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A NUMERICAL APPROXIMATION OF NONFICKIAN FLOWS
WITH MIXING LENGTH GROWTH

IN POROUS MEDIA

R. E. EWING, Y. LIN and J. WANG

Abstract. The nonFickian flow of fluid in porous media is complicated by the his-
tory effect which characterizes various mixing length growth of the flow, which can

be modeled by an integro-differential equation. This paper proposes two mixed finite
element methods which are employed to discretize the parabolic integro-differential
equation model. An optimal order error estimate is established for one of the dis-
cretization schemes.

1. Introduction

The understanding of the behavior of the flow of multi-phase and multicomponent
fluids through porous media is influenced by many physical phenomena such as
the heterogeneities and the degree of correlation in the permeability fields. The
research in reservoir simulation has been mainly focused on dispersion models in
the past. Numerical results have illustrated the success of dispersion models for
many of the approximation techniques. However, there is a type of channeling of
nonFickian flow in reservoirs which may have important history effects in the flow
and deserves a thorough study in theory and numerical approximations. Cushman
and his colleagues [6, 7, 8, 20] have developed a non-local theory and some
applications for the flow of fluid in porous media. Furtado, Glimm, Lindquist, and
Pereira [18, 19], Neuman and Zhang [25], and Ewing [12, 13, 14] also studied
the history effect of various mixing length growth for flow in heterogeneous porous
media.

For illustrative purpose, we consider a simple example where a conservative
tracer is transported by convection and dispersion under a steady, saturated, in-
compressible groundwater flow in a nondeformable porous medium of constant
porosity [7]. The Darcy’s scale transport equation is thus

(1.1)
∂C

∂t
+
∂S

∂t
+∇ · (V C)−∇ · d∇C = 0,
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where C is the phase concentration, V = (v1, v2, v3)T is the Darcy scale velocity,
and d is the local scale dispersion tensor assumed to be constant, and S is the
sorbed phase concentration; the adsorption is governed by a non-equilibrium linear
rate equation

(1.2)
∂S

∂t
= Kr(KdC − S),

where Kr is the reaction rate parameter and Kd is the usual partition coefficient.
Because of uncertainty in the data, it is assumed that Kd, S, C and V are random.
We decompose them into

Kd = K̄d + kd, S = S̄ + s, C = C̄ + c, V = V̄ + v,(1.3)

where, for example, K̄ is the mean and kd is the fluctuation. The key point here
is that there is no “smallness” assumption on any of these fluctuations.

With the decomposition (1.3) and the assumption that kd c, kd kd, and kdvj are
stationary covariances, and that the mean of V is in the x1 direction, the following
equation for C̄ has been derived [7]:

∂C̄

∂t
+ V

∂C̄

∂x1
−
∫ t

0

∇ ·D′(t− s)∇C̄ ds = ∇
∫ t

0

G′(t− s)C̄ ds

−Kr

{
K̄dC̄ − eKrt −KrK̄d

∫ t

0

e−Kd(t−s)C̄ ds(1.4)

−
∫ t

0

[δ(t−s)−Kre
−Kd(t−s)] ×

[∫ s

0

G′′(s−τ)C̄ dτ +
∫ s

0

B′(s−τ)·∇C̄dτ
]
ds

}
,

where D′ = (d′ij) and d′ij(t) = dijδ(t) + vivj(x)B(x, t), and B′s and G′s are
functions in time related to Kr, K̄d, d. We note that the correlation between
vjvj is one of the main sources generating the nonlocal effects from microscales to
macroscale level. Readers are referred to [6], [7], [8], [18], [20], [12], [13], [14] and
the references therein for the mathematical modeling and other related problems
in detail.

