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GENERALIZED CENTERS OF

FINITE SETS IN BANACH SPACES

L. VESELÝ

Abstract. We study mainly the class (GC) of all real Banach spaces X such that

the set Ef (a) of the minimizers of the function

X 3 x 7→ f(‖x− a1‖, . . . , ‖x− aN‖)

is nonempty whenever N is a positive integer, a ∈ XN , and f is a continuous
monotone coercive function on [0,+∞[N . For particular choices of f , the set Ef (a)
coincides with the set of Chebyshev centers of the set {ai : i = 1, . . . ,N} or with
the set of its medians. The class (GC) is stable under making c0-, `p- and similar
sums. Under some geometric conditions on X, the function spaces Cb(T,X) or
Lp(µ,X) belong to (GC). One of the main tools is a theorem which asserts that, in
the definition of the class (GC), one can restrict himself to the functions f of the
type f(ξ1, . . . , ξN ) = max %iξi (%i > 0).

Introduction

Let X be a real Banach space, f a real-valued function of N variables defined at

least on RN
+ = [0,+∞[N . Instead of finite sets A = {a1, . . . , aN} ⊂ X we consider

ordered N -tuples a = (a1, . . . , aN ) ⊂ XN . (In this way we fix the order of the ai’s

and allow repeatings.)

The minimizers of the function ϕ:X → R,

(1) ϕ(x) = f(‖x− a1‖, . . . , ‖x− aN‖),

are called f-centers of a and the value

rf (a) := inf ϕ(X)
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is the f-radius of a. The set of f -centers of a will be denoted by Ef (a). Thus

Ef (a) = {x ∈ X : ϕ(x) = rf (a)}.

The problem of finding minimizers of functions as in (1) occurs sometimes in

economical questions as “optimal location problem”. The most common partic-

ular cases are Chebyshev centers (solutions of the “mini-max problem”, i.e.

f -centers for f(ξ) = max{ξ1 . . . , ξN}) and medians (solutions of the “mini-sum

problem”, i.e. f -centers for f(ξ) = ξ1 + . . . + ξN ). Some results connected with

various types of f -centers (characterizations, properties, . . . ) appeared, for ex-

ample, in [Du1], [Du2], [B-C-P1], [B-C-P2], [Ko], [Ve1], [Du3], [Ve2]. Of

course, it has sense to define Chebyshev centers also for bounded sets which are

not finite. This subject was widely studied by various authors (see e.g. [Am1],

[Am2], [A-M-S] and references therein).

The aim of the present paper is to study generalized centers (f -centers) of finite

sets for a wide class of functions f (namely, monotone convex and coercive), and

to state general results, especially for the existence of generalized centers in vector-

valued sequence and function spaces. We obtain some results which are new even

for Chebyshev centers of finite sets or for medians (e.g., Theorems 3.7, 4.8, 5.10).

We prove that the f -radius of a ∈ XN always coincides with the f -radius of

a calculated in X∗∗. (This is not true in general for the Chebyshev radius of

infinite sets.) The generalized centers of the finite sets exist in X if and only if the

“weighted Chebyshev centers” of the finite sets exist in X. This, together with

a result on upper semicontinuity of the multivalued mapping a 7→ Ef (a), yields

sufficient geometric conditions on X for the existence of the generalized centers

of finite sets in the space Cb(T,X) of all bounded continuous X-valued functions

on a topological space T . In particular, in Cb(T ) = Cb(T,R) such centers always

exist. We present an example (due to J. Kolář) of a three-dimensional X such

that a three-point set in Cb([0, 1],X) has no Chebyshev center. The class (GC) of

the spaces, in which f -centers exist for every monotone convex coercive function

f on RN
+ , is stable under making arbitrary c0 and `p sums (1 ≤ p ≤ ∞), and more

general types of sums. We discuss also the Lebesgue-Bochner spaces Lp(µ,X).

1. Definitions and Auxiliary Results

Let X be a real Banach space. We shall always consider X canonically em-

bedded in its second dual X∗∗. For a positive integer N , the space XN will be

endowed with the 2-norm ‖a‖2 =
∑
‖ai‖2.

The unit ball and sphere of X will be denoted by BX and SX respectively. By

B(c, r) and B0(c, r) we denote respectively the closed and open ball in X centered

in c ∈ X with radius r. The same balls in X∗∗ will be denoted by B̂(c, r) and

B̂0(c, r). (We put B(c, 0) = {c}, B0(c, 0) = ∅.)
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1.1. Definition.

(a) For a ∈ XN and f :RN
+ → R we define the f-radius and the set of

f-centers of a by

rf (a) = inf ϕ(X), Ef (a) = {x ∈ X : ϕ(x) = rf (a)},

where ϕ is as in (1).

Considering a as an element of (X∗∗)N , we put

r̂f (a) = inf ϕ(X∗∗), Êf (a) = {x∗∗ ∈ X∗∗ : ϕ(x∗∗) = r̂f (a)}.

(b) If f is of the form

f(ξ) = max
1≤i≤N

%iξi ,

where % := (%1, . . . , %N ) ∈]0,+∞[N , we shall use the notation r%(a), r̂%(a),

E%(a), Ê%(a) for the f -radius of a in X and in X∗∗ and for the set of

f -centers of a in X and in X∗∗ respectively. In this case, the f -centers are

called weighted Chebyshev centers. (Classical Chebyshev centers

are weighted Chebyshev centers for the case of a constant weight % =

(1, . . . , 1).)

(c) If f is of the form

f(ξ) =
N∑
i=1

%iξ
p
i ,

where % := (%1, . . . , %N) ∈]0,+∞[N , the corresponding f -centers are cal-

led weighted p-medians. (Medians are weighted 1-medians for the case

of a constant weight % = (1, . . . , 1).)

1.2. Example. Let X = R, a ∈ RN . It is easy to see that there exists a

unique Chebyshev center of a, namely the point x0 = (1/2) minai + (1/2) maxai.

Moreover, if a1 ≤ . . . ≤ aN , the medians of a are given as follows. If N = 2k + 1

then Ef (a) = {ak+1}. If N = 2k then Ef (a) = [ak, ak+1] (this interval can be

degenerated to one point if ak = ak+1).

The rest of this section is devoted to definitions and properties of some auxiliary

notions.

We shall consider the coordinate-wise ordering on RN :

ξ ≤ η
def
⇐⇒ ξi ≤ ηi ∀i ∈ {1, . . . , N}.

Thus, e.g., ξ ∨ 0 = (max{ξ1, 0}, . . . ,max{ξN , 0}) and |ξ| = (|ξ1|, . . . , |ξN |).
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1.3. Definition. A function f :RN ⊃ S → R is said to be

(a) monotonic if f(ξ) ≤ f(η) whenever ξ, η ∈ S, |ξ| ≤ |η|;
(b) monotone if f(ξ) ≤ f(η) whenever ξ, η ∈ S, ξ ≤ η;
(c) strictly monotone if f(ξ) < f(η) whenever ξ, η ∈ S, ξ ≤ η and ξ 6= η;

(d) weakly strictly monotone if f is monotone, and f(ξ) < f(η) whenever

ξ, η ∈ S, ξi < ηi for all i ∈ {1, . . . , N};
(e) coercive if f(ξ) tends to +∞ as ‖ξ‖ → +∞, ξ ∈ S.

We collect some useful properties of convex monotone functions on RN
+ in the

following Proposition.

1.4. Proposition. Each convex monotone f :RN
+ → R satisfies the following

properties.

(i) f is Lipschitz on bounded subsets of RN
+ and attains its minimum over

RN
+ at the origin.

(ii) If the set f−1(f(0)) of the points of minimum is bounded, then f is coercive

(and hence every minimizing sequence has a convergent subsequence).

(iii) If 0 is the unique minimum point for f , then f is weakly strictly monotone.

(iv) Let T be a topological space and gi:T → [0,+∞[ lower semicontinu-

ous functions (i = 1, . . . , N). Then the function ϕ:T → R, ϕ(t) =

f(g1(t), . . . , gN(t)), is lower semicontinuous.

Proof. (i) The function F :RN → R, given by F (ξ) = f(ξ ∨ 0) is a convex

extension of f ; hence it is locally Lipschitz (see e.g. [Ph]).

(ii) Fix r > 0 such that f(ξ) > f(0) whenever ‖ξ‖ = r. Thenm := inf‖ξ‖=r f(ξ)

> f(0) by (i) and the compactness of {‖ξ‖ = r}.
For every ξ ∈ RN

+ with ‖ξ‖ > r we have by convexity that

m ≤ f

(
rξ

‖ξ‖

)
= f

(
r

‖ξ‖
ξ +

(
1−

r

‖ξ‖

)
0

)
≤

r

‖ξ‖
f(ξ) +

(
1−

r

‖ξ‖

)
f(0).

An elementary calculation gives f(ξ) ≥ f(0)+m−f(0)
r ‖ξ‖, hence f is coercive. This

also implies that any sequence that minimizes f is bounded, and hence relatively

compact.

(iii) Suppose, on the contrary, that there exist ξ, η ∈ RN
+ such that ξi < ηi

(i = 1, . . . , N) and f(ξ) = f(η) =: p. Since the value f(0) is attained only at

0, we must have p > f(0). The order interval I = {x ∈ RN
+ : ξ < x < η} is a

nonempty open (convex) set in RN
+ and, by monotonicity, f(x) = p for every x ∈ I.

Choose any x0 ∈ I. Then f1(t) := f(tx0) is a convex nondecreasing function on

R+ which is constant on a nontrivial interval containing the point t = 1. Thus f1
must be constant on [0, 1]. But this implies f(0) = f(x0) = p, a contradiction.

(iv) Let (tγ) ⊂ T be a net converging to t0 ∈ T . We have to prove that

ϕ(t0) ≤ lim inf ϕ(tγ).
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Take an arbitrary ε > 0. There exists an index γ0 such that gi(tγ) ≥ gi(t0)− ε
whenever γ ≥ γ0 and 1 ≤ i ≤ N . Put δi(ε) := max{gi(t0)− ε, 0} and observe that

gi(tγ) ≥ δi(ε) whenever γ ≥ γ0 and 1 ≤ i ≤ N . Thus, f(δ1(ε), . . . , δN(ε)) ≤ ϕ(tγ)

for γ ≥ γ0. This implies that

f(δ1(ε), . . . , δN (ε)) ≤ lim inf ϕ(tγ), for every ε > 0.

