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REMARKS ON GERMS IN INFINITE DIMENSIONS

A. KRIEGL

Abstract. Smooth, real analytic and holomorphic mappings defined on non-open
subsets of infinite dimensional vector spaces are treated.

0. Introduction

In this paper we will generalize the concept of di [erentiable maps f: E [CXI -
F defined on open subsets to such on more general subsets of infinite dimensional
vector spaces. We will refer to the theories for open domains as they have been
developed in [K82], [K83] and [F-K] for smooth (i.e. C**) maps, in [K-N] for
holomorphic maps and in [K-M] for real analytic maps.

But before we start the general discussion, let us recall the finite dimensional
situation for smooth maps. Let first E = F = R and X be a non-trivial closed
interval. Then a map f: X - R is usually called smooth, if it is infinite often
di [erkntiable on the interior of X and the one-sided derivatives of all orders ex-
ist. The later condition is equivalent to the condition, that all derivatives extend
continuously from the interior of X to X. Furthermore, by Whitney’s extension
theorem (see [W34]) these maps can also be described as being the restrictions to
X of smooth maps on (some open neighborhood of X in) R. In case where X [RI
is more general, these conditions fall apart.

Now what happens if one changes to X [CRI. For closed convex sets with
non-empty interior the corresponding conditions to the one dimensional situation
still agree.

In case of holomorphic and real analytic maps the germ on such a subset is
already defined by the values on the subset. Hence we are actually speaking about
germs in this situation.

In infinite dimensions we will consider maps on just those convex subsets. So we
do not claim greatest achievable generality, but rather restrict to a situation which
is quite manageable. We will show that even in infinite dimensions the conditions
above often coincide, and that real analytic and holomorphic maps on such sets
are often germs of that class. Furthermore we have exponential laws for all three
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118 A. KRIEGL

classes, more precisely, the maps on a product correspond uniquely to maps from
the first factor into the corresponding function space on the second.

1. Smooth Maps on Non-Open Domains

In this section we will discuss smooth maps f: E Xl - F, where E and F
are convenient vector spaces, see [F-K], and X are certain not necessarily open
subsets of E.

We will use the setting of [F-K]. Thereamap f: E [CXI - F from an arbitrary
subset X [Elof a convenient vector space E to a convenient vector space F is
smooth i Cfor all smooth curves ¢c: R - X [CElthe composite fec: R - F isa
smooth curve. And it was shown that a curve c: R — F is smooth i (for all CI" B
the composite [et: R - R issmooth. Furthermore it was shown, that in case where
X is c®-open, i.e. the inverse image ¢~1(X) [Rlis open for all smooth curves
c: R - F, there exist smooth derivatives f(™: X _ L"(E;F) which satisfy the
chain rule. Finally, cartesian closedness holds. More precisely there is a (unique)
convenient vector space structure on C*°(Xz, F) such thatamap f: X; <X, - F
is smooth if and only if the corresponding map X - C* (X2, F) is smooth.

1.1. Lemma. (Convex sets with non-void interior)
Let K [CH be a convex set with non-void c*-interior K°. Then the segment
X, y] = {x+t(y—x) : 0 <t <1} is contained in K° for every x [ Kl andy [KI°.
The interior K° is convex and open even in the locally convex topology. And K is
closed if and only if it is ¢c*-closed.

Proof. Let yp := X + to(y — X) be an arbitrary point on the segment (X, Y],
i.e. 0 <ty =<1 Then x + to(K° — x) is an c*-open neighborhood of yo, since
homotheties are c*-continuous. It is contained in K, since K is convex.

In particular, the c*-interior K° is convex, hence it is not only c*-open but
open in the locally convex topology [F-K, 6.2.2].

Without loss of generality we now assume that 0 [CK°. We claim that the
closure of K is the set {x : tx [KI° for 0 <t < 1}. This implies the statement on
closedness. Let U := K° and consider the Minkowski-functional qy (X) := inf{t >
0:x [IW}. Since U is convex, the function qy is convex, see [J81, 6.3.2]. Using
that U is c®-open it can easily be shown that U = {x : qu(X) < 1}. From
[F-K, 6.4.2] we conclude that qy is c*-continuous, and thus by [F-K, 6.4.3] even
continuous for the locally convex topology. Hence the set {x :tx [KI° for0 <t <
1} ={x:qu(X) = 1} = {X: g (X) < 1} is the closure of K in the locally convex
topology by [J81, 6.4.2]. 1