The equation (1.4) is a special case of the following general parabolic integro-
differential problem: Find u = u(x, t) satisfying

ut = ∇ · σ + cu+ f in Ω× J,

σ = A(t)∇u−
∫ t

0

B(t, s)∇u(s) ds, in Ω× J,(1.5)

u = g on ∂Ω× J,
u = u0(x), x ∈ Ω, t = 0,

where Ω ⊂ Rd; (d = 2, 3) is an open bounded domain with smooth boundary ∂Ω,
J = (0, T ) with T > 0, A(t) = A(x, t) and B(t, s) = B(x, t, s) are two 2×2 or 3×3
matrices, and A−1 exists and is bounded, c ≤ 0, f , g and u0 are known smooth
functions. We remark that even the memroy term in (1.5) does not have the term
bu, where b is a vector, our MFE formulation and analysis are also valid for such
case with only a minor modification.
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For numerical approximations, several finite difference methods were studied
for the approximate solution of (1.5). In [27], the method of backward Euler and
Crank-Nicolson combined with a certain numerical quadrature rule is employed
to deal with the time direction which aims at reducing the computational cost
and storage spaces due to the memory effect. In the finite element method, there
is extensive literature from the last ten years [2], [3], [21], [22], [23], in which
optimal and super convergence can be found for the corresponding finite element
approximations in various norms, such as Lp with 2 ≤ p ≤ ∞. In particular, the
method of using a Ritz-Volterra projection, discovered by Cannon and Lin [2],
proved to be a powerful technique behind the analysis.

To the best of our knowledge, there were no rigorous mathematical formula-
tions and analysis for the mixed finite element method for this type of transport
flow equations although the standard Galerkin method has been well studied and
understood in the last decade.

We are concerned with approximate solutions of (1.5) by mixed finite element
methods in this paper. The mathematical difficulty associated with the analysis of
numerical approximations to the solution of (1.5) lies on the integral term added
to the standard parabolic equation. Two mixed methods are introduced to tackle
this obstacle in Section 2. Our methods are in general applicable to the fully
non-localized version of reactive transport equations in porous media.

The paper is organized as follows. In Section 2, we propose two numerical
schemes for the general parabolic integro-differential equation based on the vari-
ables u and σ. In Section 3, we derive an optimal order error estimate for the
mixed finite element approximations in the L2 norm.

2. Discretizations by Mixed Finite Elements

In this section, we propose two numerical schemes for the parabolic integro-
differential equation (1.5). For simplicity, the method will be presented on plane
domains.

Let W = L2(Ω) be the standard L2 space on Ω with norm ‖ · ‖0. Denote by

V = H(div,Ω) =
{
σ ∈ (L2(Ω))2 | ∇ · σ ∈ L2(Ω)

}
,

the Hilbert space equipped with the following norm:

‖σ‖V =
(
‖σ‖20 + ‖∇ · σ‖20

) 1
2 .

There are several ways to discretize the problem (1.5) based on the variables σ
and u; each method corresponds to a particular variational form of (1.5).

2.1. A mixed finite element method

Let Th be a finite element partition of Ω into triangles or quadrilaterals which is
quasi-regular. Let Vh ×Wh denote a pair of finite element spaces satisfying the
Brezzi-Babuska condition. For example, the elements of Raviart and Thomas [26]
would be a good choice for Vh and Wh. Let us illustrate the scheme using only
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the Raviart-Thomas elements of the lowest order. The result can be extended to
other elements without any difficulty.

Multiplying both sides of the second equation of (1.5) by A−1(t) yields

A−1(t)σ = ∇u−
∫ t

0

A−1(t)B(t, s)∇u.(2.1)

Solving ∇u from the integral equation (2.1) in term of σ, we obtain

∇u = A−1(t)σ +
∫ t

0

R(t, s)A−1(s)σ(s) ds,(2.2)

where R(t, s) is the resolvent of the matrix A−1(t)B(t, s) and is given by

R(t, s) = A−1(t)B(t, s) +
∫ t

s

A−1(t)B(t, τ) R(τ, s) ds, t > s ≥ 0.(2.3)

Observe that the resolvent is smooth and bounded since A−1B is.
Test the equation (2.2) against vector-valued functions in H(div,Ω),

