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ON ESTIMATION OF A COVARIANCE
FUNCTION OF STATIONARY ERRORS IN
A NONLINEAR REGRESSION MODEL

F. STULAJTER

Abstract. A nonlinear regression model with correlated, normally distributed sta-
tionary errors is investigated. Limit properties of an approximate estimator of an
unknown covariance function of stationary errors are studied and su [cieht condi-
tions under which this estimator is consistent are shown.

1. Introduction

The theory of estimation in a nonlinear regression model has been extensively
studied by many authors (see Jennrich (1969), Rattkowsky (1983), Gallant (1987)
and others). The main e [andt was devoted to the study of problems of estimation
of unknown regression parameters by least squares method under the assump-
tion that errors are independent and identically distributed with some unknown
variance. Under these assumptions the limit properties of an approximate least
squares estimator of regression parameters and variance were derived. In this
connection the classical results are given by Jennrich (1969), Box (1971), Clarke
(1980), Pazman (1984), Wu (1981) and others. The case of correlated errors
was studied by Hannan (1971), Gallant and Goebel (1976), Gallant (1987) and
§tulajter (1992) and was devoted mainly to problems of estimation of regression
parameters and their limit properties. Cook and Tsai (1985) studied properties of
residuals in a nonlinear regression model with uncorrelated errors.

The aim of this article is to study the problem of estimation of parameters
of random errors which are assumed to be a finite part of a stationary gaussian
random process with an unknown covariance function which should be estimated.

Let us consider a random process y following a nonlinear regression model

(€] Ve =F(X,0) +&; t=1,2,...

where T is a model function, x¢; t =1,2,... are assumed to be known k-dimensio-
nal vectors, 8 = (61, ..., 8p)is an unknown vector of regression parameters which
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belongs to some open set ©. Further we’ll assume that the vector € = (g1, ...,&n)"
has N (0, ) distribution, where Zj; = R(Ji —j[); i, = 1,2,...,nand R() is a
covariance function of a stationary stochastic process € = {e(t); t = 1,2,...}.
This covariance function should be estimated, using the vector y = (y1,...,Yn)"
of observations following the model (1). We’'ll derive an approximate consistent
estimator of this covariance function. This estimator can be used e.g. in a kriging
method of prediction of a stochastic process (see Stein (1988)).

2. An Approximate Least Squares
Estimator and Approximate Residuals

The problem of estimation of the covariance function R(:) will be solved using
a stochastic approximation for the least squares estimator 6 given by

~ r 1 )
0 =argmin  [yr — F(X¢;6)]".
t=1

Using the idea of Box (1971) it was shown in Stulajter (1992) that the estimator
B can be approximated by the estimator 8 given by

(I 1 (I

) B=0+Ac + (It (eNe)— EJ%%%A@ .

Here J is the n x p matrix of derivatives of f with J;; = %e;;e), i=12....,n
j=12,....,p, A= (3I)"1I5is the p x n matrix, (PATHAg) denotes the n x 1
random vector with components e’ AH;Ag; j = 1,2,...,n, where the p < p matrix
H; is given by

_ 0%F(xj;6) _ Lo
Hja = 36,08, k,1=212,...,p; j=12,...,n.

All the derivatives are assumed to be continuous and are computed at the true
value of the parameter 8. Next, (€'N¢) denotes the p x 1 random vector with

components e@xlje; J=1,2,...,p, where the n x n matrix N; is given by
1
(Npi = (HiA)jcMq.
i=1
Here M is a projection matrix, M =1 —J(J3J)~1J%

Using a part of the Taylor expansion of f at the point 6 we get

(3) f(§):f(e)+J(é‘—e)+;('e“—e)%(é‘—e)
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where F(8) = ((F(x1;8),...,F(xn;6))"and (8 — 6)HH (8 — ) denotes the n x 1
random vector with components (8 —8)™H;(8 —6); j =1,2,...,n.
For the residuals & =y — f(0) we get, using (2) and (3), the expression

1 - 1
E=y—f@) =e—-J Ae +@@I)? (e%e)—%ﬂs%%m)
= - ) (51
—5 As+ (JJ9)™? (eq‘\ls)—z\]%%%As) H
(- | 11

Ac+ (I ("Ne) - %J ‘e'AHAe)

Using only the linear and quadratic (in components of €) terms we can approximate
the residuals € by £ given by

4 g§=Me—A{eNe) — %M(e%ﬁ'-ms).

