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ON THE SOLUTION OF SOME INVERSE PROBLEMS
IN POROUS MEDIA FLOW

D. CONSTALES and J. KAČUR

Abstract. In this paper we discuss the numerical modelling of two inverse prob-
lems in porous media flow. In the first problem, we determine the soil parameters
that occur in the retention and hydraulic permeability curves of the Van Genuchten
ansatz for Richard’s equation. In the second problem we determine the hydraulic

permeability, longitudinal dispersivity and adsorption isotherms using the measure-
ments in a single injection-extraction well.

1. Introduction

The flow in unsaturated porous media is governed by Richard’s equation

(1) ∂tθ = div(k(Ψ) grad Φ)

where θ is a volumetric water content, Ψ is the matric potential (generated by the
capillary pressure) and Φ = ψ + z is the total head including the gravitational
potential z. The hydraulic permeability we denote by k = k(ψ) and by u we
denote the effective saturation, u = θ−θr

θs−θr
where θs is the volumetric water content

at saturation and θr is the residual water content. Van Genuchten [18] derived an
empirical relationship between u and ψ and between k and ψ (constitutive laws)
in the form

(2) u =
1

(1 + (αψ)n)m
, k(ψ(u)) = ksu

1/2(1 − (1 − u1/m)m)2,

where ks is the saturated hydraulic conductivity

ks = k0
ρwg

µ

with k0 the intrinsic permeability (depending on the structure of the porous media
only), ρw and µ are the density and dynamic viscosity of the water and g is the
gravitational constant. The values ks, α, 0 < m < 1, n = 1/(1 −m) and θr, θs
are soil parameters that have to be determined from additional measurements in
infiltration. We assume that the porous medium is homogeneous. In this case
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it is sufficient to consider a one-dimensional sample along which the infiltration
proceeds.

By means of (2) we can rewrite Richard’s equation in terms of u (in 1D) as
follows

(3) ∂tu = ∂x(∂xβ(u) +K(u))

in x ∈ (0, L), L > 0, where

β′(u) = − ks

(θs − θr)α
u1/2−1/m(1 − u1/m)m(1 − (1 − u1/m)−m)2,

K(u) = (ē/(θs − θr))k(u) and ē is 0 for infiltration without gravitation, 1 for
infiltration with gravitation and −1 for infiltration against gravitation. In 3 we
have β(s) = spḡ(s) with p = 1

2 + 1
m + 1 and ḡ(0) ≥ δ > 0, where ḡ is a smooth

function. The boundary conditions that we consider are either of Dirichlet type,

(4) u(0, t) = 1 − ε, u(L, t) = 0,

or of mixed, Neumann-Dirichlet type,

(5) −(∂xβ(u) +K(u))x=0 = q(t), u(L, t) = 0,

with the initial condition

(6) u(x, 0) = u0(x).

If β′(0) = 0 (or, more precisely,
∫ δ

0 (β′(u)/u) du < +∞), then equation (3) rep-
resents a porous media type equation with convection. In that case, the support
of the initial data u0(x) (i.e., the closure of the set of x for which u0(x) > 0)
propagates with finite speed — see [2, 11, 13]. Then the movement of the in-
terface x = s(t) (the boundary between the regions where u(x, t) > 0 and where
u(x, t) = 0) is a very significant characteristic of the solution of (3) and is funda-
mental to our numerical solution. The qualitative properties of the solution have
been intensively studied in the last two decades — see [1, 3, 10, 11, 13, 17].
A very important role in its analysis is played by the exact solution given by
Barenblatt-Pattle for the special case when β(u) = up, p > 1, and K(x, u) = 0 —
see [2]. We also use it for comparison with our numerical solution. The wetness
front x = s(t) is sharp and thus can be measured, e.g., by γ rays relatively pre-
cisely. In our numerical experiments we show that the information on the wetness
front evolution is sufficient to restore the soil parameters.