1.2. Theorem. (Derivative of smooth maps)
Let K [CElbe a convex subset with non-void interior K°, and let f: K -~ Rbe a
smooth map. Then f|ko: K° — F is smooth, and its derivative (f|ko)"extends
(uniquely) to a smooth map K - L(E,F).
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Proof. Only the extension property is to be shown. Let us first try to find a
candidate for f¥{x)(v) for x [K and v [H with x +v [K°. By convexity the
smooth curve cxy:t B x + t?v has for 0 < |t| < 1 values in K° and cx(0) =
X [K, hence f o cxy is smooth. In the special case where x [CH° we have by
the chain rule that (f < cx,,)(t) = FH{X)(cx v (D)) (L, (1)), hence (F o cx ) ™t) =
e v (D) (L, (1), ¢y (1) + Fiex v (D) (CE, (1), and for t = 0 in particular (f »
Cx.v)™0) = 2 F¢x)(v). Thus we define

2F5X) (V) := (F © cxy)™(0) for x CK and v [KI° —x.

Note that for 0 < € < 1 we have F{x)(ev) = e F{{x)(V), since cx ¢ (t) = cx,\,(\/ﬁ t).
Let us show next that f¢)(v) : {x K : x+v [K°} - R is smooth. So let
s B x(s) be a smooth curve in K, and let v [KI° —x(0). Then x(s) +v [K° for
all su Lciehtly small s. And thus the map (s, t) B Cys),v(t) is smooth from some
neighborhood of (0,0) into K. Hence (s,t) B f(Cxs),v(t)) is smooth and also its
second derivative s B (F cx(s),\,)‘DEO) = 2 FHx(s))(v).
In particular, let xo K and vy [KI® — xo and X(S) := Xg + S$?Vp. Then

2F o) (V) = (F © 0o) HO) = IM(F  06,)T0) = Jim 2 F ()W),

with x(s) [CK° for 0 < [s| < 1. Obviously this shows that the given definition of
T{xo)(v) is the only possible smooth extension of fX_)(v) to {xo} K.

Now let v [CEl be arbitrary. Choose a vo [KI® — Xg. Since the set K° —Xxg— Vg
is a c*-open neighborhood of 0, hence absorbing, there exists some € > 0 such
that vo + ev [KI° — xo. Thus

o) = 1F)(ev) = %%X)(Vo +&v) — Fi{x)(vo) -

for all x [CK°. By what we have shown above the right side extends smoothly
to {Xo} [CKI°, hence the same is true for the left side. l.e. we define f{xo)(v) :=
lims_ o F'{x(s))(v) for some smooth curve x: (—1,1) - K with x(s) [K° for
0 < |s| < 1. Then fXx) is linear as pointwise limit of f'(x(s)) C(E,R) and is
bounded by the Banach-Steinhaus theorem (applied to Eg). This shows at the
same time, that the definition does not depend on the smooth curve X, since for
v [x} + KO it is the unique extension.

In order to show that f& K - L(E,F) is smooth it is by [F-K, 3.6.5] enough
to show that .

sO fix@©)(v), R XKL LEF)F

is smooth for all v [CH and all smooth curves x: R - K. For v [x} + K° this
was shown above. For general v [CH, this follows since F4x(s))(v) is a linear
combination of f{x(s))(vo) for two vo [X§ + K° not depending on s locally. [

By (1.2) the following lemma applies in particular to smooth maps.
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1.3. Lemma. (Chain rule)
Let K [CElbe a convex subset with non-void interior K°, let f: K - R be smooth
on K° and let f¥ K — L(E,F) be an extension of (f|ko)"Y which is continuous
for the c*°-topology of K, and let c: R - K [H be a smooth curve. Then

(f = 0)'(t) = F{c()(c(1)).

Proof.

Claim. Let g: K - L(E,F) be continuous along smooth curves in K, then
§: Kx<E - F isalso continuous along smooth curves in K x E.
In order to show this let t @ (x(t),v(t)) be a smooth curve in K x E. Then
gex: R - L(E,F) is by assumption continuous (for the bornological topology
on L(E,F)) and v&'L(E,F) - C*(R,F) is bounded and linear [F-K, 4.4.8 and
4.4.1]. Hence the composite vi4geox: R -~ C*(R,F) - C(R,F) is continuous.
Thus (vi4 g = X) [CR? - F is continuous, and in particular when restricted to the
diagonal in R?. But this restriction is just g (X, V).

