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GENERALIZED CENTERS OF
FINITE SETS IN BANACH SPACES

L. VESELY

Abstract. We study mainly the class (GC) of all real Banach spaces X such that
the set E¢(a) of the minimizers of the function

X XB f(Xl—a .., Xl—any D]

is nonempty whenever N is a positive integer, a XN, and f is a continuous
monotone coercive function on [0, +oo[N . For particular choices of f, the set E¢(a)
coincides with the set of Chebyshev centers of the set {ai : i =1,...,N} or with
the set of its medians. The class (GC) is stable under making co-, [P} and similar
sums. Under some geometric conditions on X, the function spaces Cy(T, X) or
LP(l, X) belong to (GC). One of the main tools is a theorem which asserts that, in
the definition of the class (GC), one can restrict himself to the functions f of the
type f(&1,... ,&n) = max L& (G 0).

Introduction

Let X be a real Banach space, T a real-valued function of N variables defined at
least on RY = [0, +oo[N. Instead of finite sets A = {a1,... ,an} [XIwe consider
ordered N-tuples a = (a1, ... ,an) XNV, (In this way we fix the order of the a;’s
and allow repeatings.)

The minimizers of the function ¢: X - R,

@ o(x) = fF(Xl—ay .., XI—an O]
are called f-centers of a and the value

re(a) == inf ¢(X)

Received September 9, 1996.

1980 Mathematics Subject Classification (1991 Revision). Primary 41A65, 46B20, 46N10;
Secondary 41A28, 46B25, 46E15, 46E30, 90B85.

Key words and phrases. Chebyshev centers, medians, generalized centers, optimal location,
sums of Banach spaces, vector-valued function spaces, geometry of Banach spaces, strongly
exposed points, Kadets property.

The research of the author was supported by the Ministero dell’Universita e della Ricerca
Scientifica e Tecnologica of Italy.



84 L. VESELY

is the f-radius of a. The set of f-centers of a will be denoted by E¢(a). Thus
Er(a) ={x X ¢(X) =rr(a)}.

The problem of finding minimizers of functions as in (1) occurs sometimes in
economical questions as “optimal location problem”. The most common partic-
ular cases are Chebyshev centers (solutions of the “mini-max problem”, i.e.
f-centers for £(§) = max{&;...,&xv}) and medians (solutions of the “mini-sum
problem”, i.e. f-centers for £(§) = & + ...+ &y). Some results connected with
various types of f-centers (characterizations, properties, ... ) appeared, for ex-
ample, in [Dul], [DuZ2], [B-C-P1], [B-C-P2], [Ko], [Vel], [Du3], [Ve2]. Of
course, it has sense to define Chebyshev centers also for bounded sets which are
not finite. This subject was widely studied by various authors (see e.g. [Am1],
[AmM2], [A-M-S] and references therein).

The aim of the present paper is to study generalized centers (f-centers) of finite
sets for a wide class of functions f (namely, monotone convex and coercive), and
to state general results, especially for the existence of generalized centers in vector-
valued sequence and function spaces. We obtain some results which are new even
for Chebyshev centers of finite sets or for medians (e.g., Theorems 3.7, 4.8, 5.10).

We prove that the f-radius of a XN always coincides with the f-radius of
a calculated in X ™ (This is not true in general for the Chebyshev radius of
infinite sets.) The generalized centers of the finite sets exist in X if and only if the
“weighted Chebyshev centers” of the finite sets exist in X. This, together with
a result on upper semicontinuity of the multivalued mapping a B Egf(a), yields
su [cieht geometric conditions on X for the existence of the generalized centers
of finite sets in the space Cy(T, X) of all bounded continuous X-valued functions
on a topological space T. In particular, in C,(T) = Cyp(T, R) such centers always
exist. We present an example (due to J. KolaF) of a three-dimensional X such
that a three-point set in Cy,([0, 1], X) has no Chebyshev center. The class (GC) of
the spaces, in which f-centers exist for every monotone convex coercive function
f on RY, is stable under making arbitrary ¢ and [Plsums (1 < p < o), and more
general types of sums. We discuss also the Lebesgue-Bochner spaces LP(y, X).

1. Definitions and Auxiliary Results

Let X be a real Banach space. We shall always consider X canonically em-
bedded in its second dual X ™ F@)ositive integer N, the space XN will be
endowed with the 2-norm @2k [@[Z]

The unit ball and sphere of X will be denoted by Bx and Sx respectively. By
B(c,r) and BP(c, r) we denote respectively the closed and open ball in X centered
in ¢ X with radius r. The same balls in X ™Will be denoted by I§(c, r) and
BO(c, r). (We put B(c,0) = {c}, B%(c,0) = [
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1.1. Definition.

(@) For a XN and f:RY - R we define the f-radius and the set of
f-centers of a by

re(@) =inf¢(X), Er(a) ={x [LX: ¢(x) =re(a)},

where ¢ is as in (1).
Considering a as an element of (X ™N, we put

fe(@) = inf (X Ef(a) = (xR (x"'= Pe(a)}.

(b) If T is of the form
(&) = max L,
1<i<=N

where [ ([L). .., [N) [J0J+oo[N, we shall use the notation r(q), F{q),
E(@), E(®) for the f-radius of a in X and in X ™And for the set of
f-centers of a in X and in X ™fespectively. In this case, the f-centers are
called weighted Chebyshev centers. (Classical Chebyshev centers
are weighted Chebyshev centers for the case of a constant weight [
@,...,1).)

(c) If £ is of the form

| |
fe= Go&F,
i=1
where [ ([L). .., Ou) O0)+oo[N, the corresponding f-centers are cal-

led weighted p-medians. (Medians are weighted 1-medians for the case
of a constant weight [ = (1,...,1).)

1.2. Example. Let X = R, a [CRN. It is easy to see that there exists a
unigue Chebyshev center of a, namely the point X, = (1/2) mina; + (1/2) maxa;.
Moreover, if a; < ... < an, the medians of a are given as follows. If N =2k +1
then E¢(a) = {ak+1}. If N = 2k then E¢(a) = [ak, ak+1] (this interval can be
degenerated to one point if ax = ak+1)-

The rest of this section is devoted to definitions and properties of some auxiliary
notions.
We shall consider the coordinate-wise ordering on RN

f<n ffrgi<n oo, N}

Thus, e.g., § (0= (max{&;,0},... ,max{&n,0}) and |&] = (|&]. .-, [ENnD)-
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1.3. Definition. A function f:RN [S1- R is said to be

(@) monotonic if £(&) < f(n) whenever &, n Sl |§] < n|;

(b) monotone if f(§) < f(n) whenever &,n (Sl & <n;

(c) strictly monotone if f(§) < f(n) whenever {,n [S1 £ <nand & &n;

(d) weakly strictly monotone if f is monotone, and f(§) < f(n) whenever
&N [S1& <nforalli Cf,... ,N};

(e) coercive if () tends to +oo as [E1 3 +oo, { [S1

We collect some useful properties of convex monotone functions on RY in the
following Proposition.

1.4. Proposition. Each convex monotone f:RYY - R satisfies the following
properties.
(i) f is Lipschitz on bounded subsets of R and attains its minimum over

RN at the origin.

(ii) If the set F~1(f(0)) of the points of minimum is bounded, then f is coercive
(and hence every minimizing sequence has a convergent subsequence).

(iii) If 0 is the unique minimum point for f, then f is weakly strictly monotone.

(iv) Let T be a topological space and gi:T — [0,+oo[ lower semicontinu-
ous functions (i = 1,...,N). Then the function ¢:T - R, ¢(t) =
f(92(t),...,gn (D), is lower semicontinuous.

Proof. (i) The function F: RN - R, given by F(§) = f(§ [0 is a convex
extension of f; hence it is locally Lipschitz (see e.g. [Ph]).

(ii) Fix r = 0 such that (&) > f(0) whenever (1= r. Then m := inf z1= T(§)
> f(0) by (i) and the compactness of {[E1 = r}.

For every & [CRY with [EI= r we have by convexity that

4 ) e 1
msf g =f E[af"f“ 1—— Eilﬁ(EH 1—— £(0).

An elementary calculation gives f(§) = f(0)+ m%“‘)) [ET, hence T is coercive. This
also implies that any sequence that minimizes f is bounded, and hence relatively
compact.

(iii) Suppose, on the contrary, that there exist &,n CRY such that & < n;
(i=1,...,N)and f(§) = f(n) =: p. Since the value f(0) is attained only at
0, we must have p > (0). The order interval | = {x CRY : E¢<x<n}lisa
nonempty open (convex) set in RY and, by monotonicity, f(x) = p for every x 11
Choose any xo 11 Then fy(t) := f(tXg) is a convex nondecreasing function on
R which is constant on a nontrivial interval containing the point t = 1. Thus f;
must be constant on [0, 1]. But this implies £(0) = f(xg) = p, a contradiction.