(A−1σ,v) +
∫ t

0

(M(t, s)σ(s),v) ds = (∇u,v),

where M(t, s) = R(t, s)A−1(s). Using the Green’s formula and the boundary
condition u = g, one obtains

(∇u,v) = −(∇ · v, u) + 〈g,v · n〉,

where, and in what follows in this paper 〈·, ·〉 indicates the L2-inner product on ∂Ω.
Thus,

(A−1σ,v) +
∫ t

0

(M(t, s)σ(s),v) ds+ (∇ · v, u) = 〈g,v · n〉(2.4)

for all v ∈ H(div,Ω).
Next, test the first equation of (1.5) against functions in W , yielding

(ut, w)− (∇ · σ, w)− (cu, w) = (f, w), ∀w ∈W.(2.5)

The equations (2.4) and (2.5) give immediately a variational form for problem
(1.5). Note that the initial condition u(0, x) = u0(x) should be added to the
variational form as well. The corresponding discrete version seeks a pair (uh,σh) ∈
Wh ×Vh such that

(2.6)
(uh,t, wh)− (∇ · σh, wh)− (cuh, wh) = (f, wh),

(A−1σh,vh) +
∫ t

0

(M(t, s)σh(s),vh) ds+ (uh,∇ · vh) = 〈g,n · vh〉,

for all wh ∈Wh and vh ∈ Vh. The discrete initial condition uh(0, x) = u0,h, where
u0,h ∈ Wh is some appropriately chosen approximation of the initial data u0(x),
should be added to (2.6) for starting. The pair (uh,σh) is an approximation of the
true solution of (1.5) in the finite element space Wh ×Vh. For sake of notation,
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we shall assume that σh(0) satisfies the equation (2.6) with t = 0; namely, it is
related to u0,h as follows:

(2.7) (A−1σh(0),vh) + (u0,h,∇ · vh) = 〈g0,n · vh〉,

where g0 = g(0, x) is the initial value of the boundary data.

2.2. A hybridized mixed method

The method presented in the previous section is based on the equation (2.2) in
which the kernel R(t, s) is the solution of a Volttera integral equation. In other
words, one would have to solve R(t, s) from (2.3) before discretizing the integro-
differential equation (1.5). Our objective here is to outline a hybridized method
which does not require the solution of Volttera equations.

In the hybridized method, the continuity requirement of the flux component σ
in the normal direction of interior edges is compensated by the use of a set of new
variables defined on the interior edges of the finite element partition Th. The set
of new variables are known as Lagrange multipliers and approximate the variable
u on the interior edges.

The finite element space for the flux σ is given by

Vh = {v : v|K ∈ V(K, j)},

where V(K, j) is the local finite element space of order j on the triangle or quadri-
lateral K. Again, we shall illustrate the case of j = 0 corresponding to the lowest
order Raviart-Thomas element. The finite element space for the variable u is
the same as the one described in the previous section. The space of Lagrange
multipliers consists of piecewise constant functions on the set of interior edges:

Λh = {λ : λ|e ∈ P0(e), on any interior edge e}.

We are now ready to derive a hybridized discretization scheme for (1.5). First,
we test (2.1) against functions vh in Vh. Let G(t, s) = BTA−T where MT stands
for the transpose of the matrix M . Since there is no continuity for vh in the
normal direction of the element boundary, then we have

(A−1σ,vh) = −
∑
K

(∇ · vh, u)K +
∑
K

∫
∂K

uvh · nK

+
∑
K

∫ t

0

(u,∇ · (G(t, s)vh))Kds−
∑
K

∫ t

0

(∫
∂K

uG(t, s)vh · nK
)
ds,

where (·, ·)K stands for the L2-inner product on the element K ∈ Th. Note that
u has a given value g on the boundary of Ω. Thus, u shall be replaced by g for
boundary integrals on ∂Ω. The interior boundary integrals will substitute u by its
approximation, called λh, in the finite element space Λh. Therefore, the hybridized
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mixed finite element method seeks uh ∈Wh, σh ∈ Vh, and λh ∈ Λh satisfying

