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OPERATORS REVERSING ORTHOGONALITY IN NORMED
SPACES
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Communicated by P. Aiena

Abstract. We consider linear operators T : X → X on a normed space X
which reverse orthogonality, i.e., satisfy the condition

x⊥y =⇒ Ty⊥Tx, x, y ∈ X,

where ⊥ stands for Birkhoff orthogonality.

1. Introduction

In the present paper we deal with linear operators, defined on a normed space,
and their properties connected with the notion of orthogonality. The problem we
propose to consider is related to the orthogonality preserving property.

1.1. Birkhoff orthogonality. Let (X, ‖·‖) be a normed space over K ∈ {R, C}.
Unless the norm comes from an inner product there is no unique notion of or-
thogonality. However, one of the most significant is that of Birkhoff (or Birkhoff–
James), introduced by Birkhoff [2] and developed by James [7, 8, 9]. (Actually,
this relation was much earlier considered by Carathéodory — a good source for
this topic is the survey [1].) The definition of the Birkhoff orthogonality reads as
follows.
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Definition 1.1. Let x, y ∈ X. We say that x is orthogonal to y (we will use the
symbol x⊥y) if and only if

∀λ ∈ K : ‖x + λy‖ ≥ ‖x‖.

The geometrical interpretation is that the line passing through x in the direc-
tion of y supports (at the point x) the ball centred at 0 and with radius ‖x‖. The
above relation is generally not symmetric. If dim X ≥ 3, then the symmetry of ⊥
yields that the norm comes from an inner product ([6, 9], cf. also [1]). Conversely,
if X is an inner product space, ⊥ coincides with the standard orthogonality re-
lation (x⊥y ⇔ 〈x|y〉 = 0) which obviously is symmetric. If dim X = 2 the
symmetry of ⊥ is possible for norms which need not come from an inner product.
These are the so-called Radon norms [12] (cf. also [1]) (we deal with this case in
Section 3).

1.2. Preserving orthogonality. A natural linear preserver problem connected
with the orthogonality relation is to characterize all linear mappings on X which
preserve orthogonality.

Definition 1.2. We say that a given (nonzero) linear mapping T : X → X has
the orthogonality preserving property if and only if

x⊥y =⇒ Tx⊥Ty, x, y ∈ X. (1.1)

It turns out that any nonzero linear mapping preserving orthogonality has to
be a linear similarity, that is, with some positive constant γ

‖Tx‖ = γ‖x‖, x ∈ X. (1.2)

The implication (1.1) ⇒ (1.2) is easy to verify in an inner product space (cf. e.g.
[5]) but much more difficult for normed spaces in general. It was proved first by
Koldobsky [10] only for real spaces and then by Blanco and Turnšek [3] for the
general case and for mappings between two, possibly different, normed spaces.
It is easy to see that (1.2) implies not only (1.1), but also the orthogonality
preserving property in both directions :

x⊥y ⇐⇒ Tx⊥Ty, x, y ∈ X. (1.3)

Thus we can conclude

Theorem 1.3. For an arbitrary normed space X and a nonzero linear operator
T : X → X the conditions (1.1), (1.2) (with some γ > 0) and (1.3) are equiva-
lent. Moreover, an analogous result is true for mappings T : X → Y between two
normed spaces X, Y .

In particular, any nonzero linear operator preserving orthogonality is injective.

2. Reversing orthogonality

Since the orthogonality relation is generally not symmetric it makes sense to
consider the problem of reversing orthogonality.
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Definition 2.1. We say that a nonzero linear operator T : X → X reverses
orthogonality if and only if

x⊥y =⇒ Ty⊥Tx, x, y ∈ X. (2.1)

The above property will be the main subject of our considerations. Let us notice
that if T satisfies (2.1) then its iteration T 2 satisfies (1.1) (whence also (1.2) and
(1.3)). In particular, T 2 is injective, hence T is injective as well. Besides, if
Ty⊥Tx then, by (2.1), T 2x⊥T 2y which is equivalent to x⊥y. Thus (2.1) is, in
fact, equivalent to:

x⊥y ⇐⇒ Ty⊥Tx, x, y ∈ X. (2.2)