Now choose a 'y K. And let cs(t) := c(t) + s?(y — c(t)). Then cs(t) KO
for 0 < |s| = 1 and ¢y = ¢. Furthermore (s,t) B cs(t) is smooth and ci{t) =
(1 —s?)cKt). And for s 80

_ L4
(e () . TCO) " foc)trydr = (1—s2)  Fleo(tr))(cHtr)) dr .
0 0

Now consider the specific case where c(t) := x + tv with x, x +v [K. Since f
is continuous along (t,s) B cs(t), the left side of the above equation converges to
FEM)TTCEO) for s, 0. And since F{)(v) is continuous along (t,T,s) B cs(tt)
we have that f%cs(tt))(v) converges to fXc(tt))(v) uniformly with respect to

< T < 1fors - 0. Thus the right side of the above equation converges to

0 fi{c(tt))(v) dt. Hence we have

-

B 0
FEO) —TCEO) = eyt - Fe@)v) dt = FLe0)(CH0)
0 0

t

fort - 0.

Now let ¢c: R - K be an arbitrary smooth curve. Then (s,t) B c¢(0) + s(c(t) —
¢(0)) is smooth and has values in K for 0 < s < 1. By the above C(i)lql]sideration
we have for x = ¢(0) and v = (c(t) — c(0))/t that TCOITCO) = = L£iic(0) +
T(c(t) — c(O)))(Lt“o)) which converges to fc(0))(c(0)) for t — 0, since fUis
continuous along smooth curves in K and thus fc(0) + t(c(t) —c(0))) - fc(0))
uniformly on the bounded set {M : tnear 0}. Thus T - c is dilerentiable
with derivative (f - ¢)t) = fc(t))(ct)). 1

Since £ tan be considered asa map df : ExE [CKIXE - F it is important to
study sets A x B [EIx F. Clearly A x B is convex provided A [CEland B [FE]
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are. Remains to consider the openness condition. In the locally convex topology
(A < B)° = A° x B°, which would be enough to know in our situation. However
we are also interested in the corresponding statement for the c*-topology. This
topology on E x F is in general not the product topology c*E = ¢c*°F. Thus we
cannot conclude that A < B has non-void interior with respect to the c*°-topology
on E xF, even if A [CH and B [CFl have it. However in case where B = F
everything is fine.

1.4. Lemma. (Interior of a product)
Let X [CEl Then the interior (X x F)° of X x F with respect to the c*>>-topology
on E x F is just X° x F, where X° denotes the interior of X with respect to the
c*°-topology on E.

Proof. Let W be the saturated hull of (X x F)° with respect to the projection
pri: ExF - E, i.e. the c®-open set (X xF)°+{0}<xF [XIxF. Its projection
to E is c*>-open, since it agrees with the intersection with E =< {0}. Hence it is
contained in X°, and (X x F)° [XP x F. The converse inclusion is obvious since
pry is continuous. 1

1.5. Theorem. (Smooth maps on convex sets)
Let K [CElbe a convex subset with non-void interior K°, and let f: K - F be
a map. Then f is smooth if and only if  is smooth on K° and all derivatives
(Flo)™ extend continuously to K with respect to the ¢ -topology of K.

Proof.

( DT follows by induction using (1.2) that (" has a smooth extension K -
L"(E;F).

( DBV (1.3) we conclude that for every c: R - K the composite fec: R - F
is di [erentiable with derivative (f o ¢)"t) = f{c(t))(ct)) =: df (c(t), c(t)).

The map df is smooth on the interior K°x E, linear in the second variable, and
its derivatives (df )® (x, w)(y1, Ws;. .. ,Yp, Wp) are universal linear combinations of

FED) (Y1, Ypiw) and of FED (i, ..., Yi s Wip) for k< p.

These summands have unique extensions to K x E. The first one is continuous
along smooth curves in K x E, because for such a curve (t B (Xx(t),w(t)) the
extension F&*D: K _ L(EK,L(E,F)) is continuous along the smooth curve x,
and wHL(E,F) - C*(R,F) is continuous and linear, so the map t 3 (s B
FED X)) Vi, - - - Vi W(S))) is continuous from R — C*(R,F) and thus as
map from R? - F it is continuous, and in particular if restricted to the diagonal.
And the other summands only depend on X, hence have a continuous extension by
assumption.

So we can apply (1.3) inductively using (1.4), to conclude that fec: R - F is
smooth. —1
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In view of the preceding theorem (1.5) it is important to know the c*-topology
¢ X of X, i.e. the final topology generated by all the smooth curves c: R -
X [CEl So the first question is whether this is the trace topology cE|x of the
c°°-topology of E.