(iv) Let (t,) [T be a net converging to to 1. We have to prove that

b(to) < liminf (t, ).
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Take an arbitrary € > 0. There exists an index yo such that gi(ty) = gi(to) — ¢
whenever y =vyp and 1 < i < N. Put §;(g) := max{gi(to) — €, 0} and observe that
gi(ty) = di(c) whenevery =yg and 1 < i< N. Thus, £(31(€),...,0n(€)) = ¢(ty)
for y = yo. This implies that

T(01(€), ... ,0n(E)) = liminf ¢(ty), for every € > 0.

The left-hand side tends to ¢(tp) as € — 0 since T is continuous by (i). 1

1.5. Definition. Let x Sk, x"1Skr.We shall say that

(a) x=s$trongly exposes Bx if every sequence (x,) Bk such that xk,)
- 1 is norm-convergent;

(b) x~tompactly strongly exposes Bx if every sequence (xn) Bk such
that x*(k,) — 1 has a norm-convergent subsequence;

(c) x is (compactly) strongly exposed by x™if x™{compactly) strongly
exposes Bx and x~k) = 1;

(d) X satisfies (CSE) if every norm-attaining element of Sx —¢ompactly stron-
gly exposes Bx.

(e) X satisfies (w™K) if X is isometric to a dual of a normed space Z and the
corresponding weak ~topology o(X, Z) coincides with the norm topology
on the unit sphere Sx.

We state the following Proposition 1.6 to illustrate the relation of the properties
(CSE), (w™R) with some more common geometric properties of Banach spaces. We
omit the standard proofs.

1.6. Proposition.

(a) If X satisfies (CSE) or (w'K) then it has the Kadets property (i.e., the
weak and the norm topologies coincide on Sx).

(b) Every locally uniformly convex space satisfies (CSE).

(c) Every dual locally uniformly convex space satisfies (w"K).

(d) Every reflexive space with the Kadets-Klee property (i.e. the convergence
of sequences in (Sx,weak) and in (Sx, norm) coincide) satisfies (CSE)
and (wK).

(e) Every finite-dimensional space satisfies (CSE) and (w"K).

1.7. Remark. The property (CSE) is not equivalent to the following (weaker)
property (CSEp): each x [Sx is compactly strongly exposed by some element
of Sx
This was shown by J. Saint Raymond [SR] who constructed a counterexample.
However, in the class of reflexive Banach spaces the properties (CSE) and (CSEy)
coincide. It follows from Proposition 1.6(d) and from the fact that (CSEp) implies
the Kadets-Klee property.
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The last part of this section is dedicated to some basic facts about subdif-
ferentials of convex functions. For our purposes, it will be su [cieht to consider
continuous functions only. Basic information can be found in [Ph], an intensive
study of subdi Cerkntials is contained in [I-L].

Let U Xl be an open convex set and f:U - R be continuous and convex.
For x [0, the subdi Cerential of ¥ at x is the set

F(x) = {x"T X f(y) = f(x) +x"( — x) OCU}.

It is well known that 0f(x) is a nonempty weak™~¢ompact set and it is a local
notion in the sense that if f = g on some neighborhood of x then 0f(x) = 0g(x).
It follows directly from the definition that 0 [Cd¥(x) if and only if f attains its
minimum at x.
It is a well known and not di Ccult consequence of the Hahn-Banach theorem
that the subdi [erential of the norm can be written as d LX) = D(x) where

D(x) = {x"IX : Xtz 1 and x"k) = xXIH

The following “chain rule formula” for subdilerkntials is a particular case of
[I-L, Theorem 2 of §8, p. 44]; cf. also [Pa, Theorem 4.3].

1.8. Theorem. Let X be a Banach space, N [N. Let f:RN - R be convex
and monotone. For i =1,...,N, let gi: X - R be convex and continuous. Let
¢: X - R be the composed function ¢(x) = F(g1(X), ... ,gn(X)). Then for every
Xo X

-  —
aP(xo) = x1TX"' x== AuTA CaF(gi(xo), - - -, In(X0)),
-
ui—abi(xo) 0.

2. Properties of Generalized Centers, the Class (GC)

We shall consider f-centers for convex monotone functions f on RY. It is easy
to prove that, in this case, the corresponding function ¢(x) = f(IxXI—a; ..,
[xX1— an Ddis continuous (by Proposition 1.4(i)) and convex. Hence the set E¢(a)
of the f-centers is closed and convex.

The following two propositions collect some easy facts which are basically well
known for the cases of Chebyshev centers and medians.

2.1. Proposition. For a AN, let us denote A(a) = mink max; [@; — a; L1
d(@) = maxy ;i [@k — aj1[AaTd = max; [@j[JLet f be a monotone function on
RN, and let ¢ be as in (1). Then

(@) Aa) = d(a);
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(b) re(@) = iNF{o() : x I B(ar, A@)}
=inf{p(x) : X[ [@ld+ A(@)};

T
(¢) Ef(a) C1B(aj, A(a)) whenever T is weakly strictly monotone;
i=1

T
(d) Ef(a) CB(aj,A(a) +d(a)) whenever T is weakly strictly monotone.
i=1

Proof. Tlﬁﬁequality (a) is obvious.
Let x 17" B(aj, A(a)). Choose ko [{1,...,N} such that max [@k, — aj (=
1
A(a). Then we have

[al, —ai X A(a) < XI— a; [Ifor all i.

Consequently, ¢(ak,) < ¢(x) if f is only monotone, or ¢(ax,) < ¢(x) if f is weakly
strictly mﬁzﬁone. This easily implies the first equality in (b), and (c).
If x 1} B(ai,A(@)), choose an index j such that [XI— aj = A(a). Then

XI & (@] (3 [XI— a; [Z [Ald + Aa).

This proves the second equality in (b).
Let us prove (d). Let x [CHe(a). By (c), there exists an index j such that
XI— aj C= A(a). Then, for each i {1,...,N}, we have

xI— a; [ XI— a; [ [@) — aj (= A(a) + d(a). 1

2.2. Proposition (Existence). Let X be a Banach space that is norm-one
complemented in its bidual. Let f: R} - R be continuous, monotone and coercive.
Then E¢(a) is nonempty for each a CXIN.

Proof. Let a CXIN. The function ¢ from (1) is coercive and weak ~fower semi-
continuous on X ™{cf. Proposition 1.4(iv)). By a standard weak "-¢ompactness ar-
gument, ¢ attains its minimum over X "™™n other words, there exists cmtéf(a).

Let P: X ™, X be a projection of norm one. Put ¢ = P(c™! For all i we
have [C} a; (= [PI(c™L a;) % "L a; [IConsequently,

re(@) < ¢(c) = f(ca 1., [cF ay D F(ef L a; 0. ., 4 ay DD
=§c"Y'="7er(@) <re(a)
since T is monotone. Hence ¢ [Ek(a). 1

2.3. Remark. Besides reflexive spaces, the class of spaces which are norm-one
complemented in their biduals contains also:
— all dual spaces (because of the-well known decomposition X "= X =151
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— the spaces L(p) (cf. [H-W-W, p. 158)),
— the subspaces X of L!(u) such that the unit ball Bx of X is closed in L*(u)
w.r.t. convergence in measure g ([H-W-W, p. 183)).

For other examples see Theorem 5.1.

Various examples of finite sets that lack Chebyshev centers are known. The first
such example was found by A. L. Garkavi [Ga] who defined a closed hyperplane
X in CJ[0, 1] and a three-points set in X without Chebyshev centers in X (see also
[A-M-S, p. 514 and §3]).

S. V. Konjagin [Ko] proved that such an example can be found in any non-
reflexive Banach space X after a suitable renorming. The author of the present
paper generalized Konyagin’s construction to the following result. A norm f on
R3 is symmetric if f = f o it for every permutation m of the three variables.

2.4. Theorem [Vel]. Let X be a nonreflexive Banach space. There exists
a X3 with the following property: if ¥ is a norm on R3 which is symmetric
and monotonic, then X admits an equivalent norm || - || such that Ef(a) = Cih

-

Obviously, ff(a) < re(a) holds always true. We are going to prove that eqyality
holds in fact (Theorem 2.6). We shall need the following lemma. Recall that B(c, r)
denotes the closed r-ball in X "Hcentered in c.

2.5. Lemma [Li, Lemma 5.8, p. 59]. Let a CXIN, r [JUJoo[N. Suppose

B(ai, ri) =S
i=1

1
Then for every € > 0 one has B(aj,ri +¢) 8 [1

i=1
2.6. Theorem. Let f be a continuous monotone function on RY, X be an
arbitrary Banach space. Then for every a XN

re(a) = fr(a).

