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ABSTRACT. It is well-known that for Hilbert space linear operators 0 < A and
0 < C, inequality C' < A does not imply C? < A2%. We introduce a strong order
relation 0 < B <« A, which guarantees that C2 < BY/2ABY2 for all 0 < C' <
B, and that C? < A? when B commutes with A. Connections of this approach
with the arithmetic-geometric mean inequality of Bhatia—Kittaneh as well as
the Kantorovich constant of A are mentioned.

1. INTRODUCTION AND THEOREM

Let B(H) denote the space of bounded linear operators on a Hilbert space H.
Throughout the paper, a capital letter means an operator in B(H). The order
relation A > B or equivalently B < A for A, B € B(H) means that both A
and B are selfadjoint and A — B is positive (positive semi-definite for matrices).
Therefore A > 0 means that A is positive. Further, A > 0 means that A > 0 and
A is invertible, or equivalently A > ul for some p > 0, where [ is the identity
operator in B(H).

It is well-known that 0 < C' < A does not imply C? < A? in general. We look
for a condition on A and B, which guarantees that

0<C<B = (?< A%
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Let us introduce a strong order relation B <€ A for 0 < A, B as
B« A <= PBP < A for all projection P. (1.1)

Theorem 1.1. If 0 < C < B <« A, then C? < BY?ABY? and C? < A?
whenever AB = BA.

Proof. Inequality 0 < C' < B is characterized by the relation
C = BY2DBY?* for some 0 < D < 1. (1.2)

Since each 0 < D < I can be approximated in norm by convex combinations of
projections, and since the map D —— DBD is convex in the sense that

{ADy + (1 = \)D3} B{\D; + (1 — \) D}
S )\DlBDl + (1 - )\)DQBDQ for all 0 S A S 1
we can see from (1.1) and (1.2) that
C*=B'Y?.(DBD)- B'» < B'?AB'*.
Further, BY/2AB'/? < A? when AB = BA. O

2. STRONG ORDER RELATION
It is immediate from definition (1.1) that
0<C<BxA = (KA (2.1)
and
0< B; << 4; (j=1,2)

= a1 B+ axBy K a1 A1 + a Ay for all aq, s > 0.
The following assertion can be verified easily

0<AxwA <« A=al forsomea >0.

A little non-trivial fact is that since the square-root map 0 < X —— X2 ig
order-preserving (see [4, p.127])

0<BKA = BP«AV
This can be seen as follows: Since
PBY?p < (PBP)Y?
for all B > 0 and all projections P, we can conclude that
0<B<« A = PBY?P < (PBP)"/* < AY?
= BY? <« AV

To see further properties of the strong order relation, given a projection P, let
us consider two maps from B(H) to B(G) with G = ran(P), the range space of
P. First define (P)X by

(P)X := PXP forall X € B(H)
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and second [P]X by
[P]X :== PXP — (PXP*)- (P*XPY)™' - (P*XP),

where P+ :=1 — P.

The map (P) is defined for all X while [P] is defined only when P+X P+
is invertible in B (QL) where G+ is the ortho-complement of G, or equivalently
G+ =ran(P).

See [1] for more details about the map [P]. Sometimes we will abuse (P)X and
[P]X as if they are operators in B(H).

It is obvious that, with Ig the identity operator in B(G),
pul <A< = ulg <(P)A<\g. (2.2)
A significant result is the following.
Theorem 2.1. For all A > 0 and all projections P,
([P]A) ' = (P)(A™!) and 0 < [P]A < A.
Proof. Along the orthogonal decomposition H = G ® G+, write

A Arp
A=
{Am AzJ

where All = ]314P7 A12 = PAPL, A21 = PlAP and AQQ = PLAPL.
Everything in the assertion comes from the following decomposition:

A _ Ig A12A521 . All—A12A521A21 0 . Ig 0
0 Igj_ 0 A22 A;;Agl IgJ_

-5 2 [ ot L

o 0 IgL 0 (PJ‘)A A2_21A21 Igi
and the fact that both block operator matrices
(I A A Ig 0 ]

i 0 IgL | and {A;;Am Igi_
are invertible with respective inverses

1, AmAg'lz[@ — A AR

0 I 0 Ig
and .

I R 0

A521A21 IgJ_ —A;;Agl IgJ_ ’
In fact

A — Ig 0 . ([P]A)_l 0 ' [g —A12A2_21
—A521A21 [gj_ O ((PL)A)il O [gJ_ ’

and

Ig A12A2_21 [P]A 0 Ig 0| _
= {o Lo || 0 o a4y 15| T FMA
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Corresponding to (2.2) we have
W< A<M = pul; <[P]A<A;. (2.3)
Corollary 2.2. For A,B > 0,
B« A < (P)B<[P]A for all projection P
— A'x B

3. EXAMPLES

Given A with pul < A < Al for some 0 < p < A, we try to find reasonable
0 < B of the form B = ol — 3A~! with o, 3 > 0 or = aA +b with a > 0 and real
b for which B < A.

Theorem 3.1. Let ul < A< A with0 < pu < X and o, 3 > 0. Then validity of
0<a-— % <t for all t € [u, \] implies that al — BA™! << A.