In the second inverse problem we use a single injection-extraction well for restor-
ing basic parameters in contaminant transport by underground water flow. We
shall use the simplified mathematical model for the flow in unsaturated-saturated
porous media which is based on the Dupuit-Forheimer approximation. In this con-
cept the vertical component of the flow is neglected. We consider radial symmetric
flow around a well with radius r0. The well lies in an aquifer of height H . The
flow in the unsaturated zone is governed by

(7) S1∂th =
1
r
∂r(rkh∂rh), (0 ≤ h < H),
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where h is the height of the phreatic surface (assumed to coincide with the hy-
draulic head) and k is the hydraulic permeability.

In the saturated zone, the governing equation is

(8) S2∂th =
1
r
∂r(rkH∂rh), (H ≤ h),

where h is again the hydraulic head measured from the bottom of the aquifer.
Introduce the abbreviation he = min(h,H). The transport of the tracer (con-

taminant) with concentration C and source term F is modelled by

(9) ∂t(heC) =
1
r
∂r[rhe(D0 + αL|v|)∂rC] − 1

r
∂r(rhevC) +

F

θ0
he,

where αL represents the longitudinal dispersion coefficient, D0 is molecular diffu-
sion,

(10) v = − k
θ0
∂rh

is the Darcy velocity of the water, and θ0 is the porosity. The source term F
represents the adsorption of the tracer. When the tracer is radioactive then F can
represent also its decay. In the general case we have

(11) F = −κ(Ψ(C) −W (t)) − λC,
where λ is the decay constant, Ψ(C) is the sorption isotherm, κ is the rate constant
of the adsorption andW (t) represents the amount of adsorbed tracer per unit mass
of the porous medium. The adsorbed mass is governed by

(12) ∂tW (t) = κ(Ψ(C) −W (t)) − λW (t).

If the sorption is irreversible we must consider (Ψ(C)−W (t))+ instead of (Ψ(C)−
W (t)) (a+ = 1/2(a+ |a|)). The most common adsorption isotherms are of Lang-
muir and Freundlich type

ΨL(s) =
as

1 + bs
, ΨF (s) = asb,

where a, b are model parameters — see [12].
The equations (7)–(12) are to be completed with initial and boundary condi-

tions. In the injection regime, during the time interval (0, T1), we assume that
H ≤ h (i.e. the aquifer is saturated) for r0 ≤ r ≤ R and

h(r0, t) = hin, h(R, t) = hR, h(r, 0) = h0(r)
C(r0, t) = C0, C(R, t) = 0, C(r, 0) = 0(13)

W (0) = W0,

in which hin, C0 can be time-dependent, e.g., piecewise constant or piecewise linear
in subintervals of (0, T1). In the last subinterval we assume C0 ≡ 0.

The extraction regime extends over the time interval (T1, T2). For t ≥ T1

we shall consider h(r0, t) = hex < H , so that an unsaturated zone appears in



4 D. CONSTALES and J. KAČUR

r ∈ (0, s(t)), and a saturated zone in r ∈ (s(t), R). Then the following initial and
boundary conditions will hold:

h(r0, t) = hex, h(R, t) = hR, h(r, T1) = hex(r)
C(r0, t) = C0, C(R, t) = 0, C(r, T1) = Cex(14)

W (T1) =Wex,

where Hex, Cex,Wex are the values of corresponding solutions h, C, W of (7)–
(12) at the time t = T1. The free boundary x = s(t) has to be determined from
‘contact’ conditions

(15) h(s(t)+, t) = h(s(t)−, t), ∂rh(s(t)+, t) = ∂rh(s(t)−, t),

which represent the continuity of the head and the flux at x = s(t).
From additional measurements of C(r0, t) during the extraction period (T1, T2)

we have to determine the model parameters d = (k, αL, a, b).