Proof. For e [(0,1) choose x:"X1™duch that f(Ix}™Ha; .. , }™Ha, Dk
fr(a) +Iﬁ1d ri(e) ;= X} a; % [ATd + A(@) (cf. P@sition 2.1(b)). Since
xHH T, B(ai, ri(€)), by Lemma 2.5 there exists xe 1, B(ai, ri(€) + €). Then
the assumptions allow us to write

0<r¢(a) —7e(a)

<f(X}—a; 1., ¢ —a, D+ F(x L a 1., xfTa, D¢

=f(ri(e) +e,...,rnE) +€)—F(re(e),...,rn(€) + &
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But the right-hand side of this chain of inequalities tends to zero as € — 0%, since
ri(e) < 2[@LJ+ A(a) and T is uniformly continuous on compact subsets of RY. 1

Let us remark that the equality of the Chebyshev radii in X and in X ™#oes
not hold for infinite bounded sets in general. To see this, consider X = ¢y and
A = {en};° the canonical basis of co. It is easy to see that the Chebyshev radii of
A satisfy

r(A) := x'%sﬂp X—e,[F1, P(A):= § inf sup i e, = 172.

In a similar way as in Theorem 2.6, we shall prove that for the existence of
a large class of generalized centers, it is su [cieht the existence of all weighted
Chebyshev centers.

2.7. Theorem. For a Banach space X and a XN, the following assertions
are equivalent.

T 1
@) Ifr OOJ+oo[N and  B(aj, ri) 8 Cxhenalso B(aj, ri) B [1
i=1 i=1
(ii) a admits weighted Chebyshev centers for all weights 0] +oo[N.
(iii) a admits f-centers for every continuous monotone coercive function f

on RY.

Proof. (i) L[(iil). Suppose (i) holds. Let f be as in (iii). By Proposition 2.2
and Repark 2.3, there exists x B¢ (). Pytr; = XL a; Cdnd observe that
x"HT, B(ai, ri). By (i), there exists x 1, B(aj, ri). In the same way as in
the proof of Theorem 2.6, now with € = 0, it is possible to see that ¢p(x) = p(x"
where ¢ is as in (1). Then clearly x [Ek(a), since ¢(X) = ¢p(x"'= f¢(a) < re(a).

(iii) (1) is obvious.

i) (1 Suppose a has all weighted Chebyshev centers. Let x"-'belong to
i B(aj, ri). Define Q) +oo[N by 3= 1/r;. By Theorem 2.6,

ra) = f@) < m?x(llri)mﬂj— ai[< 1.

By (i) there exists x EE@I This point satisfies max;(1/r;) Xta; (& r{a) < 1,
and hence it belongs to ; B(aj, r;). 1

2.8. Definition (The class (GC)). We shall denote by (GC) the class of all
Banach spaces X such that for every positive integer N and every a CXN, one of
the equivalent conditions (i), (ii), (iii) of Theorem 2.7 is satisfied. (“GC” stands
for “generalized centers”.)

By Proposition 2.2, the class (GC) contains all the spaces which are norm-one
complemented in their biduals (in particular, all dual spaces). As we shall see
later, co [(®C), though ¢ is known to be uncomplemented in (co) ™™= 1 [So].

2.9. Problem. Does there exist a Banach space X which does not belong to
(GC) but any finite set in X admits a (classical) Chebyshev center?
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3. Uniqueness and Stability of Generalized Centers

3.1. Remark. It is natural to ask that the set of f-centers (f monotone on
RY) of any singleton coincide with the singleton, i.e., Ef(a) = {Xo} whenever
a; =...=an = Xg. It is easy to ee that this condition is equivalent to the fact
that 0 is the only minimum point for f. (This happens, for instance, if f is strictly
monotone.)

Moreover, if 0 is the only minimum point for f, then A:={a; : i=1,... ,N}is
a singleton if and only if r¢(a) = £(0). (Indeed, denote by e; the i-th vector of the
canonical basis of R™ and suppose that re(a) = £(0). The function ;(t) := f(te;)
is nondecreasing on R, with 0 as the unique minimum point. Take a sequence
(Xn) in X such that ¢(xn) = F(IX} —a; L., X} —an Dk £(0) + (1/n). Then
fi(0) = fi(X}h — ai D= ¢(xn) < £i(0) + (1/n); consequently X}, —a;j [} 0 as
n - oo. Since this holds for all i, all aj’s must be equal.)

For a set M we denote by al[[M and ri M the a [nelhull of M and the relative
interior of M (i.e., the interior of M with respect to a[M).

3.2. Theorem (Uniqueness). Let X be a strictly convex Banach space, a [
XN A={a:i=1,...,N}L

(a) For every [CIO)+oo[N, the set E (@) contains at most one point.

(b) Let T be a convex monotone function on RY with 0 as a unique minimum
point. If Ef(a) contains more than one point, then E¢(a) is a closed seg-
ment which is contained in the segment [a;, ax] for some j, k {1,... ,N}.

(c) Let ¥ be a convex strictly monotone function on RY. If E¢(a) con-
tains more than one point, then Ef(a) is a closed segment such that
A C@CBs(a) \riEf(a)). (In particular, A is contained in a line.)

Proof.

Case (a). Let x,y [CH{@) be two distinct points. Clearly, r ;== r{a) >0
(Remark 3.1). Put ¢(u) = max; GIul— a; L1Since ¢(X) = ¢(y) = r, the points
X,y belong to B(aj, r/G) (i =1,...,N). By rotundity, the point z = (x +y)/2
belongs to the interior of B(aj, r/ )t in other words, LIz a; (< r for every I.
This implies ¢(z) < r = inf $(X), a contradiction.

Case (b). Suppose that Eg(a) is not contained in a line. Since it is convex
(see the beginning of Section 2), the set Ef(a) \ A must contain three a Cnely
independent points Xo, X1, Y (the vertices of a nondegenerate triangle). For t [JU)1[
put Ly = a1 —t)xp +txs1,y}. Sincey I'Aland any pair of lines L,Ltointersects
only in y, there exists t [J0J1[ such that L contains no point of A (A is finite!).
Put x = (1 —t)xp +txy, z= (X +y)/2. Foreach i =1,...,N the points X,y, a;
are a [nely independent, hence by rotundity

) IZI—aiIE%IXI—aiIE%ISLI—aiD
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But Proposition 1.4(iii) gives, for ¢ as in (1),

C1 L1
[xXI—a; [# Lyla; ] xXI—an [# [y an [
> e >

d@) <f
< 2000+ 30() = re(a),

a contradiction.

Thus E¢(a) is a line segment since it is bounded (cf. Proposition 1.4(ii)). Denote
by X,y its endpoints and put L :=alBf(a), z = (x +y)/2. If (L\]X,y) n A= [
then, either the points X,y,a; are a[nely independent (i = 1...,N) or a; [1
Xyl (i =1,...,N). Thus (2) holds for each i and, as above, we arrive to a
contradiction.

It remains to show that Ag := (L\]x,y[) n A cannot be contained in one of
the two components of L\]x,y[. Suppose, on the contrary, that A, is contained
in the component of L\]x,y[ which contains x. As we observed above, (2) holds
whenever a; [CAI\ Ag. Thus there exists € [J0)1[ so small that

, l1—¢ l1+¢
) m—aiBTm—aiE}T@—aiD

holds whenever a; CAN\ Ag. Moreover, for a; [CAh, we have [z a; [ [y a; ]
consequently

[ZFai(F (1 —¢) [z aj[H e[z a; [
<1 —¢)zt+ai[# eyl a [

1—¢ 1+¢
_ as

We conclude that (2") holds for every i = 1,...,N. As above, since f is weakly
strictly monotone and convex, we obtain

Led — &) Ixi— a, [ (L + ) [V a; [
-
(1 — £) [XI— an [ (L + €) [V a CH
2

< 172000+ 13500 = re(a)

@) <f

a contradiction.
Case (c). Let x,y be two distinct points of Ef(a) and let ¢ be as in (1).
Remark 3.1 implies that A is not a singleton. If there exists ip [C{1,...,N} such
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that either {X,y,aj,} is not contained in a line or a;, Ox]Jy[, then (2) holds for
i = ip. As above, using strict monotonicity instead of weak strict monotonicity,
we get a contradiction.

Hence L := a[A = alBk(a) is a line and no point of A can lie strictly between
two distinct points of E¢(a). This completes the proof of (c). 1

3.3. Example. Theorem 3.2(c) covers the case of medians. For medians
in rotund Banach spaces, we can say much more combining Theorem 3.2 with
Example 1.2. In particular, if there are more than one medians then the endpoints
of the interval Ef(a) belong to {a; : i = 1,...,N}. But this is not the case in
general, as the following simple example shows:

Let N = 2, F(&,&) = & + & + max{&, &, (3/4)(& + &)} X = R, a =
(—2,2) [R?. Clearly, f is a convex symmetric strictly monotone function on R?..
It is easy to verify that the function ¢(x) = f(|x + 2|, [x — 2|) attains its minimum
exactly at the points —1 < x < 1. In other words, E¢(a) = [—1, 1].

We are going to prove two stability results that will be used in the next section
for weighted Chebyshev centers.