1.6. Lemma. (The c*-topology is the trace topology)
In the following cases of subsets X [CH the trace topology c*E|X equals the
topology c*°X:
(1) X is c*E-open.
(2) X is convex and locally c*>-closed.
(3) The topology c*°E is sequential and X [El is convex and has non-void
interior.

(3) applies in particular to the case where E is metrizable, see [F-K, 6.1.4].
A topology is called sequential i Cthe closure of any subset equals its adherence,
i.e. the set of all accumulation points of sequences in it. By [F-K, 2.3.10] the
adherence of a set X with respect to the c*-topology, is formed by the limits of
all Mackey-converging sequences in X.

Proof. Remark that the inclusion X - E is by definition smooth in the sense
of [F-K], hence the identity c=°X - ¢c*E|x is always continuous.

(1) Let U [A be c*X-open and let c: R -~ E be a smooth curve with
c¢(0) 1. Since X is c*E-open, c(t) A for all small t. By composing with a
smooth map h: R - R which satisfies h(t) = t for all small t, we obtain a smooth
curve ceh: R - X, which coincides with ¢ locally around 0. Since U is ¢c*X-open
we conclude that c(t) = (¢ » h)(t) [ for small t. Thus U is c*E-open.

(2) Let A Xl be c™X-closed. And let A be the c™E-closure of A. We have
to show that A n X [CAl So let x CAn X. Since X is locally c*E-closed, there
exists a c*’E-neighborhood U of x X with U n X c®-closed in U. For every
c*°E-neighborhood U of x we have that x is in the closure of An U in U with
respect to the c®E-topology (otherwise some open neighborhood of x in U does
not meet A n U, hence also not A). Let a, [CA n U be Mackey converging to
a [0 Then a, X n U which is closed in U thus a [CX. Since X is convex the
infinite polygon through the a, lies in X and can be smoothly parameterized by
the special curve lemma [F-K, 2.3.4]. Using that A is c>X-closed, we conclude
that a CA. Thus A n U is c=U-closed and x [CAl

(3) Let A [Xlbe c*X-closed. And Iet_A_\ denote the closure of A in c*E. We
have to show that An X [CAl So let x [CAIn X. Since ¢c*°E is sequential there is a
Mackey converging sequence A [a}, — X. By the special curve lemma [F-K, 2.3.4]
the infinite polygon through the a, can be smoothly parameterized. Since X is
convex this curve gives a smooth curve ¢: R - X and thus ¢(0) = x A, since A
is ¢ X-closed. 1



REMARKS ON GERMS IN INFINITE DIMENSIONS 123

1.7. Example. (The c*-topology is not trace topology)
Let A [Elbe such that the c*>-adherence Adh(A) of A is not the whole c*-closure
A of A. So let a CAN\NAdh(A). Then consider the convex subset K [CEXR defined
by K:={(x,t) (HHxR:t=0and (t=0 [CXITA [{&})} which has non-empty
interior E xR™. However the topology ¢ K is not the trace topology of c*°(E %< R)
which equals ¢c*°(E) % R by [F-K, 3.3.4].

Remark that this situation occurs quite often, see [F-K, 6.1.6] and [F-K, 6.3.3]
where A is even a linear subspace.

Proof. Consider A = A x {0} Kl This set is closed in ¢c*°K, since E n K is
closed in ¢c>>K and the only point in (K n E) \ A is a, which cannot be reached
by a Mackey converging sequence in A, since a I Adh(A).

It is however not the trace of a closed subset in ¢c*(E) % R, since such a set has
to contain A and hence A [al 1

1.8. Theorem. (Smooth maps on subsets with collar)
Let M [CEI have a smooth collar, i.e. the boundary 0M of M is a smooth sub-
manifold of E and there exists a neighborhood U of 0M and a di [edmorphism
P: 0M x R - U which is the identity on dM and such that y(M < {t (R :
t=0}) =M nU. Then every smooth map f: M - F extends to a smooth map

f: M - F.

