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NORM INEQUALITIES FOR ELEMENTARY OPERATORS
RELATED TO CONTRACTIONS AND OPERATORS WITH
SPECTRA CONTAINED IN THE UNIT DISK IN NORM
IDEALS

STEFAN MILOSEVIC

Communicated by R. Drnovsek

ABSTRACT. If A,B € B(H) are normal contractions, then for every X €
€1 (M) and a > 0 holds

o3
2

<

)

i(—l)" (Z) A X B"

n=0

H‘ (I - A*A)%X<I - B*B)

which generalizes a result of D.R. Jocié [Proc. Amer. Math. Soc. 126 (1998),
no. 9, 2705-2713] for a not being an integer. Similar inequalities in the Schat-
ten p-norms, for non-normal A, B and in the @Q-norms if one of A or B is
normal, are also given.

1. INTRODUCTION

Let B(H) and C..(H) denote respectively spaces of all bounded and all compact
linear operators acting on a separable, infinite-dimensional, complex Hilbert space
H. Each ”"symmetric gauge (s.g.) function” (also known as symmetric norming
functions) ® on sequences gives rise to a symmetric norm or a unitarily invariant

(ui.) norm on operators defined by || X||e et D({s,(X)}o2,), with s1(X) >
$2(X) = -+ being the singular values of X. We will denote by the symbol [||-|||
any such norm, which is therefore defined on a naturally associated norm ideal
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Cjji(H) of Cx(H) and satisfies the invariance property [[|[UXV ||| = ||| X]|| for
all X € € (H) and for all unitary operators U, V. Even more, |||[AXB]|| <
[|CXD]J|| whenever A*A < C*C and BB* < DD*. This is the consequence
of Ky-Fan dominance property, which says that ||| X||] < |||Y|]| if and only if
S sk(X) < Sop_ sk(Y) for all n € N, and the monotonicity of eigenvalues
{An}22, of compact self-adjoint operators, which gives that

sn(AXB) = \2(B*X*A*AXB) < A2 (B*X*C*CX B)
— A(CXBB*X*C*) < \i(CXDD*X*C*) = s,(CXD) (L.1)
foralln € N because B*X*A*AX B < B*X*C*CX Bimplies \,,(B*X*A*AX B) <
A (B*X*C*CX B) and similarly CXBB*X*C* < CXDD*X*C* implies that

M(CXBB*X*C*) < N\, (CXDD*X*C*). More details about the theory of sym-
metric normed ideals can be found in [2] and [7].

Each unitarily invariant norm is lower semi-continuous, i.e. H‘w H <
lim mf |[| X5 ||| - This follows from the well known representation formula, X || =
sup { |t‘]|f|(;(”1|/)‘ .Y is finite dlmensmnal}, where |||-]||, stands for the dual norm of

I-1l| (see [7, Theorem 2.7 (d)]).
One way for creating new s.g functions, is to introduce their p (degree) modi-
fications, for p > 1, ®® as a new s.g. function, defined by

20 ((z)720) < /2 (zlP)iEy).
which will be defined on its natural domain consisting of all complex sequences
z = (2,)%%, satisfying (]2,|P)2, € £p. A simple proof that ®® is a s.g. function
can be found in [5]. Specially Schatten p-norms, for 1 < p < oo, are exactly p
modifications of the nuclear norm. When p = 2, then 2 - (degree) modifications
are traditionally called (Q-norms, so they can written in the form

11X gy = XX

Specially, Schatten p-norms are (Q-norms if and only if p > 2.

Also we use some facts from the theory of holomorphic functional calculus on
Banach algebras, specially the formula fg(A) = f(A)g(A), which proof can be
found in [1].

Throughout the text, for the operator A € B(H) we denote its spectral radius
r(A), defined by r(A) = inf,ey || A |7

First we define the analogue of the defect operator, we will need in the sequel.