3.4. Theorem. Let X be a Banach space with the property (w™K) (i.e., X =
Z or some Banach space Z and the corresponding weak topology coincides with
the norm topology on Sx), a CXN. Let f be a convex monotone function on RN
having 0 as a unique point of minimum. Then every minimizing sequence for the
function
¢(x) = F(X—a L. ., XI—an O

(i.e., a sequence (Xn) in X with ¢(xn) — re(a)) has a (norm) convergent subse-
quence. In particular, E¢(a) is a nonempty compact set.

Proof. It is su Lcieht to prove that every minimizing sequence (Xn) has a norm-
cluster point. By Proposition 1.4(ii), f is coercive; hence (x) is bounded. Passing
to a subsequence, if necessary, we can suppose that for each i there exists y; :=

lim X}, — ai [IMoreover, (Xn) admits a subnet (z,) that weak™tonverges to a

n - oo

point X, [X. By weak™lower semicontinuity of the norm (X is dual!) and of ¢
(Proposition 1.4(iv)), we have [Xp —a; [ W; for all i, and

re(@) < ¢(Xp) = Iimyinf d(zy) = re(a).
Consequently, d(xo) = re(a) and xo [Ee(a).
Claim. There exists an index k [{1,...,N} such that px = X} — ax [

If this is not the case, we have Y > [X§ — aj CTbr all i. By Proposition 1.4(iii),
T is weakly strictly monotone, hence we have

$(x0) < T(Hs,... . in) = liMmP(zy) = re(a),

a contradiction that proves our Claim.
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—
We have z, — ax Y, %o — ax and [z} — ax 3 [Xp — ax [LdThe property (wK)
implies that the weak™~tonvergence is in fact norm convergence. Consequently
Xo is a cluster point of (zy), and hence also of (Xn). 1

The following result concerns spaces in which weak or weak™tompactness
arguments cannot be used. Thus we have to assume the existence of the corre-
sponding generalized centers.

3.5. Theorem. Let X have the property (CSE) (i.e. every norm-attaining
element of Sx=compactly strongly exposes Bx). Let f be a convex monotone
function on RY having 0 as a unique point of minimum. Let a XN be such that
Ef(a) is not empty. Then every minimizing sequence for the function

¢(x) = f(XI-a, L. ., IXi-an ]

has a (norm) convergent subsequence. In particular, E¢(a) is compact.

Proof. If a; = ... = ap, the result easily follows from Remark 3.1 and Propo-
sition 1.4(ii).
Suppose that the set A = {a; : i = 1,...,N} is not a singleton. We want

to prove that every minimizing sequence (Xn) has a cluster point in the norm
topology. Proposition 1.4(ii) implies that (xn) is bounded. Consider the convex
monotone extension of f to the whole RN, given by F(§) = f(§ [0). Then
obviously ¢(x) = F([XI— a; . . , [XI— an Dfor each x [X.

Choose an arbitrary point xo [(B¢(a). Since ¢ attains its minimum at Xg, we
must have 0 [Cdip(Xp). The formula for the subdilerkntial of ¢ (Theorem 1.8)
implies that there exist

B) AN[AF(xp—aiLd.., Xp—ayDdand ui T DX —a) (i=1,...,N)

such that

4) }\iu-g—- 0.
i=1

(Recall that D = 0 [-1[) Since F is nondecreasing in each coordinate, we must
have A; = 0 for all i.

Claim. There exists an index ip [{L,...,N} such that Aj, > 0 and X} —
djo = 0.
Since A contains more than one element, there is at least one index i such that a; 8
Xo. Without any loss of generality we can suppose that, for some K [{1,... ,N},

Ldax, iflzi=K:
a=x, ifK<i<N.
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For any & R denote by & the element of RN whose first K coordinates are those
of & and the remaining ones, if any, are zeros. Put §, = (X} —ai L. . , X} —ax D1
and define a function g: R¥ - R by g(§) = F(€). Then g is convex and monotone,
and the only point of minimum of g over RE_&IO. For each & CRKX we have
9(€) —9&) =FE) —FE) = N E—&F {Z; Ai(& — IXb — a; ] This means
that (A1, ..., Ax) CaB(&p). Since & is not a point of minimum for g, there exists
ip {1, ...,K} such that A;, 8 0. This proves our Claim.

Using (4) we can write

(5)  &n = 0(Xn) — P(x0)
=fé®1—alm.. ,Xh —an D (X —ay L. ., X —an D
= f(xh—a L., IxXh —an D+ F(Ixp —a .., IXh —an O
| 1
= N(IXh—ail=2 b —aiD]
i=1
| ]
+ N Xh— a3 Xb— ai [(F ultkn — xo) -
i=1
By the definition of subdilerkntial, all square brackets in (5) are nonnegative.
Thus, using the fact that X} — a;, C=F uﬂxo — aj,), We obtain e, = A, [Xh —
aj, 3 uf{xn — aj,)] = 0. Consequently

Xh — ai, (3 usfxn — ai,) - 0.

If liminf X}, — aj, = 0, then (Xn) has a subsequence converging to aj,, and we
are done.

Suppose liminf X}, — aj, = 0. This implies

1 1
1 Xn — i, _ 1

booDh a1 Xh—a

Since ui‘O:'compactIy strongly exposes Bx and (Xn) is bounded, the sequence (Xn)
admits a subsequence (Xm) such that

0<l1l-—u

I—_[-Ig‘l — Qj, = UiIRXn - aio)] - 0.

im_aio
— 2 S yand X}, —a;, [ t
K —ai, 17 fo

for some y Sk and t > 0. But this implies that (X\) converges to ty +a;,. [

3.6. Lemma. Let f be a convex weakly strictly monotone function on RY.
Then the function a 3 rg(a) is Lipschitz on any bounded subset of XN,

Proof. Let m > 0. We shall prove that r¢ is Lipschitz on the set
B ={a XN : @Cxm forall i}.
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First observe that d(a) < 2m for every a [CB. For a [CH, Proposition 2.1(a,b)
implies [aled + A(a) < 3m and

(6) re(@) = inf{f(xXl—a; .., Xl-an D1 XTI 3m}.

Moreover, we have [XI— aj ¥ 4m whenever XI" ¥ 3m and a [CB. Let L be
the Lipschitz constant of f on [0,4m]N (Proposition 1.4(i)). For a,a [B and
XI"= 3m we have

|f(lXI—all:l.. , XI— an Eﬂ—f(lXI—ﬁll:l y IXI—'&TN gl]
% 2 % 2

<L (X— a;[F xXI- & DA <L @j—a21 .
i=1 i=1

Consequently, by (6), the function rg on B is the pointwise infimum of the functions
alb f(Xxd—a; .., XI— any D(w.r.t. x X, IXI'= 3m) which are all Lipschitz
on B with the same Lipschitz constant L. This implies that r¢ is Lipschitz on B
with constant L, too. 1

Let us recall the definition of upper semicontinuity of multivalued mappings.
Let F be a multivalued mapping from a topological space T into another topo-
logical space S, with F (t) nonempty for all t [CTl. The mapping F is said to be
upper semicontinuous at a point to [T if for every open set V containing
F (to) there exists an open neighborhood U of tg such that F(t) V1 whenever
t [

F is said to be upper semicontinuous on T if it is upper semicontinuous at
each point of T.

Obviously, if F is singlevalued then F is upper semicontinuous if and only if F
is continuous in the classical sense.

3.7. Theorem. Let f be a convex monotone function on RY with 0 as a
unigue point of minimum. Denote

D(Ef) ={a (X" : Ef(a) B

Suppose that X has at least one of the properties (W'K), (CSE). Then the mul-
tivalued mapping a B Eg¢(a) (from D(E¢f) into X) is upper semicontinuous on
D(Ef) with respect to the norm topologies. Moreover, D(Ef) = X whenever X is
(WK).

Proof. Suppose that, on the contrary, E¢(-) is not upper semicontinuous at
some a [CDI(E¢). Then there exist an open set V containing Ef(a) and a sequence
(@) [CDKE¢) such that a™ _ a and E¢(a™)\V & [Tor all n. For each n
choose x, [B(@™)\V.
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For simplicity, put r = r¢(a), rh = re(@™), ¢(x) = F(IXFay L. , X-ay D
dn(x) = F(xd— a1, x1—al” ] Take R > 0 such that @MLJ < R
for every n. By Proposition 1.4(iii) and Proposition 2.1 we have X}, — af”) x
AE™) +d@™) < 2d@™) < 4R, and hence I — a; [ I3 —al™ = @™ =
@)X 6R. Let L > 0 be a Lipschitz constant for ¥ on [0,6R]N and for r¢(-) on
{b XN : [MIJ < R} (cf. Proposition 1.4(i) and Lemma 3.6). Then we have

r<o¢®n) =r+(n—r)+(@Xn) — dn(xn)) <r +2L @M —al]

This implies ¢(xn) — r. By Theorems 3.4 and 3.5, there exists a subsequence
(Xk) of (xn) converging (in norm) to some x [X. Obviously, x [(Be(a) V1
But this is contradiction since V is open and xx IV for any k. 1

Let us remark that P. Smith proved the following related result ([Ho, p. 188]):
If X is a reflexive strictly convex Banach space with the Kadec-Klee property, then
the Chebyshev-center map is a singlevalued continuous mapping from the space of
compact subsets of X (equipped with the Hausdor Cmetric) into X.