These residuals will be used for estimation the unknown covariance function R(:).
Some properties of residuals for the case of uncorrelated errors were studied by
Cook and Tsai (1985).

3. Estimation of a Covariance Function

As we have told in the introduction, we’ll assume that the vector € has the
Nn(0, %) distribution with %;; = R(]i —jl). Now, let us consider the random
matrix X given by

S == Mee'M — AfeNe)e™ — Me(eNe)A + Alte'Ne)(eNe)A
(5) - %M g’ AHA) ™M — %M (e"AHAg)e'™M
+ %A%me)@%%m)w + %M(a%%Ae)(a%)%
+ %M EAHAE)EAHAM .

The estimators Ii(t) of R(t); t=0,1,...,n—1 given by

~ 1 "ECE M g
(53) R(t) = n—t Yo+t — F(Xs+1:0)  ys — F(Xs;0)
s=1

are the natural generalizations of the estimators of R(:) for the case when the mean
value follows a linear regression model which were studied in Stulajter (1989) and
(1991).
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The estimators Ii(t) can be approximated by the estimators

. 1 "B
R(t):m Bit+sfs; t=0,1,...,n—1

s=1

with & given by (4), which can be written in the form (they depend on n)

(6) ﬁn(t)=%tr(8ti); t=0,1,...,n—1.

Here B¢; t=0,1,...,n—1 are the block n x n matrices,

r 1 i1 [T 1
0|t+00

1
Be=3 0 o0 It 0
with I being the (n —t) x< (n — t) identity matrix and tr denotes the trace of a
matrix.

In the sequal we shall need the notion of ttE;E_J,iclidean inner product defined
for any n < n matrices A and B by (A,B) = AjjBij which can be written
as (A, B) = tr (ABD.

Thus the Schwarz inequality can be written as

ij=1

|tr (ABY| < [ACIBIL] where [ALCE (A, A)Y2.

It is easy to prove that [AB [ [AILTBICfbr any matrices A and B and [AB: [
[A1=0,1,...,n—1for any matrix A and the matrices B¢ defined in (6) (for the
proof of the last inequality we refer to §tu|ajter (1991)). Next, using the equality
tr (AB) = tr (BA), which holds for any matrices for which the products AB and
BA are defined and are square matrices, we can write:

tr (B:2) = e MBMe — 2¢'MBAle'N ) — ("N e) ABAe'N €)
) — E"ATHAe) MBMe + ('ATHAe) MBA(eNe)
+ %(g%ﬁqu)% B:M (e’ AHAE).
Now we shall study limit properties, as n tends to infinity, of the estimators

ﬁn(t); t=0,1,...,n—1 given by (6). The matrices X, M, H and others and also
their norms depend on n but this will not be announced later on.

Theorem. Let in the nonlinear regression model (1)

1
®) (33n) 71 = <G,
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where limn_ . Gnh = G and G is a nonnegative definit matrix. Next, let the fol-
lowing limits

9) lim 1 afck;; 0) 02F (xt; 0)

n-oo N =1 06; aejaek

1 T 92¢d.; 0) 02F (x¢; 0)

(10) S  ~36.08,  80.08;

n-oo N
t

=1

exist and are finite for every i, j, k, I. Let the errors € have N (0, X) distribution
with Zj; = R(li—jl); i,j =1,2,...,n and let

(11) lim =0,

n-oo N

Then the estimators ﬁn(t) given by (6) converges for every fixed t in probability
to R(t) as n tends to infinity.