The left-hand side tends to ϕ(t0) as ε→ 0 since f is continuous by (i). �

1.5. Definition. Let x ∈ SX , x∗ ∈ SX∗ . We shall say that

(a) x∗ strongly exposes BX if every sequence (xn) ⊂ BX such that x∗(xn)

→ 1 is norm-convergent;

(b) x∗ compactly strongly exposes BX if every sequence (xn) ⊂ BX such

that x∗(xn)→ 1 has a norm-convergent subsequence;

(c) x is (compactly) strongly exposed by x∗ if x∗ (compactly) strongly

exposes BX and x∗(x) = 1;

(d) X satisfies (CSE) if every norm-attaining element of SX∗ compactly stron-

gly exposes BX .

(e) X satisfies (w∗K) if X is isometric to a dual of a normed space Z and the

corresponding weak∗ topology σ(X,Z) coincides with the norm topology

on the unit sphere SX .

We state the following Proposition 1.6 to illustrate the relation of the properties

(CSE), (w∗K) with some more common geometric properties of Banach spaces. We

omit the standard proofs.

1.6. Proposition.

(a) If X satisfies (CSE) or (w∗K) then it has the Kadets property (i.e., the

weak and the norm topologies coincide on SX).

(b) Every locally uniformly convex space satisfies (CSE).

(c) Every dual locally uniformly convex space satisfies (w∗K).

(d) Every reflexive space with the Kadets-Klee property (i.e. the convergence

of sequences in (SX , weak) and in (SX , norm) coincide) satisfies (CSE)

and (w∗K).

(e) Every finite-dimensional space satisfies (CSE) and (w∗K).

1.7. Remark. The property (CSE) is not equivalent to the following (weaker)

property (CSE0): each x ∈ SX is compactly strongly exposed by some element

of SX∗ .

This was shown by J. Saint Raymond [SR] who constructed a counterexample.

However, in the class of reflexive Banach spaces the properties (CSE) and (CSE0)

coincide. It follows from Proposition 1.6(d) and from the fact that (CSE0) implies

the Kadets-Klee property.
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The last part of this section is dedicated to some basic facts about subdif-

ferentials of convex functions. For our purposes, it will be sufficient to consider

continuous functions only. Basic information can be found in [Ph], an intensive

study of subdifferentials is contained in [I-L].

Let U ⊂ X be an open convex set and f :U → R be continuous and convex.

For x ∈ U , the subdifferential of f at x is the set

∂f(x) = {x∗ ∈ X∗ : f(y) ≥ f(x) + x∗(y − x) ∀y ∈ U}.

It is well known that ∂f(x) is a nonempty weak∗-compact set and it is a local

notion in the sense that if f = g on some neighborhood of x then ∂f(x) = ∂g(x).

It follows directly from the definition that 0 ∈ ∂f(x) if and only if f attains its

minimum at x.

It is a well known and not difficult consequence of the Hahn-Banach theorem

that the subdifferential of the norm can be written as ∂‖ · ‖(x) = D(x) where

D(x) = {x∗ ∈ X : ‖x∗‖ ≤ 1 and x∗(x) = ‖x‖}.

The following “chain rule formula” for subdifferentials is a particular case of

[I-L, Theorem 2 of §8, p. 44]; cf. also [Pa, Theorem 4.3].

1.8. Theorem. Let X be a Banach space, N ∈N. Let f :RN → R be convex

and monotone. For i = 1, . . . , N , let gi : X → R be convex and continuous. Let

ϕ:X → R be the composed function ϕ(x) = f(g1(x), . . . , gN(x)). Then for every

x0 ∈ X

∂ϕ(x0) =
{
x∗ ∈ X∗ : x∗ =

N∑
i=1

λiu
∗
i , λ ∈ ∂f(g1(x0), . . . , gN(x0)),

u∗i ∈ ∂gi(x0) ∀i
}
.

2. Properties of Generalized Centers, the Class (GC)

We shall consider f -centers for convex monotone functions f on RN
+ . It is easy

to prove that, in this case, the corresponding function ϕ(x) = f(‖x − a1‖, . . . ,
‖x− aN‖) is continuous (by Proposition 1.4(i)) and convex. Hence the set Ef (a)

of the f -centers is closed and convex.

The following two propositions collect some easy facts which are basically well

known for the cases of Chebyshev centers and medians.

2.1. Proposition. For a ∈ XN , let us denote ∆(a) = mink maxi ‖ak − ai‖,
d(a) = maxk,i ‖ak − ai‖, ‖a‖∞ = maxi ‖ai‖. Let f be a monotone function on

RN
+ , and let ϕ be as in (1). Then

(a) ∆(a) ≤ d(a);
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(b) rf (a) = inf{ϕ(x) : x ∈
⋃N

1 B(ai,∆(a))}
= inf{ϕ(x) : ‖x‖ ≤ ‖a‖∞ + ∆(a)};

(c) Ef (a) ⊂
N⋃
i=1

B(ai,∆(a)) whenever f is weakly strictly monotone;

(d) Ef (a) ⊂
N⋂
i=1

B(ai,∆(a) + d(a)) whenever f is weakly strictly monotone.

Proof. The inequality (a) is obvious.

Let x /∈
⋃N

1 B(ai,∆(a)). Choose k0 ∈ {1, . . . , N} such that max
i
‖ak0 − ai‖ =

∆(a). Then we have

‖ak0 − ai‖ ≤ ∆(a) < ‖x− ai‖ for all i.

Consequently, ϕ(ak0) ≤ ϕ(x) if f is only monotone, or ϕ(ak0) < ϕ(x) if f is weakly

strictly monotone. This easily implies the first equality in (b), and (c).

If x ∈
⋃N

1 B(ai,∆(a)), choose an index j such that ‖x− aj‖ ≤ ∆(a). Then

‖x‖ ≤ ‖aj‖+ ‖x− aj‖ ≤ ‖a‖∞ + ∆(a).

This proves the second equality in (b).

Let us prove (d). Let x ∈ Ef (a). By (c), there exists an index j such that

‖x− aj‖ ≤ ∆(a). Then, for each i ∈ {1, . . . , N} , we have

‖x− ai‖ ≤ ‖x− aj‖+ ‖aj − ai‖ ≤ ∆(a) + d(a). �

2.2. Proposition (Existence). Let X be a Banach space that is norm-one

complemented in its bidual. Let f :RN
+ → R be continuous, monotone and coercive.

Then Ef (a) is nonempty for each a ∈ XN .

Proof. Let a ∈ XN . The function ϕ from (1) is coercive and weak∗ lower semi-

continuous onX∗∗ (cf. Proposition 1.4(iv)). By a standard weak∗-compactness ar-

gument, ϕ attains its minimum overX∗∗. In other words, there exists c∗∗ ∈ Êf (a).
Let P :X∗∗ → X be a projection of norm one. Put c = P (c∗∗). For all i we

have ‖c− ai‖ = ‖P (c∗∗ − ai)‖ ≤ ‖c∗∗ − ai‖. Consequently,

rf (a) ≤ ϕ(c) = f(‖c− a1‖, . . . , ‖c− aN‖) ≤ f(‖c∗∗ − a1‖, . . . , ‖c
∗∗ − aN‖)

= ϕ̂(c∗∗) = r̂f (a) ≤ rf (a)

since f is monotone. Hence c ∈ Ef (a). �

2.3. Remark. Besides reflexive spaces, the class of spaces which are norm-one

complemented in their biduals contains also:

— all dual spaces (because of the-well known decomposition X∗∗∗ = X∗ ⊕X⊥),
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— the spaces L1(µ) (cf. [H-W-W, p. 158]),

— the subspaces X of L1(µ) such that the unit ball BX of X is closed in L1(µ)

w.r.t. convergence in measure µ ([H-W-W, p. 183]).

For other examples see Theorem 5.1.

Various examples of finite sets that lack Chebyshev centers are known. The first

such example was found by A. L. Garkavi [Ga] who defined a closed hyperplane

X in C[0, 1] and a three-points set in X without Chebyshev centers in X (see also

[A-M-S, p. 514 and §3]).

S. V. Konjagin [Ko] proved that such an example can be found in any non-

reflexive Banach space X after a suitable renorming. The author of the present

paper generalized Konyagin’s construction to the following result. A norm f on

R3 is symmetric if f = f ◦ π for every permutation π of the three variables.

2.4. Theorem [Ve1]. Let X be a nonreflexive Banach space. There exists

a ∈ X3 with the following property: if f is a norm on R3 which is symmetric

and monotonic, then X admits an equivalent norm ||| · ||| such that Ef (a) = ∅ in

(X, ||| · |||).

Obviously, r̂f (a) ≤ rf (a) holds always true. We are going to prove that equality

holds in fact (Theorem 2.6). We shall need the following lemma. Recall that B̂(c, r)

denotes the closed r-ball in X∗∗, centered in c.

2.5. Lemma [Li, Lemma 5.8, p. 59]. Let a ∈ XN , r ∈]0,∞[N . Suppose

N⋂
i=1

B̂(ai, ri) 6= ∅.

Then for every ε > 0 one has
N⋂
i=1

B(ai, ri + ε) 6= ∅.

2.6. Theorem. Let f be a continuous monotone function on RN
+ , X be an

arbitrary Banach space. Then for every a ∈ XN

rf (a) = r̂f (a).

Proof. For ε ∈ (0, 1) choose x∗∗ε ∈ X
∗∗ such that f(‖x∗∗ε −a1‖, . . . , ‖x∗∗ε −an‖) <

r̂f (a) + ε and ri(ε) := ‖x∗∗ε − ai‖ ≤ ‖a‖∞ + ∆(a) (cf. Proposition 2.1(b)). Since

x∗∗ε ∈
⋂
i B̂(ai, ri(ε)), by Lemma 2.5 there exists xε ∈

⋂
iB(ai, ri(ε) + ε). Then

the assumptions allow us to write

0 ≤ rf (a)− r̂f (a)

≤ f(‖xε − a1‖, . . . , ‖xε − an‖)− f(‖x∗∗ε − a1‖, . . . , ‖x
∗∗
ε − an‖) + ε

≤ f(r1(ε) + ε, . . . , rN (ε) + ε)− f(r1(ε), . . . , rN (ε)) + ε.
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But the right-hand side of this chain of inequalities tends to zero as ε→ 0+, since

ri(ε) ≤ 2‖a‖∞+∆(a) and f is uniformly continuous on compact subsets of RN
+ .�

Let us remark that the equality of the Chebyshev radii in X and in X∗∗ does

not hold for infinite bounded sets in general. To see this, consider X = c0 and

A = {en}∞1 the canonical basis of c0. It is easy to see that the Chebyshev radii of

A satisfy

r(A) := inf
x∈c0

sup
n
‖x− en‖ = 1, r̂(A) := inf

x∗∗∈`∞
sup
n
‖x∗∗ − en‖ = 1/2.

In a similar way as in Theorem 2.6, we shall prove that for the existence of

a large class of generalized centers, it is sufficient the existence of all weighted

Chebyshev centers.