4. Products and Vector-Valued Sequence Spaces

The purpose of this section is to prove that the class (GC) is stable under making
arbitrary cp- and [Pisums (1 < p < o0). Since practically the same proof works
also for other types of sums of spaces, we state it in a general form (Theorem 4.7).
This requires some definitions.

In this section " denotes a nonempty set, X and X, (y L[I) are Banach
spaces. By ey, we denote the characteristic function of the singleton {y} CLI(i.e.,
ey (YD) = dyy0).

Let Y be a linear space, 'y [T}y CYI". We denote by Yir, the element of Y r
defined by
Sy fory cTh;

Yiro(v) = 0 otherwise.

Hence yr, is the canonical projection of y onto the subspace of functions whose
support is contained in .

When non specified explicitely, the norms are considered to be finite. However,
in this section, from formal reasons, we use also norms on R" that can attain also
the value +oo, i.e. functions m: R" - [0, +oo] which are convex, even, positively
homogeneous and attain the value 0 only at the zero element of R".

By a sequence space on I' we mean a normed linear space (V, v) such that V
is a linear subspace of R".

4.1. Definition. Let (V,V) be a sequence space on I" such that v is monotone
on the nonnegative elements of V (i.e., v(§) < v(n) whenever &,n Ml and 0 <
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1 .
& =n). We denote by ( Xy)v the linear space

o—m M g——a L1
vaz x (O Xy x(y) Xy for ally [T and X{-) VI

equipped with the norm
XLy I= v(Ix() O

(By IX(EF mean the function y B [X{y)[Gd,.) If Xy, = X for all y [T], the
space ( Xy)v will be denoted by V (X).

4.2. Definition.

1. Let m:R" - [0,+o0] be a norm on R" which is finite on the elements
with finite support. By S;(I") we denote the linear space

Sn(M) ={& [R" : n(§) < +oo}

equipped with the norm .
2. We shall say that V is an ideal in Sy(I) if the following three conditions
are satisfied.
(a) V is a closed linear subspace of Sy (I);
(b) & V1 whenever |&] < |n| for some n [V,
(© {ey: y (T} £V —
3. IfV =Sz(IN) in DefinIiLiinﬁ.l, then we shall write ( Xy)r, Sn(l", X)
and [lglinstead of ( Xy)v, V (X) and LA

4.3. Remark. The condition (c) of our definition of an ideal in Sy(I") is not
standard. It means that V contains all elements of Sy (I") having finite support.

4.4. Definition. A norm m:R" - [0, +oo] will be called

(a) proper if it is finite on the elements with finite support;
(b) finitely determined if for every &€ CR" we have

I I 1 I -
mE€) =sup m &r, [oisa finite subset of I'.

(c) monotonic if (&) < m(n) whenever |E| < n|, &,n CR".

(d) dual norm of a sequence space on [ if there exists (V,v) a sequence
space on I, containing all sequences with finite support, such that its dual
V Hs isometric with S;(I") and the isometric correspondence between
v WV1™and o CSk(I) is given by

1
Vi) = iy)ely) € D).

y 1
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4.5. Example. Letl<p<oo. Letm:R" - [0, +o0] be the classical [Pnorm.
Then 1 is monotonic, proper and finitely determined, and we have

Ly Ly
Se () = P(IN), Xy L= Xy - Se (I, X) = (I, X).

The space V = co(I) is an ideal in =3(I") and we have

Cr— Ol Cp—gl
X, = Xy, V(X)=col,X).

\% Co

Each classical [PInorm is a dual norm of a sequence space on I, with the predual

V given by —1
@I’) if p=1;
v=%»r) ifl<p<oo,pl+qt=1;
(M) if p=oo.

The following lemma states what everybody would expect. We postpone its
proof to Appendix.

4.6. Lemma. Let m:R" - [0, +o0] be a norm which is monotonic, proper and
finitely determined. For y [T let X, be a Banach space.

(@ ( Xy)r and Sy(I") are Banach spaces.
(b) If m is a dual norm of a sequence space on I, then the space ( Xy%n is
isometric to a dual space.

Proof. See Appendix. 1
We are ready to prove the main result of this section.

4.7. Theorem. Let m:R" - [0, +o0] be a norm which is monotonic, proper
and finitely determined. Let V be an ideal in Sy (I") (in the sense of Definition 4.2).
Then the implications (i) [(ii) (i) hold between the three assertions below.
Moreover, if in addition V = Sy(I") and 1 is a dual norm of a sequence space on
I, then (i), (i), (iii) are equivalent.

0) X@C) foreachy [Tl and ( X, v [{EC).
(i) ("~ Xy)v C(BO).
(iif) Xy [(®C) for each y [T1

Proof. For simplicity, let us denote W = ( I%!,)V, W = ( %\'}Iﬂ/

(i) (D). Suppose (i). By Theorem 2.7, it su [ced to show that finite subsets of
W admit all weighted Chebyshev centers (in W). Fix a CWN and CIJ0)+oo[N.
There exists z a [=genter of a in W. Fory [Tland 1<i <N put

8i(y) = [Z{y) —ai(y) I (norm in X!



GENERALIZED CENTERS OF FINITE SETS IN BANACH SPACES 101

For each y [Tlwe have z(y) I:Iil%llé(ai (¥),di(y)), hence by Theorem 2.7 there

exists
L U
x(y) 1 B(ai(y), di(y))-
i=1

—1
Thus we have a function x: ™ - y Xy It belongs to W since [Z{-) [(H2[@](:) I VI
and

X() = X() —a () & [l () L= [Z() —au () [ F [@l () [
= [z()# 2[a) ()]

Denote by r—and r—the [=rhdius of a in W and in W. Then we have

1<i=N

= max GA([z() —ai()DF= max LIz} ailel= Fro

1<i=N

Frs res max GIXI— a; = max G (IX() —ai(-) D]

Consequently all inequalities are in fact equalities and x is a [=denter of a in W.

(i) [C(il). Suppose W [({GC). Fixyo [T1 Leta [(X,)N and [CIQ)+oo[N.
The function .,
ay= oY=

' 0, otherwise

belongs to W (by property (c) of the definition of ideal). There exists a [-center
z W fora=(ai,...,an). Define

). ity =vo

X =
) 0, otherwise.

Since x also belongs to W and [xX+3; [I< [Z1+-3j [z] necessarily x is also a [=denter
for a. Now it is easy to see that x(yo) is a [=center of a in X,. It follows from
the fact that [Ley, G1= n(ey,) - [l dor all u Xy,. Indeed, for u X, we have
maxi LU a; (= [m(ey,)] ! max; GIugy, — @i Gel= [m(ey, )]~ maxi GIxX-3; L=
max; [1X{yo) — a; []

Finally, suppose that V = S nd m is a dual norm of a sequence space
on . By Lemma 4.6 the space (X, )r is dual, and hence it is of class (GC) by
Proposition 2.2. 1

4.8. Corollary. Let 1 <p < oo. Then the following assertions are equivalent.

i X C) for every y I
ao(Egg;c@m;
(i) ¢ Xy)e, LLEC).
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Proof. The equivalence (i) < (ii) and the implication (iii) [_(i)Ifollow directly
from Example 4.5 and Theorem 4.7.

0] E&fuppose (i) holds. By Theorem 2.7, it su [ced to show that finite
sets_i Xy)c, admit weighted Chebyshev centers. Fix a = (az,...,an) [
[(

Xy)eoIN and ) +eo[N. For every y, put a(y) = (ai(y).....an(y)) [
(Xy)N. By the assumption, there exists x(y) X, that belongs to E{a(y)).
Denote r = max .1 For each y we have

[x(y) = [ai(y) [+ (Ill‘lgli(v) —au(y) D
< [@j(y) = (LY max GIx{y) — ai(y) ]

O 1
= [@i(y) = () max Glai(y) —ai(y)

| 1
< @(y)F (W rE(y)= rmax [aj(y) ]

J [
= 1+(r/L) - faj(y)
i=1
This implies that the function x:y B Xx(y) belongs to ( co- It remains to
show that x [CH{@). But this is easy since, for any z (0 Xy)c,, We have

max GIZF a; [cd = sup max GIZ{y) — aj(y) = sup max GIx{(y) — a;(y) ]
] \; 1 \Y; ]

= m?x IXxI— aj [d. 1

4.9. Corollary. Let 1 <p < co. Then the following assertions are equivalent.
(i) X C(BO);

(i) A, X) L(BC);

(i) co(I", X) {BC).

5. Spaces of Vector-Valued Functions

Let X be a real Banach space. First, we shall state a theorem about Lebesgue-
Bochner spaces LP(l, X) of X-valued functions defined on a complete positive
finite measure space (Q, =, ). We refer the reader to the book [D-U] for definitions
and basic properties.