2. Solution of the Direct Problem (3)–(6)

We sketch the idea of the solution method for the direct problem (3)–(6) with the
initial condition u0 ≡ 0. In this case the wetness front x = s(t) moves from x = 0
and its movement is governed by (see [6])

(16) ṡ(t) = − lim
x→s(t)−

(
∂xF (u) +

K(u)
u

)
,

where F (u) =
∫ t

0
(β′(u)/u) du. This is the crucial point in constructing a very

accurate solver. To make practical use of (16) we must to avoid the degeneracy of
F since it can be so that F ′(0) = 0. For this purpose we introduce the transformed
dependent variable v = F (u). Then we apply a fixed-domain transformation
y = x

s(t) in (3)–(5), (16). In our special case of β in (3) we easily verify that

β′(s) = spg(s), p =
1
2

+
1
m
> 1, g(s) ≥ δ > 0

where g is a smooth function. To remove the singularity in (16) it is sufficient to
use the transformation v = up−1. Then we rewrite (3), (16) into the form

∂tv = β′(v1/(p−1))∂2
xv +

(∂xv)2

(p− 1)v
(β′′(v1/(p−1))v1/(p−1)(17)

+ (2 − p)β′(v1/(p−1))) +K ′(v1/(p−1))∂xv,

(18) ṡ(t) = − 1
p− 1

lim
x→s(t)−

β′(v1/(p−1))
v

∂xv.

As a consequence of the used transformation we have that

lim
x→s(t)−

β′(v1/(p−1))
v

≡ g(0) �= 0.
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Applying the fixed-domain transformation y = x/s(t) and writing w(y, t) = v(x, t),
we obtain

∂tw =
β′(w1/(p−1))
s2(t)

∂2
yw +

(∂yw)2

(p− 1)s2(t)w

(
β′′(w1/(p−1))w1/(p−1)(19)

+ (2 − p)β′(w1/(p−1))
)

+
K ′(w1/(p−1)) + ṡ(t)y

s(t)
∂yw

and

(20) ṡ(t) = − p

(p− 1)s(t)
g(0)∂yw,

which can be substituted on the right-hand side of equation (19). The boundary
conditions are transformed into

(21) w(0, t) = (1 − ε)p − 1, w(1, t) = 0

(22) −β
′(w1/(p−1))w1/(p−1)

(p− 1)ws(t)
∂yw −K(w

1
p−1 ) = q for y = 0, w(1, t) = 0.

Next, we reduce (19)–(20) to a system of ODE, using the space discretization in
y ∈ (0, 1) consisting of points 0 = y0 < y1 < . . . < yN = 1. Denote by Ci(t) the
approximation to w(yi, t) (so that CN (t) = w(1, t) = w(s(t), t) = 0 identically).
Let p2(y;C, yi) be the second-order Lagrange polynomial interpolating the points
(yi−1, Ci−1), (yi, Ci) and (yi+1, Ci+1), then we approximate ∂yw at the point yi by
∂yp2(y;C, yi) and ∂2

y v̄ by ∂2
yp2(y;C, yi). If the Neumann-type boundary condition

in (22) is considered, then C0(t) is variable in time, and we obtain the differential
equation for it by introducing a fictive point at y−1 = −y1 with value C−1 =
C1 − 2y1(∂yw)y=0, where (∂yw)y=0 is obtained from the Neumann condition.

The result of this discretization is a system of ODEs

(23) Ẋ = f(X, t; d),

where X(t) = (X0, X1, . . . , XN , s(t)) and d is a vector of approximate parameters
of βd(u) and Kd(u). The initial condition X(0) = X0 is obtained from the known
initial profile u0. The choice of a nonuniform partition {yi}, with a higher density
of points near y = 0 and y = 1, yields very good approximations of the solution
even for relatively low numbers of nodal points, thereby keeping the size of the
system (23) reasonably small.

To solve (23) we use an efficient solver for stiff ODE, e.g. LSODA, which is
based on time-adaptive BDF methods. Comparing our numerical solution with
the analytical one by Barenblatt-Pattle for β(s) = sp and u(x, 0) = δ(x) (the
Dirac measure) the error in L2 norm is smaller than 10−6 using only N = 20
nodal points.

Denote by s�(t) the measured movement of the interface at discrete time instants
t = {ti}m

i=1. Then in the inverse problem we want to find such a soil parameter
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vector d, that the penalty functional

(24) F(X, d) ≡
m∑

i=1

(sd(ti) − s�i )2

reaches the minimum among all admissible vectors d. We can add to (24) an
additional penalty term

m∑
i=1

(Qd(ti) −Q�
i )2

based on measurements of total infiltrated mass

Qd(t) =
∫ t

0

q(z) dz,

where d is the model parameter vector and the Q�(ti) are the corresponding mea-
sured values.