2.7. Theorem. For a Banach space X and a ∈ XN , the following assertions

are equivalent.

(i) If r ∈]0,+∞[N and
N⋂
i=1

B̂(ai, ri) 6= ∅, then also
N⋂
i=1

B(ai, ri) 6= ∅.

(ii) a admits weighted Chebyshev centers for all weights % ∈]0,+∞[N .

(iii) a admits f -centers for every continuous monotone coercive function f

on RN
+ .

Proof. (i) ⇒ (iii). Suppose (i) holds. Let f be as in (iii). By Proposition 2.2

and Remark 2.3, there exists x∗∗ ∈ Êf (a). Put ri = ‖x∗∗ − ai‖ and observe that

x∗∗ ∈
⋂
i B̂(ai, ri). By (i), there exists x ∈

⋂
iB(ai, ri). In the same way as in

the proof of Theorem 2.6, now with ε = 0, it is possible to see that ϕ(x) = ϕ(x∗∗)

where ϕ is as in (1). Then clearly x ∈ Ef (a), since ϕ(x) = ϕ(x∗∗) = r̂f (a) ≤ rf (a).
(iii) ⇒ (ii) is obvious.

(ii) ⇒ (i). Suppose a has all weighted Chebyshev centers. Let x∗∗ belong to⋂
i B̂(ai, ri). Define % ∈]0,+∞[N by %i = 1/ri. By Theorem 2.6,

r%(a) = r̂%(a) ≤ max
i

(1/ri)‖x
∗∗ − ai‖ ≤ 1.

By (ii) there exists x ∈ E%(a). This point satisfies maxi(1/ri)‖x−ai‖ = r%(a) ≤ 1,

and hence it belongs to
⋂
iB(ai, ri). �

2.8. Definition (The class (GC)). We shall denote by (GC) the class of all

Banach spaces X such that for every positive integer N and every a ∈ XN , one of

the equivalent conditions (i), (ii), (iii) of Theorem 2.7 is satisfied. (“GC” stands

for “generalized centers”.)

By Proposition 2.2, the class (GC) contains all the spaces which are norm-one

complemented in their biduals (in particular, all dual spaces). As we shall see

later, c0 ∈ (GC), though c0 is known to be uncomplemented in (c0)
∗∗ = `∞ [So].

2.9. Problem. Does there exist a Banach space X which does not belong to

(GC) but any finite set in X admits a (classical) Chebyshev center?
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3. Uniqueness and Stability of Generalized Centers

3.1. Remark. It is natural to ask that the set of f -centers (f monotone on

RN
+ ) of any singleton coincide with the singleton, i.e., Ef (a) = {x0} whenever

a1 = . . . = aN = x0. It is easy to ee that this condition is equivalent to the fact

that 0 is the only minimum point for f . (This happens, for instance, if f is strictly

monotone.)

Moreover, if 0 is the only minimum point for f , then A := {ai : i = 1, . . . , N} is

a singleton if and only if rf (a) = f(0). (Indeed, denote by ei the i-th vector of the

canonical basis of Rn and suppose that rf (a) = f(0). The function fi(t) := f(tei)

is nondecreasing on R+ with 0 as the unique minimum point. Take a sequence

(xn) in X such that ϕ(xn) ≡ f(‖xn − a1‖, . . . , ‖xn − aN‖) < f(0) + (1/n). Then

fi(0) ≤ fi(‖xn − ai‖) ≤ ϕ(xn) < fi(0) + (1/n); consequently ‖xn − ai‖ → 0 as

n→∞. Since this holds for all i, all ai’s must be equal.)

For a set M we denote by affM and riM the affine hull of M and the relative

interior of M (i.e., the interior of M with respect to affM).

3.2. Theorem (Uniqueness). Let X be a strictly convex Banach space, a ∈
XN , A = {ai : i = 1, . . . , N}.

(a) For every % ∈]0,+∞[N , the set E%(a) contains at most one point.

(b) Let f be a convex monotone function on RN
+ with 0 as a unique minimum

point. If Ef (a) contains more than one point, then Ef (a) is a closed seg-

ment which is contained in the segment [aj , ak] for some j, k ∈ {1, . . . , N}.
(c) Let f be a convex strictly monotone function on RN

+ . If Ef (a) con-

tains more than one point, then Ef (a) is a closed segment such that

A ⊂ (affEf (a) \ riEf (a)). (In particular, A is contained in a line.)

Proof.

Case (a). Let x, y ∈ E%(a) be two distinct points. Clearly, r := r%(a) > 0

(Remark 3.1). Put ϕ(u) = maxi %i‖u − ai‖. Since ϕ(x) = ϕ(y) = r, the points

x, y belong to B(ai, r/%i) (i = 1, . . . , N). By rotundity, the point z = (x + y)/2

belongs to the interior of B(ai, r/%i); in other words, %i‖z − ai‖ < r for every i.

This implies ϕ(z) < r = inf ϕ(X), a contradiction.

Case (b). Suppose that Ef (a) is not contained in a line. Since it is convex

(see the beginning of Section 2), the set Ef (a) \ A must contain three affinely

independent points x0, x1, y (the vertices of a nondegenerate triangle). For t ∈]0, 1[

put Lt = aff{(1− t)x0 + tx1, y}. Since y /∈ A and any pair of lines Lt,Lt′ intersects

only in y, there exists t ∈]0, 1[ such that Lt contains no point of A (A is finite!).

Put x = (1− t)x0 + tx1, z = (x+ y)/2. For each i = 1, . . . , N the points x, y, ai
are affinely independent, hence by rotundity

(2) ‖z − ai‖ <
1

2
‖x− ai‖+

1

2
‖y − ai‖.
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But Proposition 1.4(iii) gives, for ϕ as in (1),

ϕ(z) < f

(
‖x− a1‖+ ‖y − a1‖

2
, . . . ,

‖x− aN‖+ ‖y − aN‖

2

)
≤

1

2
ϕ(x) +

1

2
ϕ(y) = rf (a),

a contradiction.

Thus Ef (a) is a line segment since it is bounded (cf. Proposition 1.4(ii)). Denote

by x, y its endpoints and put L := affEf (a), z = (x+ y)/2. If (L\]x, y[) ∩ A = ∅
then, either the points x, y, ai are affinely independent (i = 1 . . . , N) or ai ∈
]x, y[ (i = 1, . . . , N). Thus (2) holds for each i and, as above, we arrive to a

contradiction.

It remains to show that A0 := (L\]x, y[) ∩ A cannot be contained in one of

the two components of L\]x, y[. Suppose, on the contrary, that A0 is contained

in the component of L\]x, y[ which contains x. As we observed above, (2) holds

whenever ai ∈ A \A0. Thus there exists ε ∈]0, 1[ so small that

(2’) ‖z − ai‖ <
1− ε

2
‖x− ai‖+

1 + ε

2
‖y − ai‖

holds whenever ai ∈ A \ A0. Moreover, for ai ∈ A0, we have ‖z − ai‖ < ‖y − ai‖;
consequently

‖z − ai‖ = (1− ε)‖z − ai‖+ ε‖z − ai‖

< (1− ε)‖z − ai‖+ ε‖y − ai‖

≤
1− ε

2
‖x− ai‖+

1− ε

2
‖y − ai‖+ ε‖y − ai‖

=
1− ε

2
‖x− ai‖+

1 + ε

2
‖y − ai‖.

We conclude that (2’) holds for every i = 1, . . . , N . As above, since f is weakly

strictly monotone and convex, we obtain

ϕ(z) < f
((1− ε)‖x− a1‖+ (1 + ε)‖y − a1‖

2
, . . . ,

(1− ε)‖x− aN‖+ (1 + ε)‖y − aN‖

2

)
≤

1− ε

2
ϕ(x) +

1 + ε

2
ϕ(y) = rf (a),

a contradiction.

Case (c). Let x, y be two distinct points of Ef (a) and let ϕ be as in (1).

Remark 3.1 implies that A is not a singleton. If there exists i0 ∈ {1, . . . , N} such
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that either {x, y, ai0} is not contained in a line or ai0 ∈]x, y[, then (2) holds for

i = i0. As above, using strict monotonicity instead of weak strict monotonicity,

we get a contradiction.

Hence L := affA = affEf (a) is a line and no point of A can lie strictly between

two distinct points of Ef (a). This completes the proof of (c). �
3.3. Example. Theorem 3.2(c) covers the case of medians. For medians

in rotund Banach spaces, we can say much more combining Theorem 3.2 with

Example 1.2. In particular, if there are more than one medians then the endpoints

of the interval Ef (a) belong to {ai : i = 1, . . . , N}. But this is not the case in

general, as the following simple example shows:

Let N = 2, f(ξ1, ξ2) = ξ1 + ξ2 + max{ξ1, ξ2, (3/4)(ξ1 + ξ2)}, X = R, a =

(−2, 2) ∈ R2. Clearly, f is a convex symmetric strictly monotone function on R2
+.

It is easy to verify that the function ϕ(x) = f(|x+2|, |x− 2|) attains its minimum

exactly at the points −1 ≤ x ≤ 1. In other words, Ef (a) = [−1, 1].

We are going to prove two stability results that will be used in the next section

for weighted Chebyshev centers.

3.4. Theorem. Let X be a Banach space with the property (w∗K) (i.e., X =

Z∗ for some Banach space Z and the corresponding weak∗ topology coincides with

the norm topology on SX), a ∈ XN . Let f be a convex monotone function on RN
+

having 0 as a unique point of minimum. Then every minimizing sequence for the

function

ϕ(x) = f(‖x− a1‖, . . . , ‖x− aN‖)

(i.e., a sequence (xn) in X with ϕ(xn)→ rf (a)) has a (norm) convergent subse-

quence. In particular, Ef (a) is a nonempty compact set.

Proof. It is sufficient to prove that every minimizing sequence (xn) has a norm-

cluster point. By Proposition 1.4(ii), f is coercive; hence (xn) is bounded. Passing

to a subsequence, if necessary, we can suppose that for each i there exists µi :=

lim
n→∞

‖xn − ai‖. Moreover, (xn) admits a subnet (zγ) that weak∗ converges to a

point x0 ∈ X. By weak∗ lower semicontinuity of the norm (X is dual!) and of ϕ

(Proposition 1.4(iv)), we have ‖x0 − ai‖ ≤ µi for all i, and

rf (a) ≤ ϕ(x0) ≤ lim inf
γ

ϕ(zγ) = rf (a).

Consequently, ϕ(x0) = rf (a) and x0 ∈ Ef (a).