Proof. Due to [S64] (see [F-K, 7.1.4] for a reformulation in this setting) there is
a continuous linear right inverse S to the restriction map C*°(R,R) - C*(I1,R),
where | := {t CR : t = 0}. Now let x [0 and (px,tx) := Y~1(x). Then
f(Y(px,)): 1 - F issmooth, since P(px,t) M for t = 0. Thus we have a smooth
map S(F(W(px,))): R - F and we define F(x) := SF(W(Px, -)))(tx). Then f(x) =
T(x) for all x n U, since for such an x we have tx = 0. Now we extend the
definition by f~(x) = f(x) for x [C\M1°. Remains to show that f is smooth (on
U). So let s B x(s) be a smooth curve in U. Then s B (ps,ts) := Y~1(X(s))
is smooth. Hence s B (t B f(Q(ps,t)) is a smooth curve R - C°°(1,F). Since
S is continuous and linear the composite s B (t B S(fW(ps, ) (t)) is a smooth
curve R . C*(R,F) and thus the associated map R? — F is smooth, and also
the composite f(xs) of it with s B (s, ts). 1

In particular the previous theorem applies to the following convex sets:

1.9. Proposition. (Convex sets with smooth boundary have a collar)
Let K [Elbe a closed convex subset with non-empty interior and smooth boundary
JK. Then K has a smooth collar as defined in (1.8).

Proof. Without loss of generality let 0 [KI°.

In order to show that the set U := {x [H: tx I Kl for some t > 0} is c**-open
let s B x(s) be a smooth curve R - E and assume that tyx(0) K for some
to > 0. Since K is closed we have that tox(s) YK for all small |s|.
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For x CA let r(x) :==sup{t=0:tx CK°} >0, ie r= qKLO as defined in
the proof of (1.1) and r(x)x is the unique intersection point of dK n (0, +oo)x.
We claim that r: U - R™ is smooth. So let s B x(s) be a smooth curve in U
and Xo := r(x(0))x(0) [CdK. Choose a local di ledmorphism @: (E, %) - (E,0)
which maps 0K locally to some closed hyperplane F [CEl Any such hyperplane
is the kernel of a continuous linear functional CIE - R, hence E £FIx R.

We claim that v := y¢xo)(xo) I Fl If this were not the case, then we consider
the smooth curve c: R — 9K defined by c(t) = y~1(—tv). Since P{xo) is injective
its derivative is ¢{0) = —xo and c(0) = xg. Since 0 [K°, we have that xq +
w [CKI° for all small [t]. By convexity c(t) = xo + tw [CKI° for small
t > 0, a contradiction.

So we may assume that [¥x)(x)) £ 0 for all x in a neighborhood of Xo.

For s close enough to 0 we have that r(x(s)) is given by the implicit equa-
tion [(r(x(s))x(s))) = 0. So let g: R> ~ R be the locally defined smooth
map g(t,s) := [W(tx(s))). For t & 0 its first partial derivative is 019(t,s) =
[ tx(s))(x(s))) & 0. So by the classical implicit function theorem the solution
s B r(x(s)) is smooth.

Now let W: U x R — U be the smooth map defined by (x,t) B e t'r(X)x.
Restricted to 0K x R - U is injective, since tx = t%Ywith x, x" CAK and
t, t¥> 0 implies x = xPand hence t = t~ Furthermore it is surjective, since
the inverse mapping is given by x B (r(x)x, In(r(x))). Use that r(Ax) = %r(x).
Since this inverse is also smooth, we have the required di Ledmorphism W. In fact
W(x,t) CK iCertr(x) =r(x), i.e t<0. 1

2. Real Analytic Maps on Non-Open Domains

In this section we will consider real analytic mappings defined on the same type
of convex subsets as in the previous section. Here we will use the cartesian closed
setting of [K-M)] for real analytic maps defined on open subsets.

2.1. Theorem. (Power series in Fréchet spaces)

Let E be a Fréchet space and (F,FY be a dual pair. Assume that a Baire vector
space topology on EFexists for which the point evaluations are continuous. Let
fi be k-linear symmetric bounded functionals from E to F, for each k [N. As-
sume t every [T H"and every x in some open subset W [_El the power
series | _, [F (XXX has positive radius of convergence. Then there exists a
0-neighborhood U in E, su t{fic(X1,...,x) 1 k [N x; CUI} is bounded and
thus the power seriesx B | 2, i (X) converges Mackey on some 0-neighborhood
in E.

Proof. Choose a fixed but arbitrary CI_FIY Then [Jfy satisfy the assumptions
of [K-M, 2.2.1] for an absorbing subset in a closed cone C with non-empty interior.
Since this cone is also complete metrizable we can proceed with the proof as in
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[K-M, 2.2] to obtain a set Ak [Clwhose interior in C is non-void. But this

interior has to contain a non-void open set of E and as in the proof of [K-M, 2.2]

there exists some p—# 0 such that for the ball U, _jin E with radius pand center

0 the set {[(F(X1,...,Xk)) : k [N, x; [} } is bounded.
Now let similarly to [K-M, 1.5]
C—10C 1
Ak rp = {{TE" | [(Fk(X1, - -, Xk))| < Krk}

kK [NXg1,...xn [UJ

for K, r,p > 0. These sets Ak,r,, are closed in the Baire topology, since evaluation
at fi(X1,...,Xg) is assumed to be continuous.