To increase the sensitivity of the solution on the soil parameters in d, we have
to make the solution very dynamical. We can do this by switching the bound-
ary conditions and using centrifugation. Then, instead of the usual gravitation
potential we can create an modified potential with

z =
ω2(x+ l)2

2g
,

which we substitute into (1). Here, l is the distance between the top of the sample
and the center of the centrifuge. In this case we have (see (3))

K(u) =
ksω

2(x+ l)
g(θs − θr)

u1/2(1 − (1 − u1/m)m)2.

Changing the rotational speed of the centrifuge, we can change the evolution of the
saturation in the sample very effectively. Moreover, the propagation of infiltration
can be significantly influenced also in low-permeability materials. This makes the
method efficient, precise and cheap.

3. Solution of Direct Problem (7)–(12)

We briefly describe the solution of the flow and transport equations under the
extraction regime of the well. There is an unsaturated zone in (r0, s(t)) around
the well and saturated zone for r ∈ (s(t), R). In that case the equation (7) holds
in the unsaturated zone and (8) in the saturated zone. The unknown interface
x = s(t) has to be determined from (14) which is coupled with (7) and (8). This
free boundary problem we treat similarly as in previous section, using a fixed
domain transformation. In (r0, s(t)) we use y = (R− r)/(R− s(t)). We denote by

h1(y, t) = h(r, t) −H for r ∈ (0, s(t),

h2(y, t) = h(r, t) −H for r ∈ (s(t), R).
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Then we obtain

S1∂th1 =
k

(s(t) − r0)2
{
∂y[(h1 +H)∂yh1](25)

+
s(t) − r0

r0 + y(s(t) − r0)
(h1 +H)∂yh1

}
+

S1

s(t) − r0 ṡ(t)y∂yh1,

S2∂th2 =
kH

(R − s(t))2
[
∂2

yh2 − R− s(t)
R − y(R− s(t)∂yh2

]
− S2ṡ

R− s(t)y∂yh2(26)

for y ∈ (0, 1), with the boundary conditions

h1(0, t) = hex −H, h1(1, t) = 0,

h2(0, t) = hR −H, h2(1, t) = 0.(27)

The point y = 1 corresponds to the interface x = s(t). The ‘contact’ condition
(16) can be expressed in the form

(28)
1

s(t) − r0 ∂yh1 = − 1
R− s(t)∂yh2 for x = s(t).

In this case we do not have a governing equation for ṡ(t). We shall determine ṡ(t)
(and consequently s by integration) by forcing s(t) to satisfy (28). We use the
relaxation

(29) εṡ(t) =
1

s(t) − r0 ∂yh1 +
1

R − s(t)∂yh2 for y = 1.

If ε → 0+, we expect that (28) will be satisfied. Now we substitute for ṡ(t) in
(25), (26) from (29). We use a similar space discretization as in Section 2. Then
we obtain an ODE system

(30) Ż(t) = f1(Z, d),

where d represents the model parameters (S1, S2, k, α, a, b, κ) and Z = (Z1, Z2, s)
represents an approximation of h1, h2 in the nodal points {yi}m

i=1 and s is from
(29). Similarly we transform and approximate the concentration C = (C1, C2) in
the corresponding nodal points {yi}m

i=1 in both the saturated and the unsaturated
zone. Then we obtain an ODE system

(31) V̇ = f2(V, s, F, d),

where V = (V1, V2) are the approximations of C1, C2 in the nodal points {yi}m
i=1.

We note that in the unsaturated zone he = h, which is time-dependent and thus

∂t(heC) = h∂tC + C∂th,

where ∂th can be eliminated from (7). In the saturated zone he = H and therefore
∂t(heC) = H∂tC.