Proof. It was shown in §tulajter (1991) that

7 fe 1
lim E ESWIBtMs—R(t) =0 ifonly lim ﬁ[Zlgo

n- oo

and thus %S'N B¢M¢€ converges in probability to R(t) for every t as n tends to
infinity. Thus the theorem will be proved if we show that all the members appear-
ing in (7) and multiplied by % converge in probability to zero. Let us consider the
term LefMBAYeNe). We can write:

Eeq’\/l BiA (N e)@s é eCIB AN e) P %EEM s% [AlteNe) 2]

Now we shall prove that %s%s £ R(0) (converges in probability to R(0)) and
%IEREW €) 215, 0 and thus their product converges in probability to zero. But

Lefve = LefMBoMe (since Bo = | and M? = M) and it was already shown that
this term converges to R(0). Next we have:

r 1
(AeNe)), =  (AHAe)i(Me) fori=1,2,...,n and

t=1
L1

1 1 I 1 Lo

- [Ae'Ne) 2= - (AHAg)i(Me),

i=1 t=1

| .

1 1 1 1
< (AHAe)?  (Mg)? = e%q—ltAAq-ltAsﬁeq\/le.

i=1t=1 t=1 t=1

Sl
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since LefMe <. R(0), it remains to prove that =1 EAHAAHAe £, 0. But

-

E[l = eAHAATHAg] = [ tr(ATHAATHAY), since E [¢'€Ce] = tr (CX)
for any symmetric matrix C and thus

EI|':| 1
@ e'A"HAAH A E@s [tr (AHAATHAY) <= [AHACZZL]
t=1

t=1 t=1
Next,
1 1
| — | — | 1
AHAEZE  tr(AHAAHA) = tr He(3) T H@D)T
t=1 t=1 t=1
since AAP= (3JJ)~1. Thus we have:
[ 1
1
lim E sAHAAHAs =0

n - oo

t=1

if the assumptions (8), (10) and (11) of the theorem are fulfilled. From the same
reasons, using the expression Var (¢/€€) = 2 tr (C=CZX), which holds for any sym-
metric matrix C and any random vector € having N (0, X) distribution, we get:

] 1
r— 1
lim Var eAHAATHAe =0.

n- oo
t=1

Next, |L(e'Ne)/ABAKeNe)| < L [AHeN £)[21X. 0 as we have just shown.
Further, denote P = J(JJ)71J"=1—M. Then

E(e%ﬁqm)% BtMeﬂz %|(55W4As)(| — P)BMg|

(12) < %(|s§’ﬂ4As)%tM gl + |(e'AHAg)PBMe|) and
1

E(s%q—lAs)%tM gb= = HE%W—IASE—%SW 3

n

1 1 o 1
< 8%%85 e A AeHSWS.
t=1

It is Efy__lto prove that the mean values and variances of £AfAs and
e’AtL T HZ2Ae converge to zero under the assumptions of the theorem and
thus these random variables converge to zero in probability. For the second term
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of the right hand side of the inequality (12) we have:

E(e%%m)qb BM sﬁs %E@%%As) EIPBMe2]
< %c@%%m)mmm@
< %@%%As)l‘i%eq’\/l 3

since P2 =P, P = PMand thus [PI[21= tr (P) = rank (P) = p.
Let us consider the last two terms of (7). We get, as before:

[(eATHA) M B A e N g)|
< |(eATHAe)BAKe N )| + +|(EATHA) P BAK e N ).