Definition 1.1. For A € B(H) such that r(A) < 1 and a > 0, we define its
defect operator as

D=

def 2n 7’L + Oé *1 AT )
lim A A . 1.2
pil— (Z p an ) ( )
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Note that if the operator $°°°  Lnta) y A A" is bounded, which is by Banach-
e’} F (n+a)

n=0 n!l'(a
Steinhaus theorem equivalent to ) >~ n,F HA” fIP < 400 for every f € H,

then it is equal to A;l?oz‘ Specially, this happens when, for example, A is a strict
contraction, or more generally, if (A) < 1. When it is applied to pA instead of A,

we have that ApA,az - (Z ,02n n'rli+a A*nAn) 2, i.e. that AA@ = limp_d_ ApA,ow

We also see that the deﬁmtlon is correct, since the operators A, , are positive
contractions, and are decreasing in p, so they converge strongly to A4 .

Remark 1.2. In the case of Dirac measure, operator A 4, generalizes the operator
A from [0] for a # 1. Specially, we have As; = Ay

Since the coefficients 1;(,711?;)) in (1.2) are actually equal to (—1)"(7%), for A €

B(H) normal, the operator Ay, can be given explicitly:

N1}

Lemma 1.3. If A € B(H) is a normal contraction, then A, = (I A*A)

Proof: Since A is normal contraction, for p < 1 we have

ZOPZnF?S?F#A*nAn_ZIOQn n( >(A*A) (I—pQA*A)_a,

where the last equality follows from the spectral theorem for normal operators, as

o0
the series Z p*(—1)"(7%)x*" converges uniformly on [0, 1]. Therefore we have

1 o

— lim (Z o n"“‘ amar) = i (1 para)’ = (1~ A*A)g

P—>1 T p—1—

where the last equality follows by the use of the spectral theorem, as proclaimed.
OJ
The next lemma provides a technical result which we will need in the sequel.

Lemma 1.4. If a >0 and A € B(H) such that r(A) < 1, then

[e.o]

I'(n+ «a)

Proof: Due to the operator monotonicity of function ¢t — ¢! and the very
definition of the Ay ,, we have

A2, . < (z; p%r?i?r—g;‘)mmn) (1.5)

for every N € N and for every p € [0,1). As we already noted that A, ,, converges

—1
stronglyto A 4 ,,, with the same argument providing that (Z P F(,’IT(“;)) A*”A”)
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N -1
converges strongly to Linta) gsn gn') by letting p — 1— in (1.5) we get
& 8 n!T(a)

N -1
I'(n+«)
2 < *N AN
AZ, < (EO: i) A4 )

n=

for every N € N. Therefore
N 3 N >
I'(n+a) 9 I'(n+ «)
(nZ:O n!l'(«) ) A (; n!l'(«)
which is equivalent to

N

I'(n+a)
Apa-> —A4mA" Ay, < I
ao D Il () 4

Hence, for every N € N and every f € 'H we have

N
r
2 % | A" Aaf IP

n=0

N
- <Z Ffl?r—g;‘)AAﬁA*nAmA,af,f> <UD =P (19)
n=0 ’

so by the Banach-Steinhaus theorem the operator Ay, > EL(F(“O%) ATAMA Y 4 s

bounded, and moreover <Z %fr—wAA,aA*"A”AAﬁaf,f> < (f, f), which com-
0

pletes the proof. O

2. MAIN RESULTS

The first result reads as follows.

Theorem 2.1. Let A, B, X € B(H), such that A and B are normal contractions,
X € € (H) and o > 0, then

[e3

'H (1-aa)” ; WA"XB” (1- B*B)g ‘ <T@||X]] @1
and
H' (I— A*A)gx (I— B*B);‘ < i(—l)”(j)A”XB” : (2.2)

n=0
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Proof: As

o 00

bl I'n+ao
H’ ( Iy A) (n+a)

n=0

A" X B" (I _ B*B> 2

n!