Remark 2.2. Notice that in the above considerations the linearity of mappings
can by replaced by its conjugate linearity. Moreover, one can consider a much
wider class of all operators which are phase equivalent to a linear or a conjugate-
linear one. (By conjugate-linearity we mean T (ax + by) = aTx + bTy (x, y ∈ X,
a, b ∈ K), and T, S : X → X are phase-equivalent if Tx = σ(x)Sx, x ∈ X with
some σ : X → K such that |σ(x)| = 1, x ∈ X.)

Obviously, if X is an inner product space, then (2.1) is equivalent to (1.1) and
(1.2). Thus, in this case, the class of solutions of (2.1) consists of all linear sim-
ilarities which means that the reversing and preserving orthogonality properties
are equivalent. However, some spaces admit operators which essentially reverse
orthogonality, which means that they satisfy (2.1) but not (1.1).

Example 2.3. Let X = R2 with the maximum norm (i.e., ‖x‖∞ = ‖(x1, x2)‖∞ :=
max{|x1|, |x2|} for x = (x1, x2) ∈ R2). The mapping T : R2 → R2 defined by

T (x) = T (x1, x2) := (x1 − x2, x1 + x2), x = (x1, x2) ∈ R2

is a nontrivial linear mapping essentially reversing orthogonality.

Indeed, for x = (1, 1) and y = (1, 0) we have Tx = (0, 2), Ty = (1, 1) whence

x⊥y, Ty⊥Tx, Tx 6⊥Ty.

Thus T does not satisfy (1.1). Now one could check directly the property (2.1),
but we will wait until the next section where a short proof of it will be given
(Remark 3.4).

On the other hand, as we will see in subsequent sections of the paper, there are
spaces which do not admit nontrivial linear mappings reversing orthogonality.

Remark 2.4. One can consider a property which is stronger than (2.1). Namely,
assume that a nonzero linear operator T : X → X satisfies

x⊥y =⇒ Tx⊥Ty and Ty⊥Tx, x, y ∈ X. (2.3)

Notice that for bijective operators the condition (2.3) is equivalent to

(x 6⊥y or y 6⊥x) ⇒ (Tx 6⊥Ty and Ty 6⊥Tx).

Let x, y ∈ X and assume x⊥y. Since (2.3) implies (1.1), T must be a similarity,
and then Ty⊥Tx implies y⊥x. This means that the orthogonality relation ⊥
is symmetric. Therefore mappings satisfying property (2.3) may exists only on
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Radon planes (two dimensional spaces with the Radon norm — see the next
section) and, if the dimension is greater than 2, only in inner product spaces.

3. Minkowski plane

The case of two-dimensional normed spaces (Minkowski planes) is particular
for our considerations. Only in this case there exist norms (namely, the so-called
Radon norms [12]) which do not necessarily come from an inner product, but
whose Birkhoff orthogonality relation is symmetric. A simple example is the l1-
l∞-norm or the lp-lq-norm (with conjugated parameters p, q > 1) which is even
strictly convex. For such spaces the condition (2.1) is equivalent to (1.1) and the
class of nonzero linear operators reversing orthogonality coincides with that of all
linear similarities. We will show that the reverse is also true (see Theorem 3.6).

3.1. Smoothness and strict convexity. It is known (cf. [8, 1]) that Birkhoff
orthogonality is additive on the right (which means that if x⊥y and x⊥z, then
x⊥y + z) if and only if X is smooth. It is also known (cf. [9] or [1, Theorem 4.18
(i)]) that for two-dimensional normed spaces analogous additivity on the left is
equivalent to the strict convexity of X.

Theorem 3.1. Let X be a Minkowski plane which is either: (i) smooth and
not strictly convex or: (ii) strictly convex but not smooth. Then there are no
nontrivial linear operators reversing orthogonality.