(uh,t, wh)− (∇ · σh, wh)− (cuh, wh) = (f, wh), wh ∈Wh,

(A−1σh,vh) +
∑
K

(∇ · vh, uh)K −
∑
K

∫
∂K∩Ω

λhvh · nK

−
∑
K

∫ t

0

(uh,∇ · (G(t, s)vh))Kds+
∑
K

∫ t

0

(∫
∂K∩Ω

λhG(t, s)vh · nK
)
ds

(2.8)

= 〈g,vh · n〉 −
∫ t

0

〈g,G(t, s)vh · n〉, vh ∈ Vh,∑
K

∫
∂K∩Ω

σh · nKµ = 0, µ ∈ Λh.

The last equation in (2.8) ensures a continuity of the flux in the normal direction
of interior edges.

3. An Error Estimate in L2

In this section, we derive an optimal order L2 error estimate for the mixed finite
element approximation resulted from the scheme (2.6). The result is similar to
those of the mixed method applied to parabolic problems without memory effects.

In the finite element analysis for parabolic problems, it is often convenient
to consider projections of the true solution with respect to the elliptic part of
the differential operator. For example, the standard Ritz projection is a good
candidate in the Galerkin method for parabolic equations [28, 31]. For integro-
differential equations, the Ritz-Volttera projection [2] plays a good role in the error
analysis. For the mixed method, we shall consider a projection defined by using
the mixed formula of the elliptic operator.

Let (u,σ) be the solution of (1.5). Consider a pair (Phu, Fhσ) : [0, T ]→ Wh ×
Vh which is defined as the solution of

(A−1(σ − Fhσ),vh) + (∇ · vh, u− Phu) = 0, vh ∈ Vh,(3.1)
(c(u− Phu), wh) + (∇ · (σ − Fhσ), wh) = 0, wh ∈Wh.(3.2)

The pair (Phu, Fhσ) is called the mixed finite element projection of (u,σ). The
error between (Phu, Fhσ) and (u,σ) has been well studied in many existing papers
[1, 10, 26]. The following error estimate is standard for the mixed finite element
projection [10]:

(3.3) ‖σ − Fhσ‖ ≤ Ch‖σ‖1, ‖u− Phu‖ ≤ Ch‖u‖1,

where, and in what follows in this section, we denote by ‖ · ‖m the norm in the
Sobolev space Hm(Ω). The subscript m will be omitted when m = 0. In other
words, the standard L2 norm will also be denoted by ‖ · ‖0 = ‖ · ‖.
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Theorem 3.1. Let (u,σ) and (uh,σh) be the solutions of (1.5) and (2.6),
respectively. Assume that the initial data for (2.6) satisfies

(3.4) ‖Phu0 − uh(0)‖0 + ‖Fhσ(0)− σh(0)‖0 ≤ Ch(‖u0‖1 + ‖σ0‖1).

Then, there exists a constant C such that

(3.5) ‖u− uh‖0 + ‖σ − σh‖0 ≤ Ch
(
‖u0‖1 + ‖σ0‖1 +

∫ t

0

(‖σ‖1 + ‖us‖1) ds
)
.

Proof. First we decompose the error as follows:

u− uh = (u− Phu) + (Phu− uh) = ρ+ ρh,

σ − σh = (σ − Fhσ) + (Fhσ − σh) = θ + θh,

where Fh and Ph are described as above. It follows from (1.5) and (2.6) that

(ρh,t, wh)− (∇ · θh, wh)− (cρh, wh) = −(ρt, wh), wh ∈Wh,(3.6)

(A−1θh,vh) + (ρh,∇ · vh) = −
∫ t

0

M(t, s)(θ(s) + θh(s),vh) ds, vh ∈ Vh.(3.7)