Next,
LA 21 et
~ I(e Ag)BAeNE))? < = [(E"AHAE) A [AeNe) 2]

and we know from our proof that both terms on the right hand side of the last
inequality converge to zero. Finally,

ZIEAHA)PBATENE < P (aAH A A eNe) 2]
The last term of (7) can be bounded by the same way.
The proof of the theorem now follows from the derived results and from the
well known facts on convergence in probability:
a) Xn » X iCX2 - X2
b) if X, - X and Y, - Y, then X, Y, —» XY and aXj +bY, - aX +bY
c) if [ Xn| =<|Yn| and Yn - 0, then X, - 0 and
d) if E[Xn] — 0 and Var[Xn] — 0, then X, - 0. 1

Remarks. 1. The conditions (8), (9) and (10) are similar to those appearing
in Jennrich (1969), Wu (1981) and others studying the limit properties of the least
squares estimator 8 of 6. It was shown in §tu|ajter (1991) that for consistency
of estimators of a covariance function weaker conditions than for consistency of
regression parameters are requiared if the regression model is linear. A similar
situation occours in the case of nonlinear regression.

2. For estimating R(0) we have Bo = I. Two terms from (7) vanish in this
case, since MAM=0.

3. If the errors are uncorrelated with a common variance o2 then % >i= nll,z 02
and the condition (11) of the theorem is fulfilled.
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4. For stationary errors we have:

1 L

 —
CE nR?(0)+2 (n—tHR3(M) and
t=1
1 G

1 1, 2 |‘:2|

S SR?(0)+ = RA(t)

n n n =1

It is easy to prove that limp . e & t; LR2(t) = 0if lim¢_ o R(t) = 0. Thus the

condition (11) can be replaced by the more natural condition lim¢_, . R(t) = 0.

4. Simulation Results

Let us consider the random process y following the nonlinear regression model
y(t) = B1 + Baot + Y1 COs At + Y2 Sin At + y3 COS At + Y4 Sin Axt + £(1);

t=1,...,n where 8 = (B1,B2, A1, A2, V1, V2, Y3, Ya)"is an unknown vector of re-
gression parameters and € is an AR(1) processs with an autoregression parameter
p and with a variance o2 of a white noise.

The simulation study of the least squares estimates of 6 for this model are given
in Stulajter (1992). Now we’ll illustrate properties of of the estimates Ry given by
(5a) of the covariance function of y.

We have simulated 3 realizations of the process y of the length 51, 101, 201 with
8 =(3,2,0.75,0.25, 3, 2,3,4)7 02 = 1, and with di[erent values of the autoregres-
sion parameter p. In the following tables corresponding values of the Iiy and for
comparison also values of estimates R, computed from realizations of the AR(1)
process € with the mean value zero are given.

N=51 Ry() Re(t) Ry(® Re® Ry Re(® Ry(®) Re(®) Ry(®) Re(®
p=-0.8 p=-04 p=0 p=04 p=028

311 322 101 118 078 098 082 113 114 172
-2.69 -2.69 -049 -048 -0.07 000 029 041 0.71 1.18
228 230 020 020 -0.04 -0.03 0.02 0.06 041 0.67
-2.06 -2.08 -0.19 -0.19 -0.07 -0.12 -0.05 -0.16 0.18 0.23
192 18 021 007 0.07 -0.09 0.00 -0.25 0.03 -0.06
-1.83 -185 -0.27 -0.26 -0.17 -0.21 -0.20 -0.33 -0.26 -0.26
164 164 017 015 001 0.00 -0.17 -0.16 -0.41 -0.21

—+

oA~ WNRE O

Table 1.



COVARIANCE FUNCTION ESTIMATION 115

n=101 Ry() Re(t) Ry() Re(® Ry(® Re®) Ry(®) Re(® Ry() Re()
p=-08 p=-04 p=0 p=0.4 p=0.8

202 210 081 088 074 079 087 092 133 144
-1.63 -167 -026 -028 0.04 003 033 035 092 1.00
137 138 006 005 -0.08 -0.08 000 001 053 054
-1.27 -126 -0.10 -0.09 -0.08 -0.07 -0.10 -0.11 0.28 0.22
115 109 005 0.01 -0.04 -0.07 -0.13 -0.16 0.12 0.01
-1.12 -1.07 -0.14 -0.12 -0.11 -0.10 -0.16 -0.18 -0.03 -0.11
098 09 0.06 006 -001 -0.00 -0.09 -0.11 -0.09 -0.11

—+

o~ WNRE O

Table 2.