When F represents the adsorption governed by (11), we add to the ODE systems
(30), (31) also a system

(32) Ẇ = κ(Ψ(V ) −W ) − λW + y
ṡ

s
∂yW, W (0) =W0,
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which represents a transformation of (12) in the variable y. The same nodal points
have been used in the unsaturated and the saturated zone. Finally, our complete
ODE system is in the form

(33) Ẋ = f(X,F, d), X(0) = X0 with XT = (ZT , V T ,WT ).

This system we then solve using the LSODA package.
Similar systems are obtained when we inject into the unsaturated zone. Then,

a saturated zone occurs in (r0, s(t)) and an unsaturated zone in (s(t), R). When
we repeat the injection-extraction regime switches, several interfaces can appear.
In that case the resulting system is more complicated. This situation has been
discussed in [7].

The inverse problem consists in determining the model vector d so as to fit the
measurements (during the extraction regime), for the penalty functional

(34) F(X, d) = µ
N∑

i=1

(V0,d(ti) − C∗
i )2 + ν

N∑
i−1

(Qd(ti) −Q∗
i )2,

to attain its minimum over all admissible vectors d. Here, Qd(t) represents the
total amount of injected or extracted water, where

Qd(t) = −k
∫ t

0

2πr0hd∂rhd|r=r0 dt

and V0,d(t) is the first component of Vd which approximates C(r0, t) in t ∈ (T1, T2).
The vector XT (t) ≡ (ZT (t), V T (t),WT (t)) is governed by (33).

4. Solution of Inverse Problems

We solve the inverse problems, introduced in Sections 2 and 3, using Newton-
Raphson, Broyden, or Levenberg-Marquardt methods. The details of the min-
imization methods can be found, e.g., in [15]. Applying the Newton-Raphson
method in minimization of penalty functional we need ∇dF(X, d) and ∇2

dF(X, d)
(Hessian). Consequently we need ∇dXd and ∇2

dXd. These we can obtain using
the concept of automatic differentiation implemented into LSODA (cf. [5]). In the
output of this solver we obtain, additionally to Xd(t), also ∇dXd(t) and ∇2

dX(t)
for t ∈ (0, T ). Then the minimization procedure is as follows. Let dk is known and
let Xdk

be the corresponding solution of (33). Then the improved vector dk+1 is
obtained as the solution of the linear system

∇2
dF(X, d)(dk+1 − dk) = −∇dF(Xk, dk).

If the Hessian is not a positive definite matrix, we use a steepest descent step
instead. It is well known the slow convergence of steepest descent method. If the
vector d contains only a few components then also Levenberg-Marquardt method
is suitable since the penalty functional is quadratic. In that case ∇dXd is con-
structed numerically. By means of approximate values ∇dk

Xk and ∇dk−1Xk−1 an
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approximation of the Hessian is constructed. Also in Broyden method an approx-
imation of Hessian is constructed (on each iteration step) by means of ∇dk

Xk and
∇dk−1Xk−1 — see [15]

5. Some Numerical Experiments

5.1. Infiltration

Let us consider sand soil with the model vector d = (ks,m, α) where

ks = 2.4 × 10−7m/s, m = 0.644, α = −1.89m−1.

The length of the sample is 10cm. This sample will be subjected to the following
infiltration procedure:

• during the first 30 minutes there is infiltration into the dry region from the
saturated boundary x = 0 under gravitation;

• for the next two hours the top x = 0 is sealed (zero flux) and centrifugation
is used with ω = 5t/s with l = 0.1m;

• again, the Dirichlet boundary condition u(0, t) = 0.995 is used and infiltra-
tion with gravitation proceeds for one hour;

• finally, centrifugation with ω = 5t/s is used for one hour with sealed bound-
ary x = 0.

The corresponding time evolution of the effective saturation u is graphed in Figs. 1
to 3. We present the iteration process of restoration of d = (ks,m, α) in Table 1.
We start with the initial approximation d0 = (3.10−7, 0.6,−2.5). The effectiveness
of the used iteration process (Newton-Raphson) is measured by the RMS values

RMS =

(
1
m

m∑
i=1

(sk(ti) − s∗i )2
)1/2

.