Proof. Assume (i). Let x, y, z ∈ X be chosen such that x⊥z, y⊥z and x + y 6⊥z
(this is possible since X is not strictly convex). If there existed a nonzero, linear
mapping T : X → X satisfying (2.1), we would have Tz⊥Tx and Tz⊥Ty. Since
X is smooth, that would give Tz⊥T (x + y), whence T 2(x + y)⊥T 2z. But T 2

satisfies (1.3), so we would get x + y⊥z — a contradiction. The case (ii) can be
proved analogously (see also Remark 3.5). �

Corollary 3.2. Let X be a Minkowski plane admitting a nonzero linear operator
reversing orthogonality. Then X is strictly convex and smooth or neither strictly
convex nor smooth.

It is an open problem whether the above necessary conditions are also sufficient
for the existence of an operator reversing orthogonality.

3.2. Antinorm. The antinorm ‖ · ‖a corresponding to a given norm ‖ · ‖ in a
two-dimensional space X is defined as

‖x‖a := ‖Φx‖∗ = sup{[y, x] : ‖y‖ = 1}
where Φ: X → X∗ is an isomorphism corresponding to a non-degenerate bilinear
symplectic form [·, ·]; namely Φx(y) := [y, x]. The form is non-degenerate if and
only if [x, u] = 0 for all x ∈ X implies u = 0, and it is symplectic iff [x, x] = 0 for
all x ∈ X (or, equivalently, [y, x] = −[x, y] for all x, y ∈ X). On a two-dimensional
vector space such a non-degenerate bilinear symplectic form is practically unique
(up to a nonzero scalar multiple). For the details we refer to [11]. Let us denote
by ⊥a the Birkhoff orthogonality relation corresponding to the antinorm ‖ · ‖a.
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It is due to Busemann [4] (see also [11, Theorem 1]) that the antinorm reverses
Birkhoff orthogonality, i.e.,

x⊥y ⇐⇒ y⊥ax, x, y ∈ X (3.1)

(and it is a unique norm with this property).

Theorem 3.3. Let X be a Minkowski plane and let T : X → X be a nontrivial
linear operator. Then T reverses orthogonality (satisfies (2.1)) if and only if, with
some positive constant γ, one of the following, equivalent, conditions holds true:

‖Tx‖a = γ‖x‖, x ∈ X; (3.2)

‖Tx‖ = γ‖x‖a, x ∈ X; (3.3)

‖Tu‖a = γ, u ∈ S; (3.4)

‖Tv‖ = γ, v ∈ Sa, (3.5)

where S and Sa denote unit spheres with respect to the norm ‖·‖ and the antinorm
‖ · ‖a, respectively.

Proof. Since the antinorm reverses Birkhoff orthogonality (cf. (3.1)) we have that
(2.1) is equivalent to

x⊥y =⇒ Tx⊥aTy, x, y ∈ X

and to

x⊥ay =⇒ Tx⊥Ty, x, y ∈ X.

Thus T , as a linear operator from (X, ‖ · ‖) into (X, ‖ · ‖a) or from (X, ‖ · ‖a) into
(X, ‖ · ‖), respectively, is an orthogonality preserving operator. By the result of
Blanco and Turnšek (cf. Theorem 1.3) we get (3.2) and (3.3), respectively. And
obviously (3.4) is equivalent to (3.2) and (3.5) is equivalent to (3.3). �

Remark 3.4. Now, we can give a short explanation why the mapping T from
Example 2.3 satisfies (2.1). The l1 norm (‖x‖1 = ‖(x1, x2)‖1 = |x1|+ |x2|) is the
antinorm for the maximum (l∞) norm in R2. We have

‖Tx‖1 = |x1 − x2|+ |x1 + x2| = 2 max{|x1|, |x2|} = 2‖x‖∞.

Thus the operator T satisfies (3.2), which is equivalent to (2.1).