N=201 Ry() Re(® Ry Re® Ry(t) Re® Ry(® Re(® Ry(t) Re(t)

~+

p=-—0.8 p=-—04 p=0 p=0.4 p=20.8

167 174 087 092 079 083 094 097 166 174
-1.21 -126 -027 -030 0.03 0.02 037 037 122 127
0.87 088 0.00 001 -0.08 -0.08 0.05 006 080 0.83
-069 -0.64 002 006 000 002 0.00 0.01 052 053
0.56 048 -0.06 -0.11 -0.06 -0.09 -0.07 -0.10 0.25 0.23
-053 -046 001 0.04 -0.00 0.00 -0.07 -0.07 0.05 0.05
049 048 0.00 0.00 -0.04 -004 -0.11 -0.12 -0.12 -0.11

OO0 WNRE O

Table 3.

It can be seen from these tables that the influence of an unknown mean value,
following the nonlinear regression model with 8 dimensional vector of regression
parameters, on estimation of a covariance function is not very big even for relatively
small n (n = 51). For n = 101 and n = 201 the influence of the mean value is
negligible for all p’s.

References

Bates D. M. and Watts D. G., Relative curvature measures of nonlinearity, J. Roy. Stat. Soc. B
42 (1980), 1-25.

Box M. J., Bias in nonlinear estimation, J. Roy. Stat. Soc. B 33 (1971), 171-201.

Clarke G. P. Y., Moments of the least squares estimators in a nonlinear regression models, J.
Roy. Stat. Soc. B 42 (1980), 227-237.

Cook R. D. and Tsai C. L., Residuals in nonlinear regression, Biometrika 72 (1985), 23-29.

, Bias in nonlinear regression, Biometrika 73 (1985), 615-623.

Gallant A. R. and Goebel J. J., Nonlinear regression with auto correlated errors, Jour. of the
Amer. Stat. Assoc. 71 (1976), 961-967.

Gallant A. R., Nonlinear Statistical Modeling, Wiley, New York, 1987.

Hannan E., Non-linear time series regression, Jour. of Appl.Prob. 8 (1971), 767-780.

Hougaard R., The appropriateness of the asymptotic distribution in nonlinear regression model
in relation to curvature, J. Roy. Stat. Soc. B 47 (1985), 103-114.

Jennrich R. |., Asymptotic properties of nonlinear least squares estimators, Ann. Math. Stat. 40
(1969), 633-643.

Pazman A., Probability distribution of the multivariate nonlinear least squares estimates, Ky-
bernetika 20 (1984), 209-230.




116 F. STULAJTER

Rattkowsky D. A., Nonlinear Regression Modeling, Marcel Dekker, Inc., New York, 1983.

Stein M. L., Asymptotically e Lcieht prediction of a random field with a misspecified covariance
function, Ann. Stat. 16 (1989), 55-63.

Stulajter F., Estimation in Stochastic Processes, Alfa, Bratislava, 1989. (Slovak)

, Consistency of linear and quadratic least squares estimators in regression models with

covariance stationary errors, Appl. Math. 36 (1991), 149-155.

, Mean square error matrix of the approximate least squares estimator in a nonlinear re-
gression model with correlated errors, Acta Math. Univ. Comenianae LXI, 2 (1992), 251-261.

Wu C. F., Asymptotic theory of nonlinear least squares estimators, Ann. Stat. 9 (1981), 501-513.

F. Stulajter, Faculty of Mathematics and Physics, Comenius University, 842 15 Bratislava, Slo-
vakia