By letting wh = ρh in (3.6) and vh = θh in (3.7) we obtain from their sum

1
2
d

dt
‖ρh‖2 + ‖θh‖2A−1 − (cρh, ρh) = −(ρt, ρh)−

(∫ t

0

M(t, s)(θ(s) + θh(s))ds,θh

)
≤ ‖ρt‖ ‖ρh‖+

1
2
‖θh‖2A−1 + C

∫ t

0

(‖θ‖2 + ‖θh‖2A−1) ds,

which in turn implies via an integration from 0 to t that

‖ρh‖2 + 2
∫ t

0

‖θh‖2A−1 ds ≤ ‖ρh(0)‖2 +
∫ t

0

‖ρs‖ ‖ρh‖ ds

+ C

∫ t

0

(∫ s

0

(‖θ(τ)‖2 + ‖θh(τ)‖2A−1)dτ
)
ds

≤ 1
2

sup
0<s<t

‖ρh(s)‖2 +
1
2

(∫ t

0

‖ρs‖ds
)2

+ ‖ρh(0)‖2

+ C

∫ t

0

(∫ s

0

(‖θ(τ)‖2 + ‖θh(τ)‖2A−1) dτ
)
ds.

Hence, taking the supremum first and then using the Gronwall’s inequality, we
find

‖ρh‖2 + 2
∫ t

0

‖θh‖2A−1 ds ≤ C‖ρh(0)‖2 + C

∫ t

0

‖θ(s)‖2 ds+
(∫ t

0

‖ρs‖ ds
)2

≤ Ch2

(
‖u0‖21 +

∫ t

0

‖σ(s)‖21 ds+
(∫ t

0

‖us‖1 ds
)2
)
,

where we have used the standard error estimate (3.3).
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In order to estimate θh(t), we differentiate (3.7) to obtain

(A−1θh,t,vh) + (ρh,t,∇ · vh) = −(M(t, t)(θ(t) + θh(t)),vh)

−
∫ t

0

(Mt(t, s)(θ(s) + θh(s)),vh) ds.

Thus, we see from letting wh = ρh,t in (3.6) and v = θh in the above identity that

‖ρh,t‖2 +
1
2
d

dt
‖θh‖2A−1

≤ ‖ρt‖ ‖ρh‖ − (M(θ + θh) +
∫ t

0

Mt(t, s)(θ(s) + θh(s)) ds,θh)

≤ 1
2
‖ρh‖2 +

1
2
‖ρt‖2 + C

(
‖θ‖2 + ‖θh‖2A−1 +

∫ t

0

(‖θ‖2 + ‖θh‖2A−1) ds
)
.

Integrating the above from 0 to t yields∫ t

0

‖ρh,t‖2 ds+ ‖θh‖2A−1 ≤ C
(
‖θh(0)‖2 +

∫ t

0

(‖θ(s)‖2 + ‖ρs(s)‖2) ds
)

≤ C‖θh(0)‖2 + Ch2

(∫ t

0

‖σ‖21ds+
∫ t

0

‖us‖21 ds
)
.

Thus, the estimate (3.5) follows from the above inequality and the assumption
(3.4). �

Finally, we comment briefly on the inequality (3.4). Recall that (Phu0, Fhσ(0))
is the mixed finite element projection of (u0,σ(0)) in Wh × Vh. The function
uh(0) is the initial data in the discretization scheme, which is often chosen as the
L2 projection of u0 in the mixed finite element space Wh. Thus, it is clear that

‖Phu0 − uh(0)‖0 ≤ Ch(‖u0‖1 + ‖σ0‖1).

Regarding the error between Fhσ(0) and σh(0), notice that σh(0) is defined as
the solution of (2.7) in which u0,h = uh(0) is the L2 projection of the initial data
u0. It is not hard to show that the following holds true:

‖Fhσ(0)− σh(0)‖0 ≤ Ch(‖u0‖1 + ‖σ0‖1).

In other words, the assumption (3.4) is satisfied if the initial discrete data u0,h is
chosen as the L2 projection.
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