Claim. There exists an index k ∈ {1, . . . , N} such that µk = ‖x0 − ak‖.
If this is not the case, we have µi > ‖x0 − ai‖ for all i. By Proposition 1.4(iii),

f is weakly strictly monotone, hence we have

ϕ(x0) < f(µ1, . . . , µN ) = lim
γ
ϕ(zγ) = rf (a),

a contradiction that proves our Claim.
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We have zγ − ak
w∗

→ x0 − ak and ‖zγ − ak‖ → ‖x0 − ak‖. The property (w∗K)

implies that the weak∗ convergence is in fact norm convergence. Consequently

x0 is a cluster point of (zγ), and hence also of (xn). �

The following result concerns spaces in which weak or weak∗ compactness

arguments cannot be used. Thus we have to assume the existence of the corre-

sponding generalized centers.

3.5. Theorem. Let X have the property (CSE) (i.e. every norm-attaining

element of SX∗ compactly strongly exposes BX). Let f be a convex monotone

function on RN
+ having 0 as a unique point of minimum. Let a ∈ XN be such that

Ef (a) is not empty. Then every minimizing sequence for the function

ϕ(x) = f(‖x− a1‖, . . . , ‖x− aN‖)

has a (norm) convergent subsequence. In particular, Ef (a) is compact.

Proof. If a1 = . . . = aN , the result easily follows from Remark 3.1 and Propo-

sition 1.4(ii).

Suppose that the set A = {ai : i = 1, . . . , N} is not a singleton. We want

to prove that every minimizing sequence (xn) has a cluster point in the norm

topology. Proposition 1.4(ii) implies that (xn) is bounded. Consider the convex

monotone extension of f to the whole RN , given by F (ξ) = f(ξ ∨ 0). Then

obviously ϕ(x) = F (‖x− a1‖, . . . , ‖x− aN‖) for each x ∈ X.

Choose an arbitrary point x0 ∈ Ef (a). Since ϕ attains its minimum at x0, we

must have 0 ∈ ∂ϕ(x0). The formula for the subdifferential of ϕ (Theorem 1.8)

implies that there exist

(3) λ ∈ ∂F (‖x0 − a1‖, . . . , ‖x0 − aN‖) and u∗i ∈ D(x0 − ai) (i = 1, . . . , N)

such that

(4)
N∑
i=1

λiu
∗
i = 0 .

(Recall that D = ∂‖ · ‖.) Since F is nondecreasing in each coordinate, we must

have λi ≥ 0 for all i.

Claim. There exists an index i0 ∈ {1, . . . , N} such that λi0 > 0 and ‖x0 −
ai0‖ > 0.

Since A contains more than one element, there is at least one index i such that ai 6=
x0. Without any loss of generality we can suppose that, for some K ∈ {1, . . . , N},{

ai 6= x0 if 1 ≤ i ≤ K;

ai = x0 if K < i ≤ N .
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For any ξ ∈ RK denote by ξ the element of RN whose first K coordinates are those

of ξ and the remaining ones, if any, are zeros. Put ξ0 = (‖x0−a1‖, . . . , ‖x0−aK‖)
and define a function g:RK → R by g(ξ) = F (ξ). Then g is convex and monotone,

and the only point of minimum of g over RK
+ is 0. For each ξ ∈ RK we have

g(ξ)− g(ξ0) = F (ξ)− F (ξ0) ≥ 〈λ, ξ − ξ0〉 =
∑K
i=1 λi(ξi − ‖x0 − ai‖). This means

that (λ1, . . . , λK) ∈ ∂g(ξ0). Since ξ0 is not a point of minimum for g, there exists

i0 ∈ {1, . . . ,K} such that λi0 6= 0. This proves our Claim.

Using (4) we can write

εn := ϕ(xn)− ϕ(x0)(5)

= f(‖xn − a1‖, . . . , ‖xn − aN‖)− f(‖x0 − a1‖, . . . , ‖x0 − aN‖)

=
[
f(‖xn − a1‖, . . . , ‖xn − aN‖)− f(‖x0 − a1‖, . . . , ‖x0 − aN‖)

−
N∑
i=1

λi(‖xn − ai‖ − ‖x0 − ai‖)
]

+
N∑
i=1

λi
[
‖xn − ai‖ − ‖x0 − ai‖ − u

∗
i (xn − x0)

]
.

By the definition of subdifferential, all square brackets in (5) are nonnegative.

Thus, using the fact that ‖x0 − ai0‖ = u∗i0(x0 − ai0), we obtain εn ≥ λi0 [‖xn −
ai0‖ − u

∗
i0

(xn − ai0)] ≥ 0. Consequently

‖xn − ai0‖ − u
∗
i0(xn − ai0)→ 0.

If lim inf ‖xn − ai0‖ = 0, then (xn) has a subsequence converging to ai0 , and we

are done.

Suppose lim inf ‖xn − ai0‖ > 0. This implies

0 ≤ 1− u∗i0

(
xn − ai0
‖xn − ai0‖

)
=

1

‖xn − ai0‖
[‖xn − ai0‖ − u

∗
i0(xn − ai0)]→ 0.

Since u∗i0 compactly strongly exposes BX and (xn) is bounded, the sequence (xn)

admits a subsequence (x̃m) such that

x̃m − ai0
‖x̃m − ai0‖

→ y and ‖x̃m − ai0‖ → t

for some y ∈ SX and t > 0. But this implies that (x̃m) converges to ty + ai0 . �
3.6. Lemma. Let f be a convex weakly strictly monotone function on RN

+ .

Then the function a 7→ rf (a) is Lipschitz on any bounded subset of XN .

Proof. Let m > 0. We shall prove that rf is Lipschitz on the set

B = {a ∈ XN : ‖ai‖ ≤ m for all i}.
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First observe that d(a) ≤ 2m for every a ∈ B. For a ∈ B, Proposition 2.1(a,b)

implies ‖a‖∞ + ∆(a) ≤ 3m and

(6) rf (a) = inf{f(‖x− a1‖, . . . , ‖x− aN‖) : ‖x‖ ≤ 3m}.

Moreover, we have ‖x − ai‖ ≤ 4m whenever ‖x‖ ≤ 3m and a ∈ B. Let L be

the Lipschitz constant of f on [0, 4m]N (Proposition 1.4(i)). For a, ã ∈ B and

‖x‖ ≤ 3m we have

|f(‖x− a1‖, . . . , ‖x− aN‖)− f(‖x− ã1‖, . . . , ‖x− ãN‖)|

≤ L

(
N∑
i=1

(‖x− ai‖ − ‖x− ãi‖)
2

)1/2

≤ L

(
N∑
i=1

‖ai − ãi‖
2

)1/2

.

Consequently, by (6), the function rf onB is the pointwise infimum of the functions

a 7→ f(‖x− a1‖, . . . , ‖x− aN‖) (w.r.t. x ∈ X, ‖x‖ ≤ 3m) which are all Lipschitz

on B with the same Lipschitz constant L. This implies that rf is Lipschitz on B

with constant L, too. �

Let us recall the definition of upper semicontinuity of multivalued mappings.

Let F be a multivalued mapping from a topological space T into another topo-

logical space S, with F (t) nonempty for all t ∈ T . The mapping F is said to be

upper semicontinuous at a point t0 ∈ T if for every open set V containing

F (t0) there exists an open neighborhood U of t0 such that F (t) ⊂ V whenever

t ∈ U .

F is said to be upper semicontinuous on T if it is upper semicontinuous at

each point of T .

Obviously, if F is singlevalued then F is upper semicontinuous if and only if F

is continuous in the classical sense.

3.7. Theorem. Let f be a convex monotone function on RN
+ with 0 as a

unique point of minimum. Denote

D(Ef ) = {a ∈ XN : Ef (a) 6= ∅}.

Suppose that X has at least one of the properties (w∗K), (CSE). Then the mul-

tivalued mapping a 7→ Ef (a) (from D(Ef ) into X) is upper semicontinuous on

D(Ef ) with respect to the norm topologies. Moreover, D(Ef ) = X whenever X is

(w∗K).

Proof. Suppose that, on the contrary, Ef (·) is not upper semicontinuous at

some a ∈ D(Ef ). Then there exist an open set V containing Ef (a) and a sequence

(a(n)) ⊂ D(Ef ) such that a(n) → a and Ef (a
(n)) \ V 6= ∅ for all n. For each n

choose xn ∈ Ef (a(n)) \ V .
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For simplicity, put r = rf (a), rn = rf (a
(n)), ϕ(x) = f(‖x− a1‖, . . . , ‖x−aN‖),

ϕn(x) = f(‖x − a
(n)
1 ‖, . . . , ‖x − a

(n)
N ‖). Take R > 0 such that ‖a(n)‖∞ ≤ R

for every n. By Proposition 1.4(iii) and Proposition 2.1 we have ‖xn − a
(n)
i ‖ ≤

∆(a
(n)
i ) + d(a

(n)
i ) ≤ 2d(a

(n)
i ) ≤ 4R, and hence ‖xn − ai‖ ≤ ‖xn − a

(n)
i ‖+ ‖a

(n)
i ‖+

‖ai‖ ≤ 6R. Let L > 0 be a Lipschitz constant for f on [0, 6R]N and for rf (·) on

{b ∈ XN : ‖b‖∞ ≤ R} (cf. Proposition 1.4(i) and Lemma 3.6). Then we have

r ≤ ϕ(xn) = r + (rn − r) + (ϕ(xn)− ϕn(xn)) ≤ r + 2L‖a(n) − a‖.

This implies ϕ(xn) → r. By Theorems 3.4 and 3.5, there exists a subsequence

(xk) of (xn) converging (in norm) to some x ∈ X. Obviously, x ∈ Ef (a) ⊂ V .

But this is contradiction since V is open and xk /∈ V for any k. �

Let us remark that P. Smith proved the following related result ([Ho, p. 188]):

If X is a reflexive strictly convex Banach space with the Kadec-Klee property, then

the Chebyshev-center map is a singlevalued continuous mapping from the space of

compact subsets of X (equipped with the Hausdorff metric) into X.

4. Products and Vector-Valued Sequence Spaces

The purpose of this section is to prove that the class (GC) is stable under making

arbitrary c0- and `p-sums (1 ≤ p ≤ ∞). Since practically the same proof works

also for other types of sums of spaces, we state it in a general form (Theorem 4.7).

This requires some definitions.

In this section Γ denotes a nonempty set, X and Xγ (γ ∈ Γ) are Banach

spaces. By eγ we denote the characteristic function of the singleton {γ} ⊂ Γ (i.e.,

eγ(γ
′) = δγγ′).

Let Y be a linear space, Γ0 ⊂ Γ, y ∈ Y Γ. We denote by y|Γ0
the element of Y Γ

defined by

y|Γ0
(γ) =

{
y(γ) for γ ∈ Γ0;

0 otherwise.