By the first part of the proof the union of these sets is F&' So by the Baire
property, there exist K, r, p = 0 such that the interior U of Ak r, is non-empty. As
in the proof of [K-M, 1.5] we choose an [g] Ul Then for every [T FI"there exists
some € > 0 such that [l:= [T Ul — [g] So |[[¥)| < £(|Lly) + Lly)| + |ly)]) <
%Krn for every y = fie(Xq,... ,Xk) with x; [CU,. Thus {fic(Xq,... ,x) : k [
N, xj [Ulp} is bounded.

;
On every smaller ball we have therefore that the power series with terms fy
converges Mackey. 1

Remark that if the vector spaces are real and the assumption above hold, then
the conclusion is even true for the complexified terms by [K-M, 2.2].

2.2. Theorem. (Real analytic maps I - R are germs)
Let f: 1 :={t CR:t=0} - R be a map. Suppose t 3 F(t?) is real analytic
R - R. Then f extends to a real analytic map f:1 - R, where 1 is an open
neighborhood of I in R.

Proof. We show first that f is smooth. Consider g(t) := f(t?). Sinceg: R - R
is assumed to be real analytic it is smooth and clearly even. We claim that there
exists a smooth map h: R - R with g(t) = h(t?) (This is due to [W43]). In fact
by h(t?) := g(t) a continuous map h : {t : [CRl: t = 0} - R is uniquely determined.
Obviously h|¢ rga=03 is smooth. Dilerkntiating for t & 0 the defining equation
gives h'{t?) = gz;tt) =:gs1(t). Since g is smooth and even, g"is smooth and odd, so
g(0) = 0. Thus

]
10 g =20"90 _1 i
2t 2 5
is smooth. Hence we may define hton {t . t = 0} by the equation h(t?) = g1 (t)
with even smooth g1. By induction we obtain continuous extensions of h(™ : {t [
R:t>0} - Rto{t CH:t=0} and hence h is smooth on {t [(RI: t =0} and
so can be extended to a smooth map h: R - R.
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From this we get f(t?) = g(t) = h(t?) for all t. Thus h: R - R is a smooth
extension of f.

Composing with the exponential map exp : R —» R™ shows that f is real ana-
Iytic on {t : t > 0}, and has derivatives (" which extend by (1.5) continuously
to maps I - R. It is enough to show that an := (™ (0) are the coe [cCiehts
of a power series p with positive radius of convergence and for t [TIthis map p
coincides with f.

Claim. We show that a smooth map f: 1 - R, which has a real analytic
composite with t 3 t2, is the germ of a real analytic mapping.
Consider the real analytic curve ¢: R — | defined by c(t) = t>. Thus f = c is
real analytic. By the chain rule the derivative (f = c)®)(t) is for t £ 0 a universal
linear combination of terms £ (c(t))c®P(t)---cP(t), where 1 < k < p and
pL + ...+ px = p. Taking the limit for t — 0 and using that c(™(0) = 0 for
all n 8 2 and ¢0) = 2 shows that there is a universal constant c, satisfying
(Foc)@(0) = cp - FP(0). Take as F(x) = xP to concluﬁit_hf:\t (2p)! = cp-p!. Now
we use [K-M, 1.3.3] to show that the power series —, & F®(0)t* converges
locally. So choose a sequence (r) with rtk — 0 for all t > 0. Define a sequence
(f) by Ton = Tons1 = I and let t > 0. Then rt< = rpt” for 2n = k and
it = rptt for 2n + 1 = k, where t := t2 > 0, hence (i) satisfies the same
assumptions as (rx) and thus by [K-M, 1.4(1 C=3)ithe sequence & (f = ¢)((0)ry
is bounded. In particular this is true for the subsequence

ﬁ(‘f ° c)(ZP)(O)sz = (ZCS)!f(p)(O)rp = éf(p)(O)rp-

Thus by [K-M, 1.4(1 [3)Ithe power series with coe [Ciehts éf(p)(O) converges
locally to a real analytic function f.

Remains to show that p = ¥ on J. But since p-c and f - c are both real analytic
near 0, and have the same Taylor series at 0, they have to coincide locally, i.e.
p(t?) = f(t?) for small t. 1

Remark however that the more straight forward attempt of a proof of the first
step, namely to show that f o c is smooth for all c: R - {t [Rl: t = 0} by showing
that for such ¢ there is a smooth map h: R — R, satisfying c(t) = h(t)?, is doomed
to fail as the following example shows.

