our future paper.

Fig. 10-11 shows the behavior of convergence versus computation time and iter-
ations. In the convergence plots of these figures, we can see that all of the precondi-
tioned problems converge quite nicely, although linearly. Finally, Fig. 12 also shows
representative plots of the behavior of restart cycle versus number of iterations.

6. Concluding Remark. This paper has built on the previous work of Sosonk-
ina [10] to develop the new adaptive GMRES(m, Imaz, itmaz) algorithm which
is based on the estimation of (4). This modification leads to reasonable improve-
ments over the GMRES(m, itmaz) method. From our numerical experiments we
have learned that our proposed algorithm may be an attractive procedure for solving



262

TABLE 3

M. HABU AND T. NODERA

Numerical results of example 2.

Dh
Algorithm 9-6 9=5 9—4
sec iter sec iter sec iter
GMRES(10) — — — — — —
GMRES(20) — — — — — —
GMRES(40) | 1766.1 | 7276 | 1500.7 | 6419 | 910.2 | 3632
AINV+GMRES(10) | 1687.7 | 7075 | 1540.6 | 6432 | 1375.1 | 5641
AINV+GMRES(20) | 1008.0 | 3643 | 946.4 | 3237 | 662.4 | 1996
AINV+GMRES(40) | 710.2 | 1980 | 721.2 | 1871 | 481.5 | 1388
1154.6 | 6921 | 1315.6 | 6912 | 890.8 | 4718
A-GMRES(k, 7680) k: 4—24 k: 4—28 k: 4—28
614.4 | 2090 | 581.2 | 2042 | 545.8 | 1973
AINV+A-GMRES(k, 2560) — 4—|>22 k: 4—|>22 k: 4—|>24
1348.9 | 5889 | 1467.4 | 6199 | 1523.1 | 6668
AINV+A-GMRES(k, 7680) T 4|—>8 T 4|—>8 T 4|—>8
A-GMRES(k, 1, 7680) | 1090.2 | 7613 | 976.1 | 7530 | 1082.2 | 7584
AINV+A-GMRES(k, 1, 2560) | 628.6 | 2503 | 613.1 | 2441 | 664.9 | 2527
AINV+A-GMRES(k, 1, 7680) | 1556.6 | 6699 | 1476.6 | 6422 | 1458.9 | 6310
Dh
Algorithm 9-3 9-2 91
sec iter sec iter sec iter
GMRES(10) — — — — — —
GMRES(20) | 1307.5 | 7504 | 1019.7 | 6338 | 944.0 | 5605
GMRES(40) | 955.1 | 3862 | 904.4 | 3637 | 823.7 | 3691
AINV+GMRES(10) | 757.8 | 3188 | 933.2 | 3752 | 735.3 | 3040
AINV+GMRES(20) | 474.9 | 1720 | 638.8 | 2163 | 539.3 | 1987
AINV+GMRES(40) | 532.0 | 1383 | 556.5 | 1596 | 589.2 | 1715
1252.8 | 7270 | 1052.4 | 6677 | 794.6 | 5487
A-GMRES(k, 7680) —p——57 % d—2d %: 4—520
601.8 | 2264 | 549.0 | 1908 | 1076.4 | 1732
AINV+A-GMRES(k, 2560) — 4—|>20 E 4—|>26 % 4—|>100
1051.4 | 4615 | 1208.3 | 5152 | 1164.6 | 5053
AINV+A-GMRES(k, 7680) T 4|—)8 T 4|—>6 T 4|—>6
A-GMRES(k, 1, 7680) | 953.7 | 7507 | 914.1 | 7608 | 897.2 | 7615
AINV+A-GMRES(k, 1, 2560) | 676.4 | 2522 | 675.3 | 2561 | 700.0 | 2558
AINV+A-GMRES(k, 1, 7680) | 1490.2 | 6469 | 1099.0 | 4765 | 1263.1 | 5505

nonsymmetric linear systems of equations.

Further analysis should be required a stabilized strategy for both increasing and
decreasing the restart cycle m depending on the measures of development.
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