Hence y|Γ0
is the canonical projection of y onto the subspace of functions whose

support is contained in Γ0.

When non specified explicitely, the norms are considered to be finite. However,

in this section, from formal reasons, we use also norms on RΓ that can attain also

the value +∞, i.e. functions π:RΓ → [0,+∞] which are convex, even, positively

homogeneous and attain the value 0 only at the zero element of RΓ.

By a sequence space on Γ we mean a normed linear space (V, ν) such that V

is a linear subspace of RΓ.

4.1. Definition. Let (V, ν) be a sequence space on Γ such that ν is monotone

on the nonnegative elements of V (i.e., ν(ξ) ≤ ν(η) whenever ξ, η ∈ V and 0 ≤
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ξ ≤ η). We denote by (
⊕
Xγ)V the linear space(⊕

Xγ

)
V

=

{
x ∈

[⋃
Xγ

]Γ
: x(γ) ∈ Xγ for all γ ∈ Γ, and ‖x(·)‖ ∈ V

}
equipped with the norm

‖x‖V = ν(‖x(·)‖).

(By ‖x(·)‖ we mean the function γ 7→ ‖x(γ)‖Xγ .) If Xγ = X for all γ ∈ Γ, the

space (
⊕
Xγ)V will be denoted by V (X).

4.2. Definition.

1. Let π:RΓ → [0,+∞] be a norm on RΓ which is finite on the elements

with finite support. By Sπ(Γ) we denote the linear space

Sπ(Γ) = {ξ ∈ RΓ : π(ξ) < +∞}

equipped with the norm π.

2. We shall say that V is an ideal in Sπ(Γ) if the following three conditions

are satisfied.

(a) V is a closed linear subspace of Sπ(Γ);

(b) ξ ∈ V whenever |ξ| ≤ |η| for some η ∈ V ;

(c) {eγ : γ ∈ Γ} ⊂ V .

3. If V = Sπ(Γ) in Definition 4.1, then we shall write (
⊕
Xγ)π, Sπ(Γ,X)

and ‖ · ‖π instead of (
⊕
Xγ)V , V (X) and ‖ · ‖V .

4.3. Remark. The condition (c) of our definition of an ideal in Sπ(Γ) is not

standard. It means that V contains all elements of Sπ(Γ) having finite support.

4.4. Definition. A norm π:RΓ → [0,+∞] will be called

(a) proper if it is finite on the elements with finite support;

(b) finitely determined if for every ξ ∈ RΓ we have

π(ξ) = sup
{
π
(
ξ|Γ0

)}
Γ0 is a finite subset of Γ.

(c) monotonic if π(ξ) ≤ π(η) whenever |ξ| ≤ |η|, ξ, η ∈ RΓ.

(d) dual norm of a sequence space on Γ if there exists (V, ν) a sequence

space on Γ, containing all sequences with finite support, such that its dual

V ∗ is isometric with Sπ(Γ) and the isometric correspondence between

v∗ ∈ V ∗ and ω ∈ Sπ(Γ) is given by

v∗(ξ) =
∑
γ∈Γ

ξ(γ)ω(γ) (ξ ∈ V ).
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4.5. Example. Let 1 ≤ p ≤ ∞. Let π:RΓ → [0,+∞] be the classical `p-norm.

Then π is monotonic, proper and finitely determined, and we have

Sπ(Γ) = `p(Γ),
(⊕

Xγ

)
π

=
(⊕

Xγ

)
`p
, Sπ(Γ,X) = `p(Γ,X).

The space V = c0(Γ) is an ideal in `∞(Γ) and we have(⊕
Xγ

)
V

=
(⊕

Xγ

)
c0
, V (X) = c0(Γ,X).

Each classical `p norm is a dual norm of a sequence space on Γ, with the predual

V given by

V =


c0(Γ) if p = 1;

`q(Γ) if 1 < p <∞, p−1 + q−1 = 1;

`1(Γ) if p =∞.

The following lemma states what everybody would expect. We postpone its

proof to Appendix.

4.6. Lemma. Let π:RΓ → [0,+∞] be a norm which is monotonic, proper and

finitely determined. For γ ∈ Γ, let Xγ be a Banach space.

(a) (
⊕
Xγ)π and Sπ(Γ) are Banach spaces.

(b) If π is a dual norm of a sequence space on Γ, then the space (
⊕
X∗γ )π is

isometric to a dual space.

Proof. See Appendix. �

We are ready to prove the main result of this section.

4.7. Theorem. Let π:RΓ → [0,+∞] be a norm which is monotonic, proper

and finitely determined. Let V be an ideal in Sπ(Γ) (in the sense of Definition 4.2).

Then the implications (i) ⇒ (ii) ⇒ (iii) hold between the three assertions below.

Moreover, if in addition V = Sπ(Γ) and π is a dual norm of a sequence space on

Γ, then (i), (ii), (iii) are equivalent.

(i) Xγ ∈ (GC) for each γ ∈ Γ, and (
⊕
X∗∗γ )V ∈ (GC).

(ii) (
⊕
Xγ)V ∈ (GC).

(iii) Xγ ∈ (GC) for each γ ∈ Γ.

Proof. For simplicity, let us denote W = (
⊕

γ Xγ)V , W̃ = (
⊕

γ X
∗∗
γ )V .

(i)⇒ (ii). Suppose (i). By Theorem 2.7, it suffices to show that finite subsets of

W admit all weighted Chebyshev centers (in W ). Fix a ∈ WN and % ∈]0,+∞[N .

There exists z ∈ W̃ a %-center of a in W̃ . For γ ∈ Γ and 1 ≤ i ≤ N put

δi(γ) = ‖z(γ)− ai(γ)‖ (norm in X∗∗γ ).
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For each γ ∈ Γ we have z(γ) ∈
⋂N
i=1 B̂(ai(γ), δi(γ)), hence by Theorem 2.7 there

exists

x(γ) ∈
N⋂
i=1

B(ai(γ), δi(γ)).

Thus we have a function x: Γ→
⋃
γ Xγ . It belongs toW since ‖z(·)‖+2‖a1(·)‖ ∈ V

and

‖x(·)‖ ≤ ‖x(·)− a1(·)‖+ ‖a1(·)‖ ≤ ‖z(·)− a1(·)‖+ ‖a1(·)‖

≤ ‖z(·)‖+ 2‖a1(·)‖.

Denote by r% and r̃% the %-radius of a in W and in W̃ . Then we have

r̃% ≤ r% ≤ max
1≤i≤N

%i‖x− ai‖π = max
1≤i≤N

%iπ(‖x(·)− ai(·)‖)

≤ max
1≤i≤N

%iπ(‖z(·)− ai(·)‖) = max
1≤i≤N

%i‖z − ai‖π = r̃%.

Consequently all inequalities are in fact equalities and x is a %-center of a in W .

(ii)⇒ (iii). Suppose W ∈ (GC). Fix γ0 ∈ Γ. Let a ∈ (Xγ0)
N and % ∈]0,+∞[N .

The function

ai(γ) =

{
ai, if γ = γ0

0, otherwise

belongs to W (by property (c) of the definition of ideal). There exists a %-center

z ∈W for a = (a1, . . . , aN ). Define

x(γ) =

{
z(γ), if γ = γ0

0, otherwise.

Since x also belongs to W and ‖x−ai‖π ≤ ‖z−ai‖π, necessarily x is also a %-center

for a. Now it is easy to see that x(γ0) is a %-center of a in Xγ0 . It follows from

the fact that ‖ueγ0‖π = π(eγ0) · ‖u‖ for all u ∈ Xγ0 . Indeed, for u ∈ Xγ0 we have

maxi %i‖u− ai‖ = [π(eγ0)]
−1 maxi %i‖ueγ0 − ai‖π ≥ [π(eγ0)]

−1 maxi %i‖x− ai‖π =

maxi %i‖x(γ0)− ai‖.

Finally, suppose that V = Sπ(Γ) and π is a dual norm of a sequence space

on Γ. By Lemma 4.6 the space (
⊕
X∗∗γ )π is dual, and hence it is of class (GC) by

Proposition 2.2. �

4.8. Corollary. Let 1 ≤ p ≤∞. Then the following assertions are equivalent.

(i) Xγ ∈ (GC) for every γ ∈ Γ;

(ii) (
⊕
Xγ)`p ∈ (GC);

(iii) (
⊕
Xγ)c0 ∈ (GC).
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Proof. The equivalence (i) ⇔ (ii) and the implication (iii) ⇒ (i) follow directly

from Example 4.5 and Theorem 4.7.

(i) ⇒ (iii). Suppose (i) holds. By Theorem 2.7, it suffices to show that finite

sets in (
⊕
Xγ)c0 admit weighted Chebyshev centers. Fix a = (a1, . . . , aN ) ∈

[(
⊕
Xγ)c0 ]

N and % ∈]0,+∞[N . For every γ, put a(γ) = (a1(γ), . . . , aN (γ)) ∈
(Xγ)

N . By the assumption, there exists x(γ) ∈ Xγ that belongs to E%(a(γ)).

Denote r = max%i. For each γ we have

‖x(γ)‖ ≤ ‖a1(γ)‖+ (%1)
−1(%1‖x(γ)− a1(γ)‖)

≤ ‖a1(γ)‖+ (%1)
−1
(
max
i
%i‖x(γ)− ai(γ)‖

)
≤ ‖a1(γ)‖+ (%1)

−1
(
max
i
%i‖a1(γ)− ai(γ)‖

)
≤ ‖a1(γ)‖+ (%1)

−1
(
r‖a1(γ)‖+ rmax

i6=1
‖ai(γ)‖

)
≤
(
1 + (r/%1)

)
·
N∑
i=1

‖ai(γ)‖.

This implies that the function x: γ 7→ x(γ) belongs to (
⊕
Xγ)c0 . It remains to

show that x ∈ E%(a). But this is easy since, for any z ∈ (
⊕
Xγ)c0 , we have

max
i
%i‖z − ai‖∞ = sup

γ
max
i
%i‖z(γ)− ai(γ)‖ ≥ sup

γ
max
i
%i‖x(γ)− ai(γ)‖

= max
i
%i‖x− ai‖∞. �

4.9. Corollary. Let 1 ≤ p ≤∞. Then the following assertions are equivalent.

(i) X ∈ (GC);

(ii) `p(Γ,X) ∈ (GC);

(iii) c0(Γ,X) ∈ (GC).

5. Spaces of Vector-Valued Functions

Let X be a real Banach space. First, we shall state a theorem about Lebesgue-

Bochner spaces Lp(µ,X) of X-valued functions defined on a complete positive

finite measure space (Ω,Σ, µ). We refer the reader to the book [D-U] for definitions

and basic properties.