2.3. Example. (A smooth function without smooth square root)
Let c: R - {t [R : t = 0} be defined by the general curve lemma [F-K, 4.2.5]
using pieces of parabolas ¢,: t B §—2t2 + 4%. Then there is no smooth square root
of c.

Proof. The curve c constructed in [F-K, 4.2.5] has the property that there exists
a converging sequence t, such that c(t + t,) = cn(t) for small t. Assume there
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were a smooth map h: R - R satisfying c(t) = h(t)? for all t. At points where
c(t) & 0 we have in turn:

cHt) = 2h(t)h't)
c™t) = 2h()h™t) + 2ht)?
2c(t)ct) = 4h(t)3h™t) + ct)2.

Choosing t, for t in the last equation gives h™t,) = 2n, which is unbounded in
n. Thus h cannot be C2. |

2.4. Definition. (Real analytic maps | - F)
Let I [Rlbe a non-trivial interval. Thenamap f: 1 - F is called real analytic i (1
the composites [df ec: R - R are real analytic for all real analyticc: R - | Rl
and all CI_AY If 1 is an open interval then this definition coincides with [K-M,
1.2, 2.6].

2.5. Lemma. (Bornological description of real analyticity)
Let I [CRlbe a compact interval. A curve c: I — E is real analytic if and only if
¢ is smooth and the set {5 c®(a)r, : a CIJk [N} is bounded for all sequences
(re) with rtk = 0 for all t > 0.

Proof. We use [K-M, 1.5]. Since both sides can be tested with CT_H~we may
assume that E = R.

(O By (2.2) we may assume that c: I — R is real analytic for some open
neighborhood I of I. Thus the required boundedness condition follows from
[K-M, 1.5].

( DBV (2.2) we only have to show that f: t B c(t?) is real analytic. For this
we use again [K-M, 1.5]. So let K [CRlIbe compact. Then the Taylor series of
T is obtained by that of ¢ composed with t?. Thus the composite f satisfies the
required boundedness condition, and hence is real analytic. 1

This characterization of real analyticity can not be weakened by assuming the
boundedness conditions only for single pointed K as the map c(t) := e" @ fort £ 0
and c(0) = 0 shows. It is real analytic on R\ {0} thus the condition is satisfied at
all points there, and at 0 the power series has all coe Lciehts equal to 0, hence the
condition is satisfied there as well.

2.6. Corollary. (Real analytic maps into inductive limits)
Let Tq: E — Eq be a family of bounded linear maps that generates the bornology
on E. Then a map c: | - F is real analytic if and only if all the composites
TaoC: | - Fq are real analytic.

Proof. This follows either directly from (2.5) or from (2.2) by using the corre-
sponding statement for maps R - E, see [K-M, 1.11]. 1
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2.7. Definition. (Real analytic maps K - F)
For an arbitrary subset K [Ellet us callamap f: E [Kl - F real analytic i [
Aefec: 1 - Risareal analytic (resp. smooth) for all A [EI-and all real analytic
(resp. smooth) maps c: I —» K, where I [Rlis some compact non-trivial interval.
Remark however that it is enough to use all real analytic (resp. smooth) curves
c:R - Kby (2.2).

With C®(K,F) we denote the vector space of all real analytic maps K -
F. And we topologize this space with the initial structure induced by the cone
cHICY(K,F) -~ C%(R,F) (for all real analytic c: R - K) together with the
cone ¢='C®(K,F) -~ C*(R,F) (for all smooth ¢: R - K). The space C®(R,F)
should carry the structure of [K-M, 5.4] and the space C*°(R, F) that of [F-K].

For an open K [CElthe definition for C?(K, F) given here coincides with that
of [K-M, 2.6 and 5.4].

2.8. Proposition. (C?(K,F) is convenient)
Let K [CEland F be arbitrary. Then the space C®(K,F) is a convenient vector
space and satisfies the S-uniform boundedness principle (see [K-M, 4.1]), where
S = {evyx : x [K}.

Proof. Since both spaces C?(R,R) and C*(R, R) are c*-complete and satisfy
the uniform boundedness principle for the set of point evaluations the same is true
for C®(K, F), by the usual arguments, cf. [K-M, 5.5 and 5.6]. 1

2.9. Theorem. (Real analytic maps K — F are often germs)
Let K [H be a convex subset with non-empty interior of a Fréchet space and
let (F,FY be a complete dual pair for which a Baire topology on Fexists, as
required in (2.1). Let f: K - F be a real analytic map. Then there exists an
open neighborhood U [Ek of K and a holomorphic map f:1U - Fc such that
flx =f.