5.1. Theorem. Let 1 < p < oo. If X has the Radon-Nikodym property and
is norm-one complemented in its bidual, then LP(y, X) is also norm-one comple-
mented in its bidual; in particular, LP(, X) belongs to the class (GC).

Proof. The case of p = 1 was proved in [Raol] (see also [Rao2], [Em]).
The case of 1 < p < oo. If X is a dual space, then LP(y, X) is also dual by
[D-U, Theorem IV.1.1]; hence LP(u, X) is norm-one complemented in its bidual.
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The general case (X not necessarily dual) was communicated to the author by

T.S. S. R. K. Rao [Rao3]. 1

In what follows, T stands for an arbitrary topological space.

By Cy(T, X) we denote the Banach space of all continuous bounded X-valued
functions on T equipped with the supremum norm. The space Cy(T,X) is a
subspace of (T, X). For a CIQu(T, X)]N, let us denote by r§ (a) and rg>(a) the
f-radius of a in C,(T, X) and in [33(T, X), respectively. Clearly, r§ (a) = rg>(a).

The main results of the present section are contained in Theorem 5.3, Theo-
rem 5.4 and Theorem 5.10.

Let us start with a simple selection lemma whose proof uses a standard parti-
tion-of-unity technique. A variant of it can be found in [A-C, p. 81].

5.2. Lemma. For every i [{1,... ,N},IliLFi:T — X be a continuous func-
tion, sj > 0. Suppose that the set Y(t) := ;B°(ai(t),si) is nonempty for each
t [T1. Then the multivalued mapping ¢ has a continuous selection.

1
Proof. Let D ={b CXN : BOi,si) B O Observe that D is open in XN,
Define a multivalued mapping ¥ from D into X by

 —
W)= BO(bi, i)

i=1

If b [, there exists a point x, [CH(b). It is easy to see that the constant function
with value X, is a (continuous) selection of W on a certain open neighborhood U,
of b in D. The set D, being a metric space, is paracompact [Eng]. Hence there
exists a locally finite open covering {Vy : y LIl of D and continuous functions
py:D - R such that

— for each y [Tthere exists by [ such that V, CUJ
— f@h y [the function py is null outside of Vy;

Vo

y pV =1
Clearly, the function
gb) = py(0)xp,
y 1
is a continuous selection of W on D. Then the function go(t) = g(ai(t),... ,an(t))
is a continuous selection of . 1
5.3. Theorem.

(@) If Cy(T,X) [(GC), then X [(GC).

(b) Let X be the [2F-sum of a family of Banach spaces X, (y [II). Then
Co(T, X) X®C) if and only if Cy(T,Xy) [{EC) for each y [T1

(c) Let f be a continuous monotone function on RY. Then for every a [
[Co(T, X)IN we have r§ (a) = rg°(a).
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Proof. (a) Let a AN, [CIJ0J+oo[N. Consider X canonically embedded (as
constant functions) in Cy(T, X). Let r and T denote the [=radius of a in X and
in Cy(T, X) respectively. Clearly, T < r. Suppose Cy(T,X) [(GC) and take a
function x which is a [=center of a in Cy(T,X). Then for every t [Tl we have
max; IX{t) — aj £ r < r. Consequently, x(t) CH@) (in X) for each t [TI.
Hence X [(GC) by Theorem 2.7.

(b) Observe that Cy(T, X) is isometric with the [°3-sum of the spaces Cyp(T, Xy)
(y I, then use Corollary 4.8.

(c) For € > 0 choose xe [TTI(T, X) such that f([xi —a; L XE—an ) <
rg?(a) +e. Put rj = [XI— a; [d and observe that x¢(t) [—I; B”(a;i(t), r; + €) for
every t [T Lemma 5.2 there exists a continuous function z: T — X such
that z¢(t) [—1; B®(ai(t), ri +€) for each t [Tl Then z¢ belongs to Cy(T, X) since
a;’s are bounded. Moreover, we have

f(ry,....,n)<rP@+e<srf@+e<f(@—a;ld,..., @—ayJ) +¢
=f(ri+e¢,...,ry+¢€)+e

The result follows from the fact that the last term tends to f(ry,...,rn) as
€ - 0. 1

5.4. Theorem. The space Cyp(T, X) belongs to the class (GC) provided any of
the following two conditions is satisfied.

(a) X is strictly convex and satisfies the property (wt).
(b) X [{GC) and every norm-attaining element of Sy —strongly exposes Bx
(i.e., X is strictly convex and satisfies the property (CSE)).

Proof. By Theorem 2.7 it su [ced to show that each a [[Cy(T,X)]N admits
weighted Chebyshev centers. Let [I1]J0]J+oo[N. By Proposition 2.2 and Theo-
rem 3.2(a), for each t [Tl the set E{a(t)) is a singleton in X. By Theorem 3.7,
x(t) := E{a(t)) depends continuously on t. Moreover, X is bounded by Proposi-
tion 2.1 (a;’s are bounded!). Now, as in the very end of the proof of Corollary 4.8,
it is elementary to see that x is a [=denter of a in Cyp(T, X). 1

5.5. Remark. D. Amir [Am1] proved that if X is uniformly rotund and T
compact then each bounded subset in C,(T, X) admits a Chebyshev center. Thus,
for finite sets, Amir’s result follows from our Theorem 5.4, since any uniformly
convex space is reflexive and hence satisfies the assumptions (a), (b) from Theo-
rem 5.4.

The first example of a finite-dimensional Banach space X such that a finite set
in Cy ([0, 1], X) admits no Chebyshev center, is due to J. KolaF [Kol]. We present
a simplified version of it, essentially due to P. Holicky and J. Kolar.

5.6. Example. There exists a three-dimensional Banach space X and a three-
point set in Cy([0, 1], X) that has no Chebyshev center.
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[ [
Put D ={(x,y,z) [R®: x=0, x>+y?<1,z=1}and B =co D [(#D) .
The set B is a closed bounded convex symmetric neighborhood of the origin, hence
it is the unit ball of an equivalent norm Tan R3. Let X = (R%, 1) hnd denote
e, =(0,1,0) XK.
Observe that the intersection (e; + B) n (—e, + B) is exactly the line segment
L :={(0,0,s) : s [J#1,1]}. For t []Q, 1] define

a1 (t) = (cosmt, 1 + sinmt, 0) = (cosmt,sinTt,0) +e;
ax(t) = (cosmt, —1 + sinmt, 0) = (cost, sinmt, 0) — ez
as(t) = (0,0,0).

Then a; CCGL(]0, 1], X) for i = 1,2, 3. Moreover, for every t [0, 1] we have

| 2 O ) O
F@):= [ai(t) +B]= (cosmt,sinmt,0)+L nB

= :
@os mt, sinmt, 1)} for0=t<1/2;
= %JST[L sinmt,0) + L for t = 1/2;
cosmt,sinmt,—1)} forl/2<t<1.
Obviously, F admits no continuous selection because of its “jump” at the point
t=1/2. -

Since F (t) belongs to [aj(t) +Sx] for every t, it is easy to see that the Cheby-
shev radius of a(t) = (a1 (t), az(t), az(t)) in X is equal to 1 for every t. This easily
implies that the Chebyshev radius of a = (az, az,as) in [Z3([0, 1], X), and hence
also in Cy([0, 1], X) (see Theorem 5.3(c)), equals 1. Thus any Chebyshev center

of a in Cy([0, 1], X) has to be a continuous selection of F. Consequently, a has no
Chebyshev center in Cy([0, 1], X).

5.7. Proposition. The following two assertions are equivalent.

() Cp(T,X) [(GC) for every topological space T.
(i) X [(GC) and for every N [N and every r [J0]+oo[N there exists a
continuous selection of the multivalued mapping

| |
FO = B(i.r),
i=1
defined on the set D ={b XN : F(b) 8 [

Proof. (i) (). Suppose (i) holds. Then X [{GC) by Theorem 5.3(a). Let
r,F,D beasin (ii). Denote p = (1/r1,...,1/rN). Let Dg be an arbitrary bounded
relatively open subset of D. Put T = Dy, aj(b) =bj (i =1,...,N) and observe



106 L. VESELY

that the functions a; belong to C,(T, X). By (i), there exists x [Hy(a). We are
going to show that x is a continuous selection of F on Dy.

Let y: Do - X be an arbitrary selection of F on Dg. Then y [IT7(Dg, X),
and hence we have

ry (@) = ry°(a) < maxr; * [y a [d = max sup r; " [y(b) —bi (X1
1 1 bm

by Theorem 5.3(c) and the definition of D. Consequently, for every i and each
b [, we have ri_1 X{(b) — bi (=X rg (a) = 1. But this implies that x(b) [CEl(b) for
every b .

What we have proved implies that each point of (the metric space) D has an
open neighborhood on which F has a continuous selection. The same partition-
of-unity argument as in the proof of Lemma 5.2 gives a continuous selection of F
on the whole set D.