( >(I A*A)gA”XB" (—1)n(_n>(1 BB)S

(2.3)

due tothe (~1)"(72) = el Let usdenote €, L f(—1)2(-2) (1 - 24°4)

n n!l(a)

and D, = B"\/(— ( ) (I B*B ) . Since A is normal, both A and A* com-

mute with (] A*A) 2 then we obtain

Z ICufII? = <Z<— )" ( n“) (1- A*A)“(A*A)"f,f>

n=0
- nf —¢ n o
= [ () o
o(AxA) V0
2
= / Xondiy = (Pxiame fo f) = || f = Pui—asar |7 < LIPS
o(A*A)
(2.4)
where duy = (Ef, f) and E is spectral measure associated to the operator

A*A. Now, we have that 3 ||C,.f|]> converges for every f € H, and similarly
n=0

S| D,f|I° converges for every f € H. Therefore we can apply [3, Theorem 2.2
n=0

0 (2.3)

i C.XD, i CxCh X i D:D
n=0 n=0 n=0

(2.5)
where the last inequality holds because Y CC,, and > D} D, are projectors by

n=0 n=0
(2.4), which proves (2.1).
To prove (2.2), first we note that by (2.1) we have

I—pQA*A : Oo(_l)n - anAnXBn f—sz*B 2
[ -saes)? Socar ()1 75)

n=0

for all 0 < p < 1. Let us denote Z = T, X = > (-1)"(7%)p*A"X B, and
n=0
operator A ® B, defined by A ® B: B(H) — B(H) : X — AXB. Since
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A and B are contractions, we also have ||[A® B|| < 1. We see that J, =
Sl o(=1)" (M) p*(A @ B)™, is equal to (I —pPA® B> in the latest nota-
tion, in the sense of holomorphic functional calculus on B(H). Therefore X =

T, 7 = (I —pPA® B> Z =3 (=1)"(2)p*A"ZB", so that (2.6) is equivalent
n=0

to
=0

where, based on [4, Lem. 3.1], Z also belongs to €. ;(H). Since (I - pZA*A>

=3
2

‘H (I . pQA*A) gz([ - p2B*B) (2.7)

[N]1)

and (] - ,ozB*B> * strongly converge to (I - A*A)

2

and (] — B*B>§ respec-

(I _ B*B) 2

On the right hand side of (2.7) as the series Z ”( ) converges absolutely

M\Q

tively, the left hand side of (2.7) weakly converges to (I A*A)

[0

for p = 1, based on the fact that it converges to (1—-1)* =0, and that summands

(=) (¢ ) have a constant sign for n > a. Therefore

N ( ) 2nArz g i(—n"@)Anzm

0 n=0

< g;((—l)"(i) (1)
<g1<—1>n(§)<1—p2"> rZ|||+n§12\<—1>"(j)\|||Zu|, 25)

as A and B are contractions. The second term in (2.8) can be made arbitrarily
small due to the argument used above, while the first term in (2.8) tends to 0, as
p — 1—. Now, from the lower semicontinuity of |||-|||, we finally have

H' 1 A*A)g <[—B*B)g

[A™[HIB™ [ I Z ]l

:‘Hw— lim (1 pQA*A>a (1 pQB*B>g

p—1-—

< i f A" Z B"
wlger)
- 2n An n _ S _1\n «Q n n
plg{li 0 ( ) A"ZB"||| = ;( 1) (n)A ZB (2.9)
which completes the proof of (2.2). O

Remark 2.2. Previous theorem generalizes mentioned [3, Theorem 2.3], where it
is proven for o = 1. Let us also note that for o € N it could be proven by 1terated
application of [3, Theorem 2.3] to operators (I — A*A)*s X(I — B*B)“z, (I —
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A*A) T (X—AXB)(I-B*B)*z ,(I-A*A)*s (X—AXB—A(X —AXB)B)(I —
B"‘B)QT_g7 etc. instead of X. For example, when o = 2, we have

a-aaxu-pp)| =||vi-FAvI=2AxVT-BBVI-BB||
<||VT=AAXVI—BB - AVI = A AXVT = B*BB’H (2.10)
= \/W(X—AXB)W‘H (2.11)
< X—AXB—A(X—AXB)BH‘ - H‘X—2AXB—A2XB2 ‘ (2.12)

where (2.10) and (2.12) follows by the use of [3, Theorem 2.3],applied to operators
VI— A*AX\/I— B*B and X — AX B respectively instead of X, while (2.11) follows

from the commutativity of A and v/I — A*A. We see that the right hand side of
(2.12) is equal to the (2.2) for o = 2.