Remark 3.5. Using the notion of antinorm we can give another explanation of
Theorem 3.1. As we know, (2.1) is equivalent to (3.2). The antinorm is defined
as a norm in the dual space X∗. Since X is not strictly convex, X∗ is not
smooth. But then, due to (3.2), X could not be smooth — a contradiction with
assumptions upon X. Analogously, if X is not smooth, then X∗ is not strictly
convex and thus X is not strictly convex as well. Hence in a normed space X
which is smooth but not strictly convex or strictly convex but not smooth the
condition (3.2), whence also (2.1), cannot be satisfied.
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Suppose now, that the only nontrivial linear operators satisfying (2.1) are linear
similarities. Thus, for some γ1 > 0 we have

‖Tx‖ = γ1‖x‖, x ∈ X.

On the other hand, from Theorem 3.3, we have for some γ2 > 0

‖Tx‖ = γ2‖x‖a, x ∈ X.

Thus for γ := γ1/γ2 we have

‖x‖a = γ‖x‖, x ∈ X,

which means (cf. [4] or [11, Corollary 1]) that ‖ · ‖ is a Radon norm. Thus we
arrive at the following result.

Theorem 3.6. Let X be a Minkowski plane. The class of nontrivial linear op-
erators reversing orthogonality coincides with the class of all linear similarities if
and only if X is a Radon plane.

4. Normed spaces with the dimension greater than two

As it was said, if the dimension of X is greater than two, then Birkhoff or-
thogonality is symmetric if and only if the norm comes from an inner product.
If X is an inner product space, then (2.1) is equivalent to (1.1). Conversely, if
(2.1)⇔(1.1), then we have also (2.1)⇔(1.3), and therefore for any linear similarity
T : X → X and for arbitrary x, y ∈ X we have

x⊥y =⇒ Ty⊥Tx =⇒ y⊥x,

i.e., ⊥ is symmetric, hence X is an inner product space.

Theorem 4.1. Let X be a smooth normed space with dim X ≥ 3. Then there
exists a nonzero, linear operator T : X → X satisfying (2.1) (reversing orthogo-
nality) if and only if X is an inner product space.

Proof. Obviously, if X is an inner product space, then (2.1) is equivalent to (1.1)
and (1.2). Hence the class of solutions of (2.1) is nonempty and consists of all
linear similarities.

For the proof of the reverse, assume that there exists a nonzero, linear operator
T : X → X satisfying (2.1). Let x, y, z ∈ X be such that x⊥z and y⊥z. Thus
we have Tz⊥T (x + y) (since X is smooth) and then T 2(x + y)⊥T 2z which, in
turn, give us x + y⊥z. So the orthogonality is additive on the left which, since
dim X ≥ 3, is possible only if X is an inner product space ([9], cf. also [1,
Theorem 4.18 (ii)]). �

Thus any smooth normed space (of dimension greater than 2) which is not
an inner product space does not admit a nontrivial linear mapping reversing
orthogonality. The question is whether the assumption of smoothness is necessary.
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5. J. Chmieliński, Linear mappings approximately preserving orthogonality, J. Math. Anal.

Appl. 304 (2005), 158–169.
6. M. M. Day, Some characterizations of inner-product spaces, Trans. Amer. Math. Soc. 62

(1947), 320–337.
7. R. C. James, Orthogonality in normed linear linear spaces, Duke Math. J. 12 (1945), 291–

301.
8. R. C. James, Orthogonality and linear functionals in normed linear spaces, Trans. Amer.

Math. Soc. 61 (1947), 265–292.
9. R. C. James, Inner products in normed linear spaces, Bull. Amer. Math. Soc. 53 (1947),

559–566.
10. A. Koldobsky, Operators preserving orthogonality are isometries, Proc. Roy. Soc. Edinburgh

Sect. A 123 (1993), 835–837.
11. H. Martini and K.J. Swanepoel, Antinorms and Radon curves, Aequationes Math. 72

(2006), no. 1-2, 110–138.
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