Proof. By (1.5) the map f: K — F is smooth, i.e. the derivatives £ exist on
the interior K° and extend continuously (with respect to the c*-topology of K)
to the whole of K. So let x [CKl be arbitrary and consider the power series with
coe [ciehts fy = 2T (x). This power series ha required properties of (2.1),
since for every CI_F~and v [CKI® —x the series k%ﬂ(v"))tk has positive radius
of convergence. In fact [{(F (X + tv)) is by assumption a real analytic germ I - R,
by (1.8) hence locally around any point in I it is represented by its converging
Taylor series at that point. Since (X,v —x] [KI° and f is smooth on this set,
(SR(IF (x + tv)) = [FO(x + tv)(vK) for t > 0. Now take the limit for t — 0
to conclude that the Taylor coe [ciehts of t & [(F(x + tv)) at t = 0 are exactly
k![{(Fx). Thus by (2.1) the power series converges locally and hence represents a
holomorphic map in a neighborhood of x. Let y [CKZ° be an arbitrary point in
this neighborhood. Then t B {F(x + t(y — x))) is real analytic I —» R and hence
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the series converges at y — x towards f(y). So the restriction of the power series
to the interior of K coincides with f.

We have to show that the extensions fy of f: K n Uy — Fc to star shaped
neighborhoods Uy of x in Ec fit together to give an extension f: U — Fc. So let
Uy be such a domain for the extension and let Uy := Uy n E.

For this we claim that we may assume that Uy has the following additional
property: y Uy [CJOH]y CKP [CUL. In fact let Up := {y Uk :[0,1]y CKP [
Ux}. Then Ug is open, since F: (t,s) B ty(s) being smooth, and f(t,0) [KI° [T}
for t []0,1], implies that a > 0 exists such that f(t,s) [CKI° U for all |s| <&
and —d <t<1+0. The set Ug is star shaped, since y Uy and s [0, 1] implies
that t(x +s(y —x)) [N, t'y] for some t~ [0, 1], hence lies in K° [CT). The set Uy
contains x, since [0, 1]x = {x} [0, 1)x X} [KI°. Finally Uy has the required
property, since z [0, 1]y for y Uy implies that [0,1]z [JO11]y [CKP [UL, i.e.
z [Ub.

Furthermore, we may assume that for x+iy U} and t [0, 1] also x+ity Uk
(replace Uy by {x + iy : x + ity CU} for all t C[0, 1]}).

Now let Uy and U, be two such domains around x; and x,, with corresponding
extensions f; and f,. Let x+iy [0y nU,. Then x UL nU, and [0, 1]x CKP [Uj
for i =1,2. If x [CKI° we are done, so let x I’ KI°. Let tp ;= inf{t > 0: tx Y K°}.
Then tox [ for i = 1,2 and by taking tp a little smaller we may assume that
Xo = tox [KI° n Uy n Uyp. Thus f; = F on [xg, Xi] and the f; are real analytic on
[Xo,X] for i = 1,2. Hence f; = T, on [Xo, X] and thus f1 = f, on [x,x + iy] by the
1-dimensional uniqueness theorem. 1

That the result corresponding to (1.8) is not true for manifolds with real analytic
boundary shows the following

2.10. Example. (No real analytic extension exists)
Let l :={t (R:t=0}, E:=C%I,R),and letev: E xR [CEIx1 - R be the
real analytic map (f,t) @ f(t). Then there is no real analytic extension of ev to
a neighborhood of E x 1.

Proof. Suppose there is some open set U [Elx R containing {(0,t) : t = 0}
and a C®-extension ¢: U — R. Then there exists a c®-open neighborhood V of
0 and some & > 0 such that U contains V x (—39,8). Since V is absorbing in E,
we have for every f [CH that there exists some € > 0 such that ef [V] and hence
%q)(ef, ) (—9,08) - R is a real analytic extension of f. This cannot be true, since
there are ¥ [CEl having a singularity inside (=9, 6). 1

The following theorem generalizes [K-M, 5.11].

2.11. Theorem. (Mixing of C* and C%)
Let (E, ED be a complete dual pair, let X [E] let f: RxX - R be a mapping that
extends for every B locally around every point in R x (X n Eg) to a holomorphic
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