For operators with their spectra contained in the closed unit disk, no normality
is needed for Schatten class norm inequalities. For the sake of completeness, we
restate here the following direct consequence of the [1, Theorem 3.3].

Lemma 2.3. Let a >0, A, B € B(H) and X € C,(H), such that
) S (AL A (2 + | B fI2 + 1B fII?) < +oo, for every f € H.

Then:

n!l(«)
n=0

L +0) (T e\ e
(Z n!T(a) A <§0 n!T(«) A A) A )

ZT(n+a), , (~Tn+a) ..\ " . =
*(E e (S ) )

n=

<

: (2.13)

where p,q,r = 1 are satisfying 7% = % + 1

With the use of the defect operator Ay ,, we have similar inequalities in a more
compact form.

Theorem 2.4. Leta >0 and A,B € B(H) and X € C,(H), r(A) < 1,r(B) <1
and r(A)r(B) < 1, and let we additionally assume

o0

Z—Fgr?&?_)(HA*”fHM||B*"f||2)<+OO’ for every  feH. (214)

n=

Then

17% C F(?’L+OZ) *n n 1_% 7% _%
HAAQ ZWA XB"Ap || < HAA*’QXAB*VQ (2.15)
n=1 P P
and
1_% 1*% _% G n « *1 n *%
Ay XA <AL (-1) JATXB AR (2.16)
V4 n=0

p
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where p,q,r > 1 are satisfying % = % + %

Remark 2.5. We note that condition Z ,’}J(r; | A" f || < 400 is fulfilled in the

case r(A) < 1, so it is relevant only in the case 1(A) = 1, and similarly for B.

Proof: We will first prove the inequality (2.15). Since r(A*) = r(A4) < 1, we
note that Ay-, is well defined, while from the condition (2.14) we see that is

o0
actually equal to (Z n,?ra A”A*”) * and the same reasoning can be applied
n=0

for Aps . By the [4, Theorem 3.3], for p € [0,1) we get

1 = T
HAl q Zp%z (n+a)A*nXBnApBa

ph n!l'(«) — »
1 oo oo _ 1
SR ) s e |, o
— P
where A, é n,’ffa ApAqu*" and B, < " n(,TILfa B"ApBa Since r(A*) <

1, for every p < 1 we have that p{/||A**|| < %p < 1 for n being large enough,
so the conditions of [4, Theorem 3.3] are fulfilled. Therefore

ZA FENCD By A Gnd Y B (2.18)

n!T () pha pA
n=0

and hence

(S a)’
n=0 n=0

1
2

- ['(n+ «) 1-1 220 g1 a
2n n q q A*n
( §_0 p n'F(a) A ApA aApA aApA ozA )

1

<ZP2"F7§TLF—?03>A”A*")Q Apj* . (2.19)

n=0

Similarly

1
i s r—1 2r 1
(Z B,(3B:B.) B;';) =D o (2.20)
n=0 n=0
so that (2.17) actually becomes

1_% = QnP(n+a) *1 n
HA’)A"I”Z_OIO WA XB Achx

(2.21)

_1 _1
q
< ’ ' ApA*,a)(ApBr*,oz

p p

As we already noted, operators Z "+a ;A" A™and Z F(,T,J(ra) B"B*"are bounded,

and they are equal to A 37a and A Bia respectlvely Slnce all coefficients appear-
ing in the definition (1.2) are positive, we have Apj o S AL, and Apg o S

1
Ag?a. As the functions ¢ — te and t ~— ¢+ are operator monotone (since
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_2 _2 _2 _2
r,q = 1), we also have A & =< Ayl and A g. , < Apr, and due to (1.1)
we therefore have

_1 1
HA XA < HAA:{QXABQQ (2.22)

Once again, by the monotonicity of A2 oo 1 p, and operator monotonicity of the

function t — t~!, we also have AA7 < A? and because 0 < 1 — % < 1, the

pA,a

9_2 92
function ¢ — ¢4 is operator monotone as well, therefore A, ' < A ,7 and
_2 2
AZR 0 < Ai . Now, by the argument similar to (2.22) we get
-1 & [(n+a) 1—1
Ayt M LA XB"Ap ;
" Apzjz:p 7ﬂF(a) B,
n=0 p
1-1 & ['(n+ «a)
q 2n *1N n
< HA”A’“RZP W) A"XB ApBa p (2.23)

for every p € (0,1). To finish the proof of (2.15), all we need is to let p — 1—.
Since r(A*)r(B)=r(A)r(B) <1, for sufficiently large n we have {/||A**|| || B"|| <