5.1. Theorem. Let 1 ≤ p < ∞. If X has the Radon-Nikodým property and

is norm-one complemented in its bidual, then Lp(µ,X) is also norm-one comple-

mented in its bidual; in particular, Lp(µ,X) belongs to the class (GC).

Proof. The case of p = 1 was proved in [Rao1] (see also [Rao2], [Em]).

The case of 1 < p < ∞. If X is a dual space, then Lp(µ,X) is also dual by

[D-U, Theorem IV.1.1]; hence Lp(µ,X) is norm-one complemented in its bidual.
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The general case (X not necessarily dual) was communicated to the author by

T. S. S. R. K. Rao [Rao3]. �

In what follows, T stands for an arbitrary topological space.

By Cb(T,X) we denote the Banach space of all continuous bounded X-valued

functions on T equipped with the supremum norm. The space Cb(T,X) is a

subspace of `∞(T,X). For a ∈ [Cb(T,X)]N , let us denote by rCf (a) and r∞f (a) the

f -radius of a in Cb(T,X) and in `∞(T,X), respectively. Clearly, rCf (a) ≥ r∞f (a).

The main results of the present section are contained in Theorem 5.3, Theo-

rem 5.4 and Theorem 5.10.

Let us start with a simple selection lemma whose proof uses a standard parti-

tion-of-unity technique. A variant of it can be found in [A-C, p. 81].

5.2. Lemma. For every i ∈ {1, . . . , N}, let ai:T → X be a continuous func-

tion, si > 0. Suppose that the set ψ(t) :=
⋂
iB

0(ai(t), si) is nonempty for each

t ∈ T . Then the multivalued mapping ψ has a continuous selection.

Proof. Let D = {b ∈ XN :
⋂
iB

0(bi, si) 6= ∅}. Observe that D is open in XN .

Define a multivalued mapping Ψ from D into X by

Ψ(b) =
N⋂
i=1

B0(bi, si).

If b ∈ D, there exists a point xb ∈ Ψ(b). It is easy to see that the constant function

with value xb is a (continuous) selection of Ψ on a certain open neighborhood Ub
of b in D. The set D, being a metric space, is paracompact [Eng]. Hence there

exists a locally finite open covering {Vγ : γ ∈ Γ} of D and continuous functions

pγ :D→ R+ such that

— for each γ ∈ Γ there exists bγ ∈ D such that Vγ ⊂ Ubγ ;
— for each γ ∈ Γ the function pγ is null outside of Vγ ;

—
∑
γ pγ ≡ 1.

Clearly, the function

g(b) =
∑
γ∈Γ

pγ(b)xbγ

is a continuous selection of Ψ on D. Then the function g0(t) = g(a1(t), . . . , aN(t))

is a continuous selection of ψ. �

5.3. Theorem.

(a) If Cb(T,X) ∈ (GC), then X ∈ (GC).

(b) Let X be the `∞-sum of a family of Banach spaces Xγ (γ ∈ Γ). Then

Cb(T,X) ∈ (GC) if and only if Cb(T,Xγ) ∈ (GC) for each γ ∈ Γ.

(c) Let f be a continuous monotone function on RN
+ . Then for every a ∈

[Cb(T,X)]N we have rCf (a) = r∞f (a).



104 L. VESELÝ

Proof. (a) Let a ∈ XN , % ∈]0,+∞[N . Consider X canonically embedded (as

constant functions) in Cb(T,X). Let r and r denote the %-radius of a in X and

in Cb(T,X) respectively. Clearly, r ≤ r. Suppose Cb(T,X) ∈ (GC) and take a

function x which is a %-center of a in Cb(T,X). Then for every t ∈ T we have

maxi %i‖x(t) − ai‖ ≤ r ≤ r. Consequently, x(t) ∈ E%(a) (in X) for each t ∈ T .

Hence X ∈ (GC) by Theorem 2.7.

(b) Observe that Cb(T,X) is isometric with the `∞-sum of the spaces Cb(T,Xγ)

(γ ∈ Γ), then use Corollary 4.8.

(c) For ε > 0 choose xε ∈ `∞(T,X) such that f(‖xε−a1‖∞, . . . , ‖xε−aN‖∞) <

r∞f (a) + ε. Put ri = ‖x − ai‖∞ and observe that xε(t) ∈
⋂
iB

0(ai(t), ri + ε) for

every t ∈ T . By Lemma 5.2 there exists a continuous function zε:T → X such

that zε(t) ∈
⋂
iB

0(ai(t), ri + ε) for each t ∈ T . Then zε belongs to Cb(T,X) since

ai’s are bounded. Moreover, we have

f(r1, . . . , rN ) < r∞f (a) + ε ≤ rCf (a) + ε ≤ f(‖zε − a1‖∞, . . . , ‖zε − aN‖∞) + ε

≤ f(r1 + ε, . . . , rN + ε) + ε.

The result follows from the fact that the last term tends to f(r1, . . . , rN ) as

ε→ 0+. �
5.4. Theorem. The space Cb(T,X) belongs to the class (GC) provided any of

the following two conditions is satisfied.

(a) X is strictly convex and satisfies the property (w∗K).

(b) X ∈ (GC) and every norm-attaining element of SX∗ strongly exposes BX
(i.e., X is strictly convex and satisfies the property (CSE)).

Proof. By Theorem 2.7 it suffices to show that each a ∈ [Cb(T,X)]N admits

weighted Chebyshev centers. Let % ∈]0,+∞[N . By Proposition 2.2 and Theo-

rem 3.2(a), for each t ∈ T the set E%(a(t)) is a singleton in X. By Theorem 3.7,

x(t) := E%(a(t)) depends continuously on t. Moreover, x is bounded by Proposi-

tion 2.1 (ai’s are bounded!). Now, as in the very end of the proof of Corollary 4.8,

it is elementary to see that x is a %-center of a in Cb(T,X). �
5.5. Remark. D. Amir [Am1] proved that if X is uniformly rotund and T

compact then each bounded subset in Cb(T,X) admits a Chebyshev center. Thus,

for finite sets, Amir’s result follows from our Theorem 5.4, since any uniformly

convex space is reflexive and hence satisfies the assumptions (a), (b) from Theo-

rem 5.4.

The first example of a finite-dimensional Banach space X such that a finite set

in Cb([0, 1],X) admits no Chebyshev center, is due to J. Kolář [Kol]. We present

a simplified version of it, essentially due to P. Holický and J. Kolář.

5.6. Example. There exists a three-dimensional Banach space X and a three-

point set in Cb([0, 1],X) that has no Chebyshev center.
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Put D = {(x, y, z) ∈ R3 : x ≥ 0, x2 + y2 ≤ 1, z = 1} and B = co
[
D ∪ (−D)

]
.

The set B is a closed bounded convex symmetric neighborhood of the origin, hence

it is the unit ball of an equivalent norm ‖ ·‖ on R3. Let X = (R3, ‖ ·‖) and denote

e2 = (0, 1, 0) ∈ X.

Observe that the intersection (e2 +B) ∩ (−e2 +B) is exactly the line segment

L := {(0, 0, s) : s ∈ [−1, 1]}. For t ∈ [0, 1] define

a1(t) = (cosπt, 1 + sinπt, 0) = (cosπt, sinπt, 0) + e2

a2(t) = (cosπt,−1 + sinπt, 0) = (cosπt, sinπt, 0)− e2

a3(t) = (0, 0, 0).

Then ai ∈ Cb([0, 1],X) for i = 1, 2, 3. Moreover, for every t ∈ [0, 1] we have

F (t) :=
3⋂
i=1

[ai(t) +B] =
[
(cosπt, sinπt, 0) + L

]
∩B

=


{(cosπt, sinπt, 1)} for 0 ≤ t < 1/2;

(cosπt, sinπt, 0) + L for t = 1/2;

{(cosπt, sinπt,−1)} for 1/2 < t ≤ 1.

Obviously, F admits no continuous selection because of its “jump” at the point

t = 1/2.

Since F (t) belongs to
⋂

[ai(t)+SX ] for every t, it is easy to see that the Cheby-

shev radius of a(t) = (a1(t), a2(t), a3(t)) in X is equal to 1 for every t. This easily

implies that the Chebyshev radius of a = (a1, a2, a3) in `∞([0, 1],X), and hence

also in Cb([0, 1],X) (see Theorem 5.3(c)), equals 1. Thus any Chebyshev center

of a in Cb([0, 1],X) has to be a continuous selection of F . Consequently, a has no

Chebyshev center in Cb([0, 1],X).

5.7. Proposition. The following two assertions are equivalent.

(i) Cb(T,X) ∈ (GC) for every topological space T .

(ii) X ∈ (GC) and for every N ∈ N and every r ∈]0,+∞[N there exists a

continuous selection of the multivalued mapping

F (b) =
N⋂
i=1

B(bi, ri) ,

defined on the set D = {b ∈ XN : F (b) 6= ∅}.

Proof. (i) ⇒ (ii). Suppose (i) holds. Then X ∈ (GC) by Theorem 5.3(a). Let

r, F,D be as in (ii). Denote ρ = (1/r1, . . . , 1/rN). LetD0 be an arbitrary bounded

relatively open subset of D. Put T = D0, ai(b) = bi (i = 1, . . . , N) and observe
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that the functions ai belong to Cb(T,X). By (i), there exists x ∈ Eρ(a). We are

going to show that x is a continuous selection of F on D0.

Let y : D0 → X be an arbitrary selection of F on D0. Then y ∈ `∞(D0,X),

and hence we have

rCρ (a) = r∞ρ (a) ≤ max
i
r−1
i ‖y − ai‖∞ = max

i
sup
b∈D0

r−1
i ‖y(b)− bi‖ ≤ 1

by Theorem 5.3(c) and the definition of D. Consequently, for every i and each

b ∈ D0 we have r−1
i ‖x(b)− bi‖ ≤ r

C
ρ (a) ≤ 1. But this implies that x(b) ∈ F (b) for

every b ∈ D0.

What we have proved implies that each point of (the metric space) D has an

open neighborhood on which F has a continuous selection. The same partition-

of-unity argument as in the proof of Lemma 5.2 gives a continuous selection of F

on the whole set D.

(ii) ⇒ (i). Suppose that (ii) holds. By Theorem 2.7 it suffices to show that the

finite subsets of Cb(T,X) admit weighted Chebyshev centers. Fix a ∈ [Cb(T,X)]N

and ρ ∈]0,+∞[N . For every t ∈ T , let z(t) be a ρ-center of a(t) := (a1(t), . . . ,

an(t)). In this way we have defined an element z ∈ `∞(T,X). For any t ∈ T and

any i we have

ρi‖z(t)− ai(t)‖ ≤ ρi‖z − ai‖∞ ≤ r
∞
ρ (a) ≤ rCρ (a) ≡ r.