The measurements s∗(t) we have generated from the solution of the direct prob-
lem (i.e. sd(t)) with the vector d, and were then perturbed with artificial noise
(normally distributed with standard deviation 0.1).

5.2. Injection/extraction well

We consider a numerical experiment with the following data:
1. well radius r0 = 0.2m, domain radius R = 10m;
2. porosity θ0 = 0.2, hydraulic conductivity k = 10−5m/s, storativities S1 =

0.05, S2 = 1;
3. saturation head H = 20m, injection head hin = 25m, extraction head hex =

12m, boundary head value hR = 20.1m;
4. molecular diffusion D0 = 10−8m2/s, dispersivity αL = 0.2m.

The injection regime lasts for 200000s; during the first 100000s a contaminant is
injected at concentration 1 (a conventional value), and during the next 100000s
no contaminant is injected. Then the extraction regime lasts for 750000s, during
which the contaminant concentration in the extracted water is measured every
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Figure 1. Saturation distribution along sand sample (of 10 cm lenghth) under gravitation, after
600, 1200, . . . , 3600 seconds.
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Figure 2. Subsequent saturation distribution in the sealed centrifugation, after 0, 600, 1200,
. . . , 14400 seconds.
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Figure 3. Subsequently saturation distributioin under gravitation, after 0, 600, 1200, . . . , 3600
seconds.

2000s. The simulations are carried out using N = 120 discretization intervals.
The corresponding solutions are graphed in Fig. 4.

In this inverse problem, we recover the values of αL, k and S2 using the same
model to generate the measurements and to match them, but starting from the
perturbed initial values αL = 0.4m, k = 3 × 10−6m/s and S2 = 0.1.
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Figure 4. Simulation results of the direct problem in injection/extraction: (from top to bot-
tom) successive profiles of hydraulic head (m) vs. radial coordinate (m); total amount of water
extracted vs. time (s) during the extraction regime; successive profiles of contaminant concen-
tration vs. radial coordinate (m); contaminant concentration at r = r0 vs. time (s) during the

extraction regime.
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ks × 105 m α RMS
3.000000 0.600000 -0.025000 0.05782216
3.182745 0.618725 -0.025843 0.01877586
3.276472 0.599218 -0.025343 0.01215379
2.969023 0.609280 -0.022863 0.01096101
2.804175 0.620033 -0.021874 0.01050500
2.686874 0.626353 -0.020997 0.01028553
2.501224 0.637531 -0.019692 0.01013705
2.461581 0.640548 -0.019387 0.01002683
2.300516 0.651175 -0.018219 0.01006465
2.295148 0.652031 -0.018166 0.00989848
2.262489 0.654401 -0.017924 0.00995786
2.262520 0.654422 -0.017923 0.00994728

Table 1. Subsequent parameter values and RMS errors for the inverse problem in infiltration.

The successive iteration results of the Levenberg-Marquardt method are listed
in Table 2. It is clear that αL is the easiest of the three quantities to restore,
followed by k, and then by S2. In the absence of noise, the parameters are recovered
exactly (up to perturbation induced by the precision limitations of the integration
algorithm).

αL k S2 RMS error
0.400000 3.00000e-06 0.100000 0.04706172
0.171601 4.10545e-06 0.104566 0.01982622
0.155226 5.68765e-06 0.108296 0.00707935
0.167471 6.75390e-06 0.102463 0.00397516
0.190440 8.39317e-06 0.079443 0.00222197
0.197762 9.68133e-06 0.055072 0.00036735
0.199809 9.96590e-06 0.051009 0.00005947
0.200021 9.99143e-06 0.050495 0.00003558
0.199989 9.99523e-06 0.050218 0.00001009
0.200024 9.99755e-06 0.050059 0.00000886
0.200027 1.00010e-05 0.049992 0.00000401
0.200005 1.00002e-05 0.050029 0.00000202
0.199996 9.99913e-06 0.050043 0.00000158

Table 2. Successive steps of the solution of the injection/extraction inverse problem.
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11. Kalašnikov A. S., Formation of singularities in solutions of the equation of nonstationary
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84248 Bratislava, Slovakia, e-mail : kacur@fmph.uniba.sk