¢ < 1, and therefore || A" X B"|| ) < ¢" || X[, hence the series Z Lnta) yATXB"

n!T(«

converges in the Schatten p-norm. With the argument smular to that already

used in the proof of (2.8), we can prove that Z 0* n,rffa A X B™ converges to

oo
> n,’;+°‘ A X B"™ in the Schatten p-norm as p — 1—. As this implies weak
n=0

n

convergence of Z PP "+a) A*XB"™ as p — 1—, from the lower semicontinuity

of the Schatten p—norms (2.21), (2.22) and (2.23), we have

-2 SR T(n 4+ a) 1-1
A2y ——ZAT"XB"Ag !
RESCARR—

n=1 p

1N L, T(n+a) 1-1
— ||w— lim A o P —— A" XB"A, T
H P — n!T () B, ,
1 T 1
< liminf|[A, 7 2“MA*”XB“A; ;
p—1-— o= n!l(«) “l,
ol S 2 L)
S;lgg%gf ZspAﬂxgg;p —;Ifzaj—fl )(E?zﬁpBa ,
<liminf|| A £ XA, hpnimeAA* Xagl = HA;‘E’@XA;,?@
(2.24)

which concludes the proof of (2.15).
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To prove (2.16), first we note that the operator 7, = > (—1)"(%) p*"(A*® B)"

is defined since r(pA*®pB) < r(pA*)r(pB) < p? < 1 and by the similar argument
used in the proof of (2.2), from (2. 21) we get

@ n A*n n _%
HApA;XApBa HAPX* -1)" (n>p2 AXB"A g (2.25)
p
Similarly to the proof of (2.22) and (2 23), it can be shown
3 S n «Q n A*n n -2
HApﬁwz(—l) (n)p2 A™XB A g
n=0 p
Alazt S (@) pranxpract 2.26
<[ ;) o . @29
as well as )
‘A:O?XAEQ HAP xale (2.27)
p
so that
1-3 1-3 o 2n p*n nATT
AA;XABA " pr AT X B AR, (2.28)
p

If r(A*)r(B) < 1, then ||A™|| HB”H < " for some 0 < ¢ < 1 and sufficiently
large n, so the series on the right hand side converges absolutely in the Schatten
p-norm for p = 1. By letting p — 1— in (2.28) we get the desired inequality. O

For the case r(A) = r(B) = 1, we provide some sufficient conditions to threat
(2.15) and (2.16).

Theorem 2.6. Let a > 0, A,B € B(H) and X € C,(H), r(4) < 1,r(B) < 1,

and

Z I'(n+ «) (HA*an + B 1| ) < 400, for every feHr. (229

“— nll'(a)
a) If
T
Z %(HA"JCH +||B"f]] ) < 400, for every feH, (2.30)
n=0 ’
then
1_% - P(n+a) *N n 1_% _% _%
‘AM ZWA XB"AR 7| < HAA*’QXABW . (2.31)
n=1 p p
b) If A and B are contractions, then
|afixald )
P P

HAA:’ ( )A*”XB%];E,Q
_.|_

where p,q,r > 1 are satzsfymg 2= % %



NORM INEQUALITIES FOR ELEMENTARY OPERATORS 157

Proof: As it can be seen from the proof of Th. 2.4, that to obtain inequality

. (2.33)

p

1 X2 r 1
‘Mﬁl q j{:fﬁn Ol+_a)/Fm)(fywﬁ;Bb
0

pha — n!l'(«)