(i) () Suppose that (ii) holds. By Theorem 2.7 it su [ced to show that the
finite subsets of Cp(T, X) admit weighted Chebyshev centers. Fix a L@y (T, X)]N
and p [JOJ+oo[N. For every t [T, let z(t) be a p-center of a(t) := (a(t),...,
an(t)). In this way we have defined an element z [TT1(T, X). For any t [CTland
any i we have

pilzi) —a)=ZpiZ-ald<rr@=<rs@=r.

Consequently, z(t) CEl(a(t)) for every t [T], where F (t) is as in (ii) with rj = r/p;.
Hence a(t) [ for every t [Tl Let  be a continuous selection of F defined on D.
Then x(t) = Y(a(t)) defines a continuous X-valued function on T. Moreover,
pixl—aild=r= rg (a). Thus x belongs to Cy(T, X) and is a p-center fora. [1

5.8. Remark. Repeating the proof of Proposition 5.7 with r; = ... = ry
and p; = ... = pn, We get the following criterion of the existence of (classical)
Chebyshev centers in Cp(T, X).

The following two assertions are equivalent:

(i) for every topological space T each finite set in C,(T, X) admits a Cheby-
shev center;

(i) each finite set in )ﬁ\ﬁmits a Chebyshev center and for every N [N the
mapping F(a) = ;Z,(ai + Bx) has a continuous selection on D = {a [
XN F(a) g [

Let us recall the notion of a lower semicontinuous multivalued mapping. Let
F be a multivalued mapping from T into another topological space T Msuch that
F() & [for every t 1. We shall say that T is lower semicontinuous at a
point to if for every open set V with F(tp) nV & [There exists a neighborhood U
of to such that F(t) nV & [Whenever t Ul If F is lower semicontinuous at each
point of T, we shall say simply that F is lower semicontinuous (on T).
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5.9. Remark. Let F be as above.

(a) It is well known (and easy to see) that F is lower semicontinuous if and
only if the inverse image F~1(Q) := {t [T : F(t) n Q 8 [Hof any open
set Q [Ttis open (in T).

(b) Itis also easy to see that for lower semicontinuity of F at tg it is su [cieht
the following condition: for every Xo [El(tp) there exists a selection of F
such that it is continuous at tg and its value at tg is Xg.

The rest of this section is dedicated to proving the following theorem. A finite-
dimensional Banach space X is called polyhedral if its unit ball Bx is a polytope.

5.10. Theorem. Let X be a finite-dimensional Banach space. Then each
multivalued mapping of the form F(a) = Z, B(ai, ri) (acting from XN into X)
is lower semicontinuous on the set D = {a CXIN : F(a) & [Hprovided any of the
following three conditions is satisfied.

(a) X is strictly convex.
(b) X is polyhedral.
(c) X is two-dimensional.
In particular, each of the conditions (a), (b), (c) is su Lcieht for Cy(T,X) [
(GC) for any topological space T.

5.11. Remark.

(@) The final assertion of Theorem 5.10 follows easily from Proposition 5.7.
Indeed, if the mapping F from Theorem 5.10 is lower semicontinuous on D
then there exists a continuous selection of F on D by Michael’s selection
theorem [Mi].

(b) The mapping F from Theorem 5.10 is upper semicontinuous on D in any
finite-dimensional space X. To prove this, suppose the contrary. This
means that there exists an open set V [Xl, points a" [ (n = 0) and
Xn CHA(@") (n = 1) such that a" - a° F(a%) [CVland x,, ¥V for any
n = 1. The sequence (Xn) has a cluster point X, [ZX since F is locally
bounded. Clearly, Xo does not belong to V. But for every 1 < i < N,
[a§ — xo i a cluster point of the sequence ([P — x, DWhich is contained
in [0, ri]. This implies xo CFl(a®) [V] a contradiction.

Proof of Theorem 5.10(a). Let X be strictly convex and a [CD. If F(a) is a
singleton, then F is upper semicontinuous (and hence also lower semicontinuous)
in a by Remark 5.11(b). Now, suppose that F (a) contains two distinct points X, y.
The strict convexity of Bx and the definition of F easily imply that z := %
is an interior point of F(a). Then F is Lipschitz (with respect to the Hausdor ]
metric), and hence lower semicontinuous, on a neighborhood of a (in D). This
follows easily from the following particular case of [P-Y, Theorem 4]: Let ® he a

multivalued mapping from a subset S of XN into X, which has nonempty closed
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convex values and is Lipschitz (w.r.t. the Hausdor [mhetric). If a S, r > 0,
i C{1,...,N} and ®(a) n B%a;, r) & [ then the mapping b B ®(b) n B(b;,r) is
Lipschitz on a neighborhood of a (in S). 1

Proof of Theorem 5.10(b). If Bx is a polytope, then it is the intersection of
finitely many closed halfspaces Hi,...,Hk. Thus the mapping F from Theo-
rem 5.10 can be written in the form

L U S |
F(a)= (ai+riHj).
i=1j=1

Consequently, it is su LCcieht to prove the following proposition.

5.12. Proposition. Let Hi,...,Hy be closed halfspaces in X, dimX = d.
Then the multivalued mapping F from XN into X, given by

1
F@@= (ai+H;) foranya=(a,...,an) XV,
i=1

is lower semicontinuous on D(F) = {a XN : F(a) 8 [}

Proof. We shall proceed by induction with respect to the dimension d. Without
any loss of generality we can suppose that the boundary hyperplane of each H;
passes through the origin.

Case d =1. If X = R, denote by I, I— the set of indicesi [[{1... ,N} =1
such that, respectively, H; = [0, +oo[, Hj =] — o0,0]. Then for every a CRN we

have ) )
%ﬁ(ai,mm aj] ifl-B8C1-8[C1
i
F(a) = %mﬁéaﬁw[ if 1 =[]
L 0o, Min aj] if e =[]
i1
In all three cases F is lower semicontinuous on D(F).
Induction step. Let n be a positive integer such that the assertion of Propo-
sition 12 holds for any dimension d < n. We shall prove that it holds also for
d=n.

First, let us consider the case N = n, i.e. the number of the halfspaces is
the same as the dimension of X ri<i<n,letfi Xbe such that

Hi = f,1([0, +oo[). Denote K = =, f,71(0).
a) If dimK > 0, consider the quotient map q: X - X/K. Then
1 1 1 1
r 1 r 1
F@=q" qai +Hi) =q7* [a(ai) +a(Hi)]
i=1 i=1

O, (|
=q °G-Q (a),
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where Q: X" 5 (X/K)" and G: (X/K)" - X/K are given by
Q@ = ((az), ... ,a(@n)) .

r (|
G = bi+q(Hi) .

i=1
By the induction assumption, G is lower semicontinuous on D(G). Since g is open
and Q is continuous, the mapping F = g~ o G = Q is lower semicontinuous on
D(F) (Remark 5.9(a)).
b) If dim K = 0 then the linear mapping L: X - R", given by L(X) = (f1(x),...,
Tn(X)), is one-to-one and hence surjective. Observe that

F@={x[XA: x—a [(H; fori=1,...,n}
= {x %: fi(x) = fi(a;) fori=1,... r&l

=Lt [fi(ar), +oo[x - x [fa(an), +oo]
i I
= L1leseA(a),

where A: X" - R" is the linear mapping given by A(a) = (fi(a1), ..., fn(@n)),
and S(b) = b+ RT (b [CR") is the “shifting” of the positive cone in R". Ob-
serve that L is open, S is lower semicontinuous and A is continuous. Hence, by
Remark 5.9(a), F is lower semicontinuous.

Now, let N be arbitrary. If N < n, define H; = Hy for N < i < n, and apply
what was proved above to get easily that F is lower semicontinuous also in this
case.

Let N > n. Fix a CD(F), xo [CH(a) and (3> 0. By lower semicontinuity
proved above for the number of halfspaces equal to the dimension n, there exists
a neighborhood U of a in D(F) such that for each E [C{1,...,N} of cardinality
n we have 1

(bi + Hi) n B(Xo, DJE [Iwhenever b Ul
i (E1
Consequently, for b U, each n + 1 of the closed convex sets

B(Xo, mb1+ Hy,... ,bN + Hy

have nonempty intersection. By Helly’s theorem [Va], all these sets have nonempty
intersection. In other words, F (b) n B(Xo, DI& [Whenever b [UI. This completes
the proof. 1

Theorem 5.10(b) is proved.

To prove Theorem 5.10(c), it is possible to use Helly’s theorem in a similar way
as in the proof of Proposition 5.12. Thus it su [ced to prove the lower semiconti-
nuity of the intersection of two balls only (i.e., the case N = 2). And this is what
says the following lemma.
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5.13. Lemma. LetdimX =2, r>0,D={a [X: B(0,1)nB(a,r) 8 =
B(0,1 +r). Then the multivalued mapping F from D into X, given by

F(@) =B(0,1) nB(a,r),

is lower semicontinuous.