Proof. Given a projection P, let X := [P]A. Since by (2.3) ulg < X < Al with
G = ran(P), the assumption implies

0<alg—pBX ' <X,

Since X! = (P)(A™!) by Theorem 2.1 , considering X and X ! as operators in
B(H) we have

P(al — BA™HP < [P]A < A,
which is just the assertion. Il

Suppose that ul < A < A\ with 0 < u < A and that for o, 3 > 0

Oga—ggt for all ¢ € [u, A],

or equivalently
ap< B and h(t):=t*—at+ >0 forallte ). (3.1)
In this case, define a function f, g(¢) by

B
fap(t) =a— n for t € [u, A (3.2)
Next determine a > 0 and real b by the relations
au—}—b:a—é and a)\—f—b:a—?, (3.3)
1

and define an affine function g, g(t) by
Gap(t) :=at+b forte|u . (3.4)

Corollary 3.2. Suppose that (3.1) is satisfied and that f,5(t) and g.p(t) are
defined according to (3.2) and (3.3) respectively. Then

0 < gap(A) < fap(A) K A, sothat g.p(A) K A.



SQUARE INEQUALITY AND STRONG ORDER RELATION 5

Proof. Since f, 5(t) is concave by (3.2) and g, () is affine by (3.4), and by (3.3)

Ja5(1t) = fa3(p) and ga,ﬂ()‘) = fa,ﬂ(/\)

we can conclude that g, 5(t) < fa5(f) on [, A]. Then via functional calculus and
by Theorem 3.1 and implication (2.1)

0 < gap(A) < fap(A) K A, sothat g,p(A) KA.
O
In the remaining part of this section, under the assumption on a pair («, 3) as

in Corollary 3.2, we will investigate when the extremal cases as f, g(p) = p or
Ja3(A) = X occur.

Proposition 3.3. If f, 3(p) = i, then p < a < 2p and f = (a—p) . Conversely
if i < o < 2u, then the pair (o, ) with § = (o — p)p satisfies condition (3.1)
and fap(i) = i
Proof. Since the assumption pu = f, g(p) = o — g implies 8 = (o — p)p, so that
a > . Since by (3.1)
h(t)=(t—p){t—(a—p)} >0 forall t € [u,\

we have o — u < p, that is, a < 2pu.

Conversely, suppose that p < a < 2u. Define § := (o — p)p. Clearly f > ap

and f, g(p) = p. Since a — p < p, we have h(t) > 0 on [p, A], so that (3.1) is
satisfied. 0

We notice the following concrete examples.
(i) When a = 2u and 8 = p?,
M H
foolt) = p2 =5 and gos() = 5t + (0= ).

(ii)) When a = p and 8 =0, fo 5(t) = gas(t) = .
Proposition 3.4. The requirement fo g(A) = X is possible only when X < 2 or
equivalently 2\ < % and

2

and [ = Xa—M\). (3.5)

A
A< a<
A

Conversely when A < 2u, any pair (a, ) with (3.5) satisfies condition (3.1) and
fa,ﬂ()‘) = A
Proof. The requirement f, 3(A\) = A implies § = A(aw — ). On the other hand,
condition (3.1)

(t—=M{t—(a—AN)} >0 forallte[ul]
implies &« — A > A, whence a > 2\. Again, since by (3.1) au > 8 = AMa — ),

2
we have a < >\)\T;ﬂ so that
2

QA< a< .
A—p
The proof of the converse direction is similar. O
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We notice the following concrete examples.

(iii) Let 0 < A < 2u. When a := % and 3 := %

w’

A2 \
faﬂ(t) = N — ,u{l — %} and ga,ﬁ(t) = )\T,u{t _ ,u}

(iv) Let 0 < A < 2u. When « := 2) and 3 := \?,

Fralt) =A{2= 3} and goslt) = 2{t - 0=},

4. CONNECTION WITH KNOWN RESULTS

Bhatia and Kittaneh [3] established a remarkable matrix arithmetic-geometric
mean inequality. It says that for any n x n matrices A, C' > 0 and any unitarily
invariant norm || - || (see [2, p.91] for definition)

A+C
ACl < I{-——¥°Il

Taking the operator norm, this inequality is extended to the case of Hilbert space
operators. Taking A~! in place of A, this theorem for the operator norm says

C+A1'<2 ] = A'C°A'<] = C(?< A%
or
0<C<2.-IT-A1' — (C?<A%

Therefore this corresponds to the case that a =2, =1, u = % and any number
A with AT > A.

Suppose that 0 < A has maximum spectrum A and minimum spectrum g. The
numbers A and p can be expressed in terms of norms related to A. In fact

A=Al and p= AT (4.1)
The number
A+ p)?
KA = 4)\,“ (42)

is called the Kantorvich constant of A. Then it is clear from(4.1) and (4.2) that

(AL - 1AM+ 1)*
AllAf- A=

The following fact has been known (see [4, Chapter III] for more detail):

Theorem 4.1. For A >0,
0<C<A = CQSHA-A2.

Let us show how this can be incorporated into our theory. The following
proposition can be checked immediately.
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Proposition 4.2. When o = %‘; and 3 = % the pair (a, 3) satisfies condi-
tion (3.1) and
AN AL AN
o t - {1 - } d o t = — .
Therefore k' - A << A.

t = Kyt

Now Theorem 4.1 is deduced from Proposition 4.2 and Theorem 1.1 as follows:
0<C<A = Kk'C<KjAKA
= /QZQC’Z < /ﬁlA2 — (C? < ky- A%
Notice that the above argument shows that

0<C<k? A = (C*<A
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