Consequently, z(t) ∈ F (a(t)) for every t ∈ T , where F (t) is as in (ii) with ri = r/ρi.

Hence a(t) ∈ D for every t ∈ T . Let ψ be a continuous selection of F defined on D.

Then x(t) = ψ(a(t)) defines a continuous X-valued function on T . Moreover,

ρi‖x− ai‖∞ ≤ r = rCρ (a). Thus x belongs to Cb(T,X) and is a ρ-center for a. �

5.8. Remark. Repeating the proof of Proposition 5.7 with r1 = . . . = rN
and ρ1 = . . . = ρN , we get the following criterion of the existence of (classical)

Chebyshev centers in Cb(T,X).

The following two assertions are equivalent:

(i) for every topological space T each finite set in Cb(T,X) admits a Cheby-

shev center;

(ii) each finite set in X admits a Chebyshev center and for every N ∈ N the

mapping F (a) =
⋂N
i=1(ai + BX) has a continuous selection on D = {a ∈

XN : F (a) 6= ∅}.

Let us recall the notion of a lower semicontinuous multivalued mapping. Let

F be a multivalued mapping from T into another topological space T ′ such that

F (t) 6= ∅ for every t ∈ T . We shall say that T is lower semicontinuous at a

point t0 if for every open set V with F (t0)∩ V 6= ∅ there exists a neighborhood U

of t0 such that F (t)∩V 6= ∅ whenever t ∈ U . If F is lower semicontinuous at each

point of T , we shall say simply that F is lower semicontinuous (on T ).
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5.9. Remark. Let F be as above.

(a) It is well known (and easy to see) that F is lower semicontinuous if and

only if the inverse image F−1(Ω) := {t ∈ T : F (t) ∩ Ω 6= ∅} of any open

set Ω ⊂ T ′ is open (in T ).

(b) It is also easy to see that for lower semicontinuity of F at t0 it is sufficient

the following condition: for every x0 ∈ F (t0) there exists a selection of F

such that it is continuous at t0 and its value at t0 is x0.

The rest of this section is dedicated to proving the following theorem. A finite-

dimensional Banach space X is called polyhedral if its unit ball BX is a polytope.

5.10. Theorem. Let X be a finite-dimensional Banach space. Then each

multivalued mapping of the form F (a) =
⋂N
i=1B(ai, ri) (acting from XN into X)

is lower semicontinuous on the set D = {a ∈ XN : F (a) 6= ∅} provided any of the

following three conditions is satisfied.

(a) X is strictly convex.

(b) X is polyhedral.

(c) X is two-dimensional.

In particular, each of the conditions (a), (b), (c) is sufficient for Cb(T,X) ∈
(GC) for any topological space T .

5.11. Remark.

(a) The final assertion of Theorem 5.10 follows easily from Proposition 5.7.

Indeed, if the mapping F from Theorem 5.10 is lower semicontinuous onD

then there exists a continuous selection of F on D by Michael’s selection

theorem [Mi].

(b) The mapping F from Theorem 5.10 is upper semicontinuous on D in any

finite-dimensional space X. To prove this, suppose the contrary. This

means that there exists an open set V ⊂ X, points an ∈ D (n ≥ 0) and

xn ∈ F (an) (n ≥ 1) such that an → a0, F (a0) ⊂ V and xn /∈ V for any

n ≥ 1. The sequence (xn) has a cluster point x0 ∈ X since F is locally

bounded. Clearly, x0 does not belong to V . But for every 1 ≤ i ≤ N ,

‖a0
i −x0‖ is a cluster point of the sequence (‖ani −xn‖) which is contained

in [0, ri]. This implies x0 ∈ F (a0) ⊂ V , a contradiction.

Proof of Theorem 5.10(a). Let X be strictly convex and a ∈ D. If F (a) is a

singleton, then F is upper semicontinuous (and hence also lower semicontinuous)

in a by Remark 5.11(b). Now, suppose that F (a) contains two distinct points x, y.

The strict convexity of BX and the definition of F easily imply that z := x+y
2

is an interior point of F (a). Then F is Lipschitz (with respect to the Hausdorff

metric), and hence lower semicontinuous, on a neighborhood of a (in D). This

follows easily from the following particular case of [P-Y, Theorem 4]: Let Φ be a

multivalued mapping from a subset S of XN into X, which has nonempty closed
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convex values and is Lipschitz (w.r.t. the Hausdorff metric). If a ∈ S, r > 0,

i ∈ {1, . . . , N} and Φ(a) ∩B0(ai, r) 6= ∅, then the mapping b 7→ Φ(b) ∩B(bi, r) is

Lipschitz on a neighborhood of a (in S). �

Proof of Theorem 5.10(b). If BX is a polytope, then it is the intersection of

finitely many closed halfspaces H1, . . . ,Hk. Thus the mapping F from Theo-

rem 5.10 can be written in the form

F (a) =
N⋂
i=1

k⋂
j=1

(ai + riHj).

Consequently, it is sufficient to prove the following proposition.

5.12. Proposition. Let H1, . . . ,HN be closed halfspaces in X, dimX = d.

Then the multivalued mapping F from XN into X, given by

F (a) =
N⋂
i=1

(ai +Hi) for any a = (a1, . . . , aN ) ∈ XN ,

is lower semicontinuous on D(F ) = {a ∈ XN : F (a) 6= ∅}.

Proof. We shall proceed by induction with respect to the dimension d. Without

any loss of generality we can suppose that the boundary hyperplane of each Hi

passes through the origin.

Case d = 1. If X = R, denote by I+, I− the set of indices i ∈ {1 . . . , N} ≡ I

such that, respectively, Hi = [0,+∞[, Hi =]−∞, 0]. Then for every a ∈ RN we

have

F (a) =


[max
i∈I+

ai,min
i∈I−

ai] if I+ 6= ∅, I− 6= ∅;

[max
i∈I

ai,+∞[ if I− = ∅;

]−∞,min
i∈I

ai] if I+ = ∅.

In all three cases F is lower semicontinuous on D(F ).

Induction step. Let n be a positive integer such that the assertion of Propo-

sition 12 holds for any dimension d < n. We shall prove that it holds also for

d = n.

First, let us consider the case N = n, i.e. the number of the halfspaces is

the same as the dimension of X. For 1 ≤ i ≤ n, let fi ∈ X∗ be such that

Hi = f−1
i ([0,+∞[). Denote K =

⋂n
i=1 f

−1
i (0).

a) If dimK > 0, consider the quotient map q:X → X/K. Then

F (a) = q−1

(
n⋂
i=1

q(ai +Hi)

)
= q−1

(
n⋂
i=1

[q(ai) + q(Hi)]

)
=
[
q−1 ◦G ◦Q

]
(a),
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where Q:Xn → (X/K)n and G: (X/K)n → X/K are given by

Q(a) = (q(a1), . . . , q(an)) ,

G(b) =
n⋂
i=1

(
bi + q(Hi)

)
.

By the induction assumption, G is lower semicontinuous on D(G). Since q is open

and Q is continuous, the mapping F = q−1 ◦ G ◦ Q is lower semicontinuous on

D(F ) (Remark 5.9(a)).

b) If dimK = 0 then the linear mapping L : X → Rn, given by L(x) = (f1(x), . . . ,

fn(x)), is one-to-one and hence surjective. Observe that

F (a) = {x ∈ X : x− ai ∈ Hi for i = 1, . . . , n}

= {x ∈ X : fi(x) ≥ fi(ai) for i = 1, . . . , n}

= L−1

(
[f1(a1),+∞[× · · · × [fn(an),+∞[

)
=
[
L−1 ◦ S ◦ Λ

]
(a) ,

where Λ:Xn → Rn is the linear mapping given by Λ(a) = (f1(a1), . . . , fn(an)),

and S(b) = b + Rn
+ (b ∈ Rn) is the “shifting” of the positive cone in Rn. Ob-

serve that L is open, S is lower semicontinuous and Λ is continuous. Hence, by

Remark 5.9(a), F is lower semicontinuous.

Now, let N be arbitrary. If N < n, define Hi = HN for N < i ≤ n, and apply

what was proved above to get easily that F is lower semicontinuous also in this

case.

Let N > n. Fix a ∈ D(F ), x0 ∈ F (a) and ε > 0. By lower semicontinuity

proved above for the number of halfspaces equal to the dimension n, there exists

a neighborhood U of a in D(F ) such that for each E ⊂ {1, . . . , N} of cardinality

n we have ⋂
i∈E

(bi +Hi) ∩B(x0, ε) 6= ∅ whenever b ∈ U.

Consequently, for b ∈ U , each n+ 1 of the closed convex sets

B(x0, ε), b1 +H1, . . . , bN +HN

have nonempty intersection. By Helly’s theorem [Va], all these sets have nonempty

intersection. In other words, F (b) ∩B(x0, ε) 6= ∅ whenever b ∈ U . This completes

the proof. �

Theorem 5.10(b) is proved.

To prove Theorem 5.10(c), it is possible to use Helly’s theorem in a similar way

as in the proof of Proposition 5.12. Thus it suffices to prove the lower semiconti-

nuity of the intersection of two balls only (i.e., the case N = 2). And this is what

says the following lemma.
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5.13. Lemma. Let dimX = 2, r > 0, D = {a ∈ X : B(0, 1)∩B(a, r) 6= ∅} =

B(0, 1 + r). Then the multivalued mapping F from D into X, given by

F (a) = B(0, 1) ∩B(a, r) ,

is lower semicontinuous.

Proof. Fix a0 ∈ D and x0 ∈ F (a0). We shall consider several cases that cover

all possible situations. (Note that the cases are not disjoint.)

Case 1: a0 ∈ B0(0, 1 + r), i.e. B0(0, 1) ∩ B0(a0, r) 6= ∅. Then by

[P-Y, Theorem 4] F is Lipschitz with respect to the Haussdorff metrics on some

neighborhood of a0. This implies that F is lower semicontinuous at a0.

Case 2: ‖a0‖ = 1 + r and F (a0) = {x0}. In this case, F is upper semicontin-

uous, and hence also lower semicontinuous, at a0 (cf. Remark 5.11(b)).

Case 3: ‖a0‖ = 1+r and x0 = a0

1+r . Then f(a) = a
1+r is a continuous selection

of F with f(a0) = x0. Use Remark 5.9(b).

Case 4: ‖a0‖ = 1 + r and x0 6=
a0

1+r . The set F (a0) is a nondegenerate closed

line segment that contains a0

1+r . Put

v =
a0

1+r − x0∥∥∥ a0

1+r − x0

∥∥∥ =
a0 − (1 + r)x0

‖a0 − (1 + r)x0‖
.