_1 _1
q
< ‘ ‘ Apzﬁl*,a‘XVApB?*,a

P
for every p € [0, 1), we only needed r(A*) < 1 and r(B) < 1, Which is assumed in

the statement of the Th. 2.6. Similarly, from (2.29), operators Z F(,’;J(:; A A

and Z "+a B"B*" are bounded, and equal to AyZ  and AR | respectively,
havmg also

1
XA B

_1 1
| ( A <||adi.xag,

, (2.34)

pAa

and

17% - QnF(n+a) *N n 1*%
DV TR

p

/A

1 r
HAl g ZpQ”MA*”XB”ApBa (2.35)
0

pha — nT'(a)

p

To finish the proof of (2.31), all we have to do is to show that pQ”F(fF(LO‘)) A X B"
n=0

converges to »_ 1;(,7;?;) A* X B" weakly. Indeed, for every f,g € H we have
n=0

[e.9] o0

;(1 - pQ")ig?F—mM*”XB"f, 9) = ;(1 - pQ”)ii?F—Ta(;)(Xan, A'g)
<Xa- oy LD ) v, B vl

2 (o)
<Xl <Z<1—p2">r7§?r—g;>||3”f||2> (Z<1—p2">r7§@—;j”||mg||2> ,

n=0 n=0
(2.36)

and now, we have that the right hand side of (2.36) converges to 0 as p — 1—,
based on (2.30). Rest of the proof parallels the proof of (2.15).
To prove (2.32), similarly to the proof of (2.16) we have

_1 _1 1 = _1
HA; XAL T < HAAfa S () (O‘) PATXBUALL (2.37)
bl b k) /,/I/ I’
p n=0 p
Since ||A]| = ||B|| = 1, as already shown in (2.8), we have that the sum on the
right hand side converges in Schatten p-norm to A ,? F Z ()" () A" XB"Ag!

n=0

as p — 1—, which completes the proof. O
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We can prove analogous inequalities for ()-norms, whenever at least one of
operators A or B is normal. First we rephrase [6, Lem. 3.4] for Q2 = N and pu
being a counting measure.

Lemma 2.7. Let A, B, € B(H) such that <\|Aan2 + HanH2> < +oo for
n=1

every f € H. If A, consists of commuting normal operators then for every Q-
norm |||-|[(5), and every X € €.y, (H) then

[e's) %) 00 %
S axs| < 'H ZA;;AnX’ Sl @
1 (2) n=1 )1 p=1
and similarly, if B, consists of commuting normal operators, then
o) [e's) %
Y AXB, <|D 44, (2.39)
n=1 (2) n=1

Lemma 2.7 enables us that for ()-norms, which includes Schatten p-norms for
p = 2, to partially drop the assumption of normality in 2.1, and enhance and
simplify 2.4.

Theorem 2.8. Let a > 0, A, B € B(H) such that X*X € €y (H), r(A) < 1
and r(B) < 1. If A is normal, then the following inequality holds

|

and if B is additionally a contraction or r(A)r(B) < 1, we also have

< XMy » (2.40)

T () o

(1 - A*A> : f% WA”X B"Ap,

H (1 ~A A) Xapa|| <[> (-1 (n>A XB (2.41)
@ ln=0 )
If B is normal, then
= T(n+a) 2
n n _ < '
AA,a;—n!F(a> A"X B (1 B B) B 11X N (2.42)
and if A is additionally a contraction or r(A)r(B) < 1, we also have
AuaX <I - B*B) I < i(—n" “)arxpr (2.43)
| (2) n=0 " 2)
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Proof: To prove (2.40), all we have to do is to apply (2.38) to the left hand
side of (2.40)

IS L) 0y o
(1-aa) > ey AT A

n—=

(2

0
<[] (1 44) : i L +) 4 g vy X

!
“—~ nll'(a o
“I'(n+a)
x ABAZOWB*"B”AB@ < [I1X1) (2.44)

where A, def I;L(,?J(r;")) (I — A*A)EA" and B, def Fn(,?(rcf‘)) B"Apg,, in the nota-

tion of Lemma 2.7. Let us note that > [|A,f]|* < +oo was proved in (2.4),
n=0
while Y || B.f]]? < 400, as well as HZZO:O BB,
n=0
1.4. Proof of (2.41) now follows from the (2.40) like in the Theorems 2.1 and 2.4.
Proof of (2.42) follows similarly, by the use of (2.39) instead of (2.38). O

< 1 follows from the Lemma
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