Proof. Fix ag [0 and xo [Fl(ag). We shall consider several cases that cover
all possible situations. (Note that the cases are not disjoint.)

Case 1: ag [CB°0,1+7r), i.e. B%0,1) n B%ag,r) & [ Then by
[P-Y, Theorem 4] F is Lipschitz with respect to the Haussdor [Cmhetrics on some
neighborhood of ag. This implies that F is lower semicontinuous at ag.

Case 2: [@y[F 1+r and F(ag) = {Xo}. In this case, F is upper semicontin-
uous, and hence also lower semicontinuous, at ag (cf. Remark 5.11(b)).

Case 3: [@)[=F 1+r and xo = £%. Then f(a) = 12 is a continuous selection
of F with f(ag) = Xo. Use Remark 5.9(b).

Case 4: [@)[F 1+r and Xo B ;2. The set F(ap) is a nondegenerate closed

1+r-
. N
line segment that contains 1°%-. Put

_ %o a0 — (L + )Xo

v
,—_XO @—(l+r)X0|:|

Let L be the a Cnelhull of F (ag). The line L separates B(0, 1) and B(ag, r). Since
the vector Xg is not parallel to L, every point a [X can be written (in a unique
way) in the form

a=ay+tv+sxy (t,s [R).

Observe that the line L + (ag — Xg) supports B(0, 1+ r) at ag. From this fact,
it easily follows that s < 0 whenever a = ag +tv+sxy, (. Fix 6 [{0,1) so small
that

@) Xo +tv [El(ap) for 0<t <},
and
©) Xo +tv+sxo [BI(0,1) whenever —d<s<s0<t<})

(this is possible since the triangle co{0, X0, 52} is contained in B(0, 1)).
PutU ={ag+tv+sxy: =0 <s=<0, |t <d} ThenU nD isa neighborhood
of ag in D. Define a mapping f:U - X by

I Cd+so+tv if—5<s<0=t<5s,
+tv+ =
@+ +SX0) =) | 9% if =5 <s<0,—5<t<0.
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Then f is continuous and f(ag) = Xo. We shall show that f(a) [CH(a) for every
a [

Leta=ap+tv+sxe [ If t =0 then f(a) CB(0,1) by (8), and (F{a) —al =
xXp —apCF r. Fort < 0 we have d{a)[F [A + s)xo[F 1+s < 1, and
[{a) —al= [(Xo + [tlv) —ao L= r by (7).

Also in this case, F is lower semicontinuous at ag by Remark 5.9(b). The proof
is complete. 1

Proof of Theorem 5.10(c). Since the assertion is obvious if r; = 0 for some i,
let us suppose that rj > 0 for each i. The case N = 2 (two balls) is an easy
consequence of Lemma 5.13.

Suppose N > 2. Fix ag [1Q, xo [Fl(ag), € > 0. Since the assertion is valid for
two balls, there exists a neighborhood U of ag in D such that for every a [l and
every pair of distinct indices j,k [{1,...,N} one has

B(aj, rj) n B(ak, rc) n B(Xo,€) & [
Consequently, for every a [CUl each three of the balls
B(ai, ri),...,B(an,rn), B(Xo, €)

have nonempty intersection. By Helly’s theorem [Va], the intersection of all these
balls is nonempty; in other words, F(a) n B(Xg, €) & [for a [Ul. 1

5.14. Remark. Lemma 5.13 does not hold in general if dim X > 2. For every
n > 2, it is easy to construct an n-dimensional Banach space X such that the set of
the extreme points of Bx is not closed. Put D = B(0,2), F(a) =B(0,1)nB(a,1)
for a . We shall show that F is not lower semicontinuous at some point of D.

Let (Xn) be a sequence of extreme points of Bx that converges to a point x
which is not extreme, i.e. x+u Sk for some nonzero vector u [X. If we denote
an = 2Xp and ag = 2x, we have a, - ag, F(an) = {Xn}, X C[X¥+u,x—u] CElap).
Such situation could not happen if F were lower semicontinuous at ap.

5.15. Remark. Our proofs of the existence of weighted Chebyshev centers
of finite sets in Cy(T, X) are based on the fact that “max” (which defines the
function we want to minimize) and “sup” (which defines the norm on Cy(T, X))
are interchangeable, since this implies that any continuous selection of the point-
by-point [=center map E{a(')) is a [=denter of a in Cy(T, X).

A similar idea can be used to prove some results on the existence of weighted
p-medians in LP(u, X) for 1 < p < oo. It is easy to see that, since sum and inte-
gral are interchangeable, any Bochner-measurable selection of the point-by-point
weighted p-median map (for a fixed weight) is a weighted p-median in LP(u, X)
for the same weight. Using selection theorems for weak or weak™~Upper semi-
continuous maps (due to V. V. Srivatsa and to J. E. Jayne and C. A. Rogers, cf.
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[J-O-P-V, Theorem 19, Theorem 16]), and versions of Theorem 3.7 for weak or
weak —topologies (instead of norm topology), it is possible to prove the folowing
result:

Let 1 < p < oo. Then weighted p-medians of the finite sets in LP(u, X) exist in
any of the following three cases:

(@) X is a dual space with the Radon-Nikodym property (this follows from
Theorem 5.1);

(b) X = Z™or some space Z and the corresponding weak and weak ~{opolo-
gies coincide on Sx;

(c) X admits the weighted p-medians of the finite sets and every norm-attain-
ing element x=of Sx —weakly compactly strongly exposes Bx, in the sense
that any sequence (x,) Bk with x"(k,) - 1 has a weak cluster point.

6. Appendix (Proof of Lemma 4.6)

Proof of Lemma 4.6(a). Let (x,) be a Cauchy sequence in ( %n. LetC >0
be such that X} L=< C for every n. Fix y [Tl Since Xh(Y) — Xm(y)[mey) =
T(Xh(Y) — Xm(Y) [&)) = Xh — Xm L) the sequence (Xn(Y)) is Cauchy in Xy, and
hence convergent to some X(y). —

In this way we have defined a function x:I" - X,,. For every finite subset o

of I we have
@ro I?Iz Iirr1n @n)lro I%ls Iimnsup x}, 1< C.

Takin%emum w.r.t. all finite subsets I'p [CTdwe obtain [XIzl< C, and hence
X III XV)n-

It remains to prove that (x,) converges to X. Fix an arbitrary € > 0. There
exists ng such that X}, —Xm [g]l< € whenever n,m > ng. Fix an arbitrary n greater
that ng. There exists a finite set ', [T kuch that X}, — X [£I< %)n —X)|r,, 5FE.
Then, for every m > ng, we have

xh — xLEI< % —x)|,—nE|+ @ —xm)“—n €
< - X)lrn %"‘ 2€.

Passing to the limit asm — oo we obtain X}, —Xx[&I< 2g (n > ng). This co%s
the proof. (The completeness of Sy (") follows from the fact that Sp(IN) = ( Xy)n
with X, = R for each y.) 1

Proof of Lemma 4.6(b). Let (V,v) be a sequence space on I, containing all
ey ch that V %= S;(IN) in the sense finition 4.4(d). We shall show that
( Xy is isometric with the dual of ( Xy)v.
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First, observe that v(§) = v([¢]) for each & [\, since M(w) = n(Jw]) (0 1
Sn :
™) —1 —1
1
V(§) = sup E(V)a(y) 1w CSk(M), m(w) =1

- 1
—

=sup )] :w ESK(M), M(w) =1
4 1
I
=sup EW)oly) : w ESE((M), mM(w) =1

Y
= V([ED-

Second, the linear space Vg of all elements of V with finite support is dense
in V. Indeed, if a functional £ C-VI1™#s null on Vy then it is representable by some
w [SK(I), but (y) = f(ey) = 0 for every y, hence f = 0.

Take ® LI Xy)v1"' For each y [ define u'(y) CX by m'y),x, =
D(xyey) (xy XAy ). This definition is correct since

[D(xyey)| < [ G e, 5= [BRIW(K &) = [BRIwey) ) ]

We claim that u™~'( Xy%jn. Let 0 < € < 1 and & [NV be arbitrary.
For each y find x(y) X such that %: [E(y)| and @), x(y)= (1 —
&) IH(Y) CIk(y) LIWe have x = x()) L0 Xy)v since v(IX(-) = v([E]) = v(&).

Moreover, for every finite set ', [CT]

 —  —
W) EY) < (1 —8)™"  d(x(v)ey)

fo " —
—
-0 x(yey
Mo

< (1—¢) @@L iXjr, GA
< (1—¢&) T IXI= (1 — &) @03 v (E).

1
Thus @Plﬂy) < @G (E) for every &L, Hence @@L g
If x = ey O Xy, then &(x) =  d(x(y)ey) = MWI(y), x(y)&nd
[Pp(x)| < ) OIK(yp =, Il Thelﬁ%ty of Vo in V implies the
density of ( Xy)v, in ( X{)v, hence d(x) =  [WY), x(y)Hor all x [V], and
@I = ] This completes the proof. 1
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