Let L be the affine hull of F (a0). The line L separates B(0, 1) and B(a0, r). Since

the vector x0 is not parallel to L, every point a ∈ X can be written (in a unique

way) in the form

a = a0 + tv + sx0 (t, s ∈ R).

Observe that the line L+ (a0 − x0) supports B(0, 1 + r) at a0. From this fact,

it easily follows that s ≤ 0 whenever a = a0 + tv+ sx0 ∈ D. Fix δ ∈ (0, 1) so small

that

(7) x0 + tv ∈ F (a0) for 0 ≤ t < δ,

and

(8) x0 + tv + sx0 ∈ B(0, 1) whenever − δ < s ≤ 0 ≤ t < δ

(this is possible since the triangle co{0, x0,
a0

1+r} is contained in B(0, 1)).

Put U = {a0 + tv+ sx0 : −δ < s ≤ 0, |t| < δ}. Then U ∩D is a neighborhood

of a0 in D. Define a mapping f :U → X by

f(a0 + tv + sx0) =

{
(1 + s)x0 + tv if −δ < s ≤ 0 ≤ t < δ,

(1 + s)x0 if −δ < s ≤ 0, −δ < t ≤ 0.
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Then f is continuous and f(a0) = x0. We shall show that f(a) ∈ F (a) for every

a ∈ U .

Let a = a0 + tv+sx0 ∈ U . If t ≥ 0 then f(a) ∈ B(0, 1) by (8), and ‖f(a)−a‖ =

‖x0 − a0‖ = r. For t < 0 we have ‖f(a)‖ = ‖(1 + s)x0‖ = 1 + s ≤ 1, and

‖f(a)− a‖ = ‖(x0 + |t|v)− a0‖ ≤ r by (7).

Also in this case, F is lower semicontinuous at a0 by Remark 5.9(b). The proof

is complete. �

Proof of Theorem 5.10(c). Since the assertion is obvious if ri = 0 for some i,

let us suppose that ri > 0 for each i. The case N = 2 (two balls) is an easy

consequence of Lemma 5.13.

Suppose N > 2. Fix a0 ∈ D, x0 ∈ F (a0), ε > 0. Since the assertion is valid for

two balls, there exists a neighborhood U of a0 in D such that for every a ∈ U and

every pair of distinct indices j, k ∈ {1, . . . , N} one has

B(aj , rj) ∩B(ak, rk) ∩B(x0, ε) 6= ∅.

Consequently, for every a ∈ U each three of the balls

B(a1, r1), . . . , B(aN , rN ), B(x0, ε)

have nonempty intersection. By Helly’s theorem [Va], the intersection of all these

balls is nonempty; in other words, F (a) ∩B(x0, ε) 6= ∅ for a ∈ U . �

5.14. Remark. Lemma 5.13 does not hold in general if dimX > 2. For every

n > 2, it is easy to construct an n-dimensional Banach spaceX such that the set of

the extreme points of BX is not closed. Put D = B(0, 2), F (a) = B(0, 1)∩B(a, 1)

for a ∈ D. We shall show that F is not lower semicontinuous at some point of D.

Let (xn) be a sequence of extreme points of BX that converges to a point x

which is not extreme, i.e. x±u ∈ SX for some nonzero vector u ∈ X. If we denote

an = 2xn and a0 = 2x, we have an → a0, F (an) = {xn}, x ∈ [x+u, x−u] ⊂ F (a0).

Such situation could not happen if F were lower semicontinuous at a0.

5.15. Remark. Our proofs of the existence of weighted Chebyshev centers

of finite sets in Cb(T,X) are based on the fact that “max” (which defines the

function we want to minimize) and “sup” (which defines the norm on Cb(T,X))

are interchangeable, since this implies that any continuous selection of the point-

by-point %-center map E%(a(·)) is a %-center of a in Cb(T,X).

A similar idea can be used to prove some results on the existence of weighted

p-medians in Lp(µ,X) for 1 ≤ p < ∞. It is easy to see that, since sum and inte-

gral are interchangeable, any Bochner-measurable selection of the point-by-point

weighted p-median map (for a fixed weight) is a weighted p-median in Lp(µ,X)

for the same weight. Using selection theorems for weak or weak∗ upper semi-

continuous maps (due to V. V. Srivatsa and to J. E. Jayne and C. A. Rogers, cf.
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[J-O-P-V, Theorem 19, Theorem 16]), and versions of Theorem 3.7 for weak or

weak∗ topologies (instead of norm topology), it is possible to prove the folowing

result:

Let 1 ≤ p <∞. Then weighted p-medians of the finite sets in Lp(µ,X) exist in

any of the following three cases:

(a) X is a dual space with the Radon-Nikodým property (this follows from

Theorem 5.1);

(b) X = Z∗ for some space Z and the corresponding weak and weak∗ topolo-

gies coincide on SX ;

(c) X admits the weighted p-medians of the finite sets and every norm-attain-

ing element x∗ of SX∗ weakly compactly strongly exposes BX , in the sense

that any sequence (xn) ⊂ BX with x∗(xn)→ 1 has a weak cluster point.

6. Appendix (Proof of Lemma 4.6)

Proof of Lemma 4.6(a). Let (xn) be a Cauchy sequence in (
⊕
Xγ)π. Let C > 0

be such that ‖xn‖π ≤ C for every n. Fix γ ∈ Γ. Since ‖xn(γ) − xm(γ)‖π(eγ) =

π(‖xn(γ)− xm(γ)‖eγ) ≤ ‖xn − xm‖π, the sequence (xn(γ)) is Cauchy in Xγ , and

hence convergent to some x(γ).

In this way we have defined a function x: Γ→
⋃
Xγ . For every finite subset Γ0

of Γ we have ∥∥x|Γ0

∥∥
π

= lim
n

∥∥(xn)|Γ0

∥∥
π
≤ lim sup

n
‖xn‖π ≤ C.

Taking supremum w.r.t. all finite subsets Γ0 ⊂ Γ we obtain ‖x‖π ≤ C, and hence

x ∈ (
⊕
Xγ)π.

It remains to prove that (xn) converges to x. Fix an arbitrary ε > 0. There

exists n0 such that ‖xn−xm‖π < ε whenever n,m > n0. Fix an arbitrary n greater

that n0. There exists a finite set Γn ⊂ Γ such that ‖xn−x‖π <
∥∥(xn − x)|Γn∥∥π+ε.

Then, for every m > n0, we have

‖xn − x‖π <
∥∥(xm − x)|Γn∥∥π +

∥∥(xn − xm)|Γn
∥∥
π

+ ε

<
∥∥(xm − x)|Γn∥∥π + 2ε.

Passing to the limit asm→∞ we obtain ‖xn−x‖π ≤ 2ε (n > n0). This completes

the proof. (The completeness of Sπ(Γ) follows from the fact that Sπ(Γ) = (
⊕
Xγ)π

with Xγ = R for each γ.) �

Proof of Lemma 4.6(b). Let (V, ν) be a sequence space on Γ, containing all

eγ ’s, such that V ∗ = Sπ(Γ) in the sense of Definition 4.4(d). We shall show that

(
⊕
X∗γ)π is isometric with the dual of (

⊕
Xγ)V .
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First, observe that ν(ξ) = ν(|ξ|) for each ξ ∈ V , since π(ω) = π(|ω|) (ω ∈
Sπ(Γ)):

ν(ξ) = sup

{∑
γ

ξ(γ)ω(γ) : ω ∈ Sπ(Γ), π(ω) = 1

}

= sup

{∑
γ

|ξ(γ)ω(γ)| : ω ∈ Sπ(Γ), π(ω) = 1

}

= sup

{∑
γ

|ξ(γ)|ω(γ) : ω ∈ Sπ(Γ), π(ω) = 1

}
= ν(|ξ|).

Second, the linear space V0 of all elements of V with finite support is dense

in V . Indeed, if a functional f ∈ V ∗ is null on V0 then it is representable by some

ω ∈ Sπ(Γ), but then ω(γ) = f(eγ) = 0 for every γ, hence f = 0.

Take Φ ∈ [(
⊕
Xγ)V ]∗. For each γ ∈ Γ define u∗(γ) ∈ X∗γ by 〈u∗(γ), xγ〉 =

Φ(xγeγ) (xγ ∈ Xγ). This definition is correct since

|Φ(xγeγ)| ≤ ‖Φ‖V ∗ ‖xγeγ‖V = ‖Φ‖V ∗ν(‖xγ‖eγ) = ‖Φ‖V ∗ν(eγ)‖xγ‖.

We claim that u∗ ∈ (
⊕
X∗γ)π. Let 0 < ε < 1 and ξ ∈ V be arbitrary.

For each γ find x(γ) ∈ Xγ such that ‖x(γ)‖ = |ξ(γ)| and 〈u∗(γ), x(γ)〉 ≥ (1 −
ε)‖u∗(γ)‖ ‖x(γ)‖. We have x = x(·) ∈ (

⊕
Xγ)V since ν(‖x(·)‖) = ν(|ξ|) = ν(ξ).

Moreover, for every finite set Γ0 ⊂ Γ,∑
Γ0

‖u∗(γ)‖ξ(γ) ≤ (1− ε)−1
∑
Γ0

Φ(x(γ)eγ)

= (1− ε)−1Φ

(∑
Γ0

x(γ)eγ

)
≤ (1− ε)−1‖Φ‖V ∗ ‖x|Γ0

‖V

≤ (1− ε)−1‖Φ‖V ∗ ‖x‖V = (1− ε)−1‖Φ‖V ∗ ν(ξ).

Thus
∑

Γ ‖u
∗(γ)‖ξ(γ) ≤ ‖Φ‖V ∗ν(ξ) for every ξ ∈ V . Hence ‖u∗‖π ≤ ‖Φ‖V ∗ .

If x =
∑
x(γ)eγ ∈ (

⊕
Xγ)V0 then Φ(x) =

∑
Φ(x(γ)eγ) =

∑
〈u∗(γ), x(γ)〉 and

|Φ(x)| ≤
∑
‖u∗(γ)‖ ‖x(γ)‖ ≤ ‖u∗‖π‖x‖V . The density of V0 in V implies the

density of (
⊕
Xγ)V0 in (

⊕
Xγ)V , hence Φ(x) =

∑
〈u∗(γ), x(γ)〉 for all x ∈ V , and

‖Φ‖V ∗ ≤ ‖u∗‖π. This completes the proof. �
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L. Veselý, Dipartimento di Matematica, Università degli Studi, Via C. Saldini 50, 20133 Milano,
Italy, e-mail: libor@vmimat.mat